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Summary

A Statistical Shape Model (SSM) is a statistical representation of a shape obtained

from data to study variation in shapes. Work on shape modelling is constrained by

many unsolved problems, for instance, difficulties in modelling local versus global

variation. SSM have been successfully applied in medical image applications such

as the analysis of brain anatomy. Since brain structure is so complex and varies

across subjects, methods to identify morphological variability can be useful for

diagnosis and treatment.

The main objective of this research is to generate and develop a statistical shape

model to analyse local variation in shapes. Within this particular context, this

work addresses the question of what are the local elements that need to be iden-

tified for effective shape analysis. Here, the proposed method is based on a Point

Distribution Model and uses a combination of other well known techniques: Frac-

tal analysis; Markov Chain Monte Carlo methods; and the Curvature Scale Space

representation for the problem of contour localisation. Similarly, Diffusion Maps

are employed as a spectral shape clustering tool to identify sets of local partitions

useful in the shape analysis. Additionally, a novel Hierarchical Shape Analysis

method based on the Gaussian and Laplacian pyramids is explained and used to

compare the featured Local Shape Model.

Experimental results on a number of real contours such as animal, leaf and brain

white matter outlines have been shown to demonstrate the effectiveness of the

proposed model. These results show that local shape models are efficient in mod-

elling the statistical variation of shape of biological structures. Particularly, the

development of this model provides an approach to the analysis of brain images

and brain morphometrics. Likewise, the model can be adapted to the problem of

content based image retrieval, where global and local shape similarity needs to be

measured.

Key words: Shape, Statistical Shape Modelling, Local Shape Models, Fractal

Dimension, Markov Chain Monte Carlo, Metropolis-Hastings Algorithm, Hierar-

chical Shape Analysis, Curvature Scale Space, Diffusion Maps.
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Ÿ (i, σ) Convolved y-coordinates with the second derivative of the

function g(i, σ).

z Real number.

z State of a Markov chain.

zi Group from a given partition.

z Point in a manifold M.

Zi Partition of O.

~ Convolution operator.

∅ Empty set.

∞ Infinity.

∂ Partial derivative.

‖ · ‖ Norm.

, Equal to by definition.



Symbols xxiv

α(a, z) Acceptance probability ratio in a Markov chain.

β Location vector.

δ Size of the self-similar structures needed to cover a

fractal object in the calculation of the FD.

∆ Laplacian operator.

ε Threshold, a number such that ε ∈ R.

ε Complex k-vector of errors.

ε∗ Complex conjugate of the transpose of ε.

γ Accuracy degree in the diffusion distances term.

κ Curvature.

λ Eigenvalue.

Λ Matrix of Eigenvalues.

ϕk Point on a contour.

µ Mean vector.

∇f Gradient.

ν Translation vector.

ω(k) Window blending function.

Ω Set of feature vectors.

π Pi, constant value 3.1416 . . ..

π(A|B) Posterior probability distribution of a random variable B

that depends on a parameter A.

φ Direction angle.

φ∗(l) The normalised net angular change in direction φ at

each step around the perimeter (l) of a shape.

Φ = S1,S2, . . . ,Sn Set of shapes.

ψ Eigenvector.

Ψ Matrix of eigenvectors.

Ψ A one-to-one map, or Homeomorphism.

ρ Value that determines different distance measures that

can be generated on the Minkowski distance.

%(u) Stationary distribution of the generated Markov chain.



Symbols xxv

σ Width of the Gaussian function.

θ Rotation angle.

Θ Partition.

Υ Design matrix.

ξ Scale factor.

ζ Point configuration.



Chapter 1

Introduction

1.1 Statistical shape analysis of biological and

medical structures

Medicine has undergone a revolution with the use of new technologies, and it is

the recent rapid technological developments which has increased the avenues for

medical research. The role played by medical imaging has changed as well, as

it is no longer used only as a simple way of visualisation of anatomic structures,

but its role has expanded into finding a solution to the problem of extracting

clinically useful information about structures. Today medical imaging is playing

an increasingly important role in the diagnosis and treatment of diseases [82].

The study of the brain has many aspects. From the biological and computational,

with the goal of understanding its function, to development of medical applications

to unify knowledge of the brain across different areas. All this work is possible

through exploration and experimentation in different ways. There are two main

types of methods: invasive and indirect. Invasive methods such as autopsy allow

research about the brain anatomy but not how it functions. Indirect measure-

ments can be taken as well, using tests able to measure disease symptoms or

mental performance. But it is relatively recent technological development which

has increased the possibilities for neuro-scientific research, for instance, allowing

1
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researchers to study the brain in vivo. Many non-invasive methods of brain obser-

vation are available, such as the EEG, MEG, MRI, fMRI, CAT or PET. (Figure

1.1).

Figure 1.1: a) Example of CT (Roentgen-ray Computed Tomography), b) Ex-
ample of MRI (Magnetic Resonance Imaging) and c) Example of SPECT/PET

(Single Photon/Positron Emission Computed Tomography) [73]

In this way, brain imaging has empowered medicine and neuroscience with the

ability to use images to identify structural brain changes associated to neurode-

generative diseases. Since brain structure is so complex and varies across subjects,

methods to identify morphological variability can be useful for diagnosis, treat-

ment and to assess the structural basis of normality and disease [8]. Methods that

can capture the morphological variability of the human brain use mathematical

models that are sensitive to changes in size, position, shape and tissue character-

istics of brain structures affected by neurodegenerative diseases. Developments in

Computer Science help as well to create new automated approaches and algorithms

which avoid error-prone and labour-intensive manual measurements, offering pre-

cision in detecting brain differences. Such effort in developing algorithms and

methods has been referred as Computational Anatomy.

Computational Anatomy emerged as a new discipline with the objective of creating

algorithmic tools to help in the analysis of the human brain anatomy. But, as a

new field in medical imaging, it does not cover all the fundamental features of

the brain structure or function (in health and disease) due to brain complexity

[63, 159]. One of the challenges of Computational Anatomy is the identification of
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structural brain changes associated with different neuro-degenerative diseases, to

bring valuable information in the diagnosis and treatment of various disorders [8].

A good example of this is the creation of brain atlases [82] to model the variability

of neuro-anatomical structures across a population. Digital brain atlases transform

the way of handling neuro-scientific information, making possible observations,

such as, of how someone responds to a medication or how the brain changes with

disease (Figure 1.2). Two main types of brain atlases are constructed: deformable

and probabilistic. The idea behind the deformable brain atlas is that a digital brain

atlas can be deformed to fit the anatomy of a certain subject. Transformations

are used, so any segment is allowed to grow, shrink, rotate or twist in order to

conform to the brain of the subject. As a by-product, the required transformations

to warp an atlas into a new subject’s brain provide an index of the anatomical

shape differences between that subject’s brain and the atlas [161]. Probabilistic

brain atlases are created with information collected from imaging devices, and

anatomical templates are generated. These type of atlases are able to capture

how the brain varies with age, gender or disease. Likewise, they can be used for

pathology detection in individuals or groups [161].

Figure 1.2: Elements of a disease-specific atlas: this schematic shows the types
of maps and models contained in a disease-specific brain atlas [159].
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Increasing evidence in neuroimaging research suggests that shape analysis of brain

structures provides new information which is not accessible by the use of conven-

tional volumetric measurements. This motivates development of novel morpho-

metric analysis techniques in order to answer age old clinical research questions,

but which have remained unanswered due to the lack of appropriate measurement

tools. So for example, some of the challenges involved in the construction of these

techniques are, the choice of biologically meaningful shape representations, ro-

bustness to noise and small perturbations, and the ability to capture the shape

properties of populations that represent natural biological shape variation [58].

Statistical Shape Modelling can be applied to many tasks related to medical im-

age analysis. They have proven that brain variation can be successfully captured.

Worthy of mention is that many techniques have been created to model the surface

of the brain such as [52] where a spherical topology mapping and topology correc-

tion are used to map accurately the cortex. [152] is another example that this can

be assessed due to the effectiveness of capturing the variation of sets of contours

(shapes). By this approach, a set of training shapes is used to build the model and

then a given test-shape can be compared against the model. Another example of

this can be found in [35], where fiber tracts extracted from Diffusion Tensor MRI

are described and reconstructed using a shape template. Xue et al. [176] proposed

an automatic segmentation algorithm for neonatal brain MRI using a knowledge

based approach to identify and reduce mislabelled partial volume voxels (MLPV)

in an Expectation-Maximisation Markov Random Field (EM-MRF) scheme. More

recently, Rao et al. [127], have used Canonical Correlation Analysis (CCA) [102]

and Partial Least Squares Regression (PLSR) to quantify and predict correlated

behaviour in sub-cortical structures. In Hawkes et al. [65] a discussion and a

detailed review of shape models in image-guided interventions can be found.

Deformable models are statistical shape models that combine geometry, physics

and approximation theory. They have proven to be effective in segmenting, match-

ing and tracking anatomic structures. These models can be interpreted as elastic

bodies (templates) which react to applied forces and constraints [105]. The most
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popular deformable model is known as ‘Snakes’ or Active Contour Models intro-

duced by Kass et al. [75]. They impose physical constraints (using energy func-

tionals) that control shape variations. The work of Cootes and Taylor [31] called

Active Shape Models (ASM) or ‘Smart Snakes’ constrain the model deformation

using statistics and are useful to track objects in a local image search [30]. Shen et

al. [142], present a deformable model for segmentation and definition of point cor-

respondences in brain images using an adaptive-focus deformable statistical model

based on affine-invariant attribute vectors, minimisation of an energy function and

Principal Components Analysis (PCA). Although, these type of models overcome

many of the limitations of the traditional low-level image-processing techniques,

there are still some problems that need to be solved. For instance, many of them

are interactive models and need prior knowledge incorporated as initial condi-

tions, or need human interaction with the model to guarantee good performance.

A first review of shape methods can be found in [122], and more recently in [90].

Specifically, a survey for deformable methods can be found in [90]. Additionally,

an overview of statistical methods based on the level-set theory and techniques is

given in a survey by Cremers et al. [36]. In [105] a survey of deformable models

in medical image analysis can be found. Finally, for a review and classification of

statistical shape models for segmentation and other applications in medical image

analysis refer to [68].

1.1.1 Fractal brain structure

Since Mandelbrot in his work The Fractal Geometry of Nature [98] proved that

fractional dimensions were useful in the characterisation of natural phenomena,

many studies have applied the framework of fractal geometry. So, too is the case

in biology and medicine, where the complexity in the structures of living creatures

resembles the principles of fractal geometry. For Weibel, an interesting conclusion

on the importance of fractals in biological design is that it provides organisms with

an important error tolerance, so the lack of a particular scale in biological evolution

becomes an important advantage for fractal progeny [119]. But it is also plausible



Chapter 1. Introduction 6

that the fractal design provides the organisms with functional consequences as

in [119] and [5].

Due to the complexity of human brain geometry it is plausible to assume that

the brain possesses a self-similar structure [171]. To explain this, different studies

have analysed brain processes and brain structures. For example, in [5] there is an

analysis of the relationship of fractal patterns with dendrite and axon terminals,

and they find that these 3D biostructures are fractal over at least one decade

of length scales. In [183] there is a description of a method that detects age

related white matter structural changes using fractal dimension, concluding that

the human cerebellum is a highly fractal structure. A similar study in [53] performs

a three-dimensional fractal analysis on the white matter surface to quantify its

complexity. This study concludes that the white matter surface can be described

by fractal dimension over a narrow and specific range of scales and that it measures

the complexity of the surface. In [81] Kontos et al. provides a study of MRI

activation patterns using space filling curves to relate brain structures with brain

functions. The proposed approach is based on a mapping of the 3D space into

1D space using a transversal of the Hilbert space filling curve. Finally, in [79]

a volumetric method based on the fast Fourier transform is used to address the

question of whether the human cerebral cortex is self-similar, in a statistical sense.

The analysis in this research was performed across a wide range of spatial scales,

from the size of the whole cortex to the pixel. Results from six subjects confirm

that the human cerebral cortex exhibits a fractal nature down to spatial scale of

3 mm.

Fractals and in particular space filling curves defy shape analysis because each ex-

ample is, so to speak, its own exemplar and the relative complexity of such shapes:

(1) make it hard to establish meaningful correspondences between shapes; and (2)

require a much larger training size. Approaches that comprehend such ideas have

been proposed, like in the aforementioned work by Vemuri and Radisavljevic [166]

where fractal surfaces are generated. The importance of this relies on the fact that

the generation of fractal surfaces of arbitrary order can be useful in the description

of natural detail, such as one of their experiments with anatomical structures of
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the brain (gyri and Hippocampus) from MRI data. As mentioned before, in [100]

an approach called Fractal Active Shape Models (FASMs) is presented. Here the

shape is represented by a fractal interpolation curve rather than a set of landmark

points, but there is no use of fractal analysis in order to characterise the shape

variability.

The fact that the brain seems to present a self similar structure at different scales

is a key fact for this study since fractal analysis will be used here to analyse the

shape structure of the brain and we will show how to use this in local shape

modelling.

1.2 Local vs. Global

Work on shape modelling is constrained by many unsolved problems, for instance,

difficulties in modelling local versus global variation. Global shape models result in

highly non-linear shape spaces and it can be difficult to determine a compact set

of modes of variation. It is important to point out that these models are successful

in modelling large scale variations, but they struggle with the finer shape details.

To cope with this problems hybrid shape models that combine local variation into

the global scheme have been developed.

As an example of these type of models, in [166] a modelling scheme is presented

based on multiresolution wavelet basis that endows it with the ability to continu-

ously transform from local to global shape deformations. Another example of this

is the work by Vemuri and Radisavljevic [166], where a deformable superquadric

model that allows the generation of fractal surfaces is built. The deformable su-

perquadric model is constructed in an orthonormal wavelet basis and empowers

the model to continuously transform between local to global shape deformations.

In [9] an approach called deformation-based morphometry is used to characterise

differences in macroscopical anatomy among structural brain images. Active shape

focusing [140] is another process where a multiscale active contour representation,

in combination with an energy functional, is followed by an optimisation of the
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model through a series of shape extractions, allows a study of shapes at different

levels of detail. The method proposed by Yushkevich et al. [179] uses a multiscale

medial representation and then two sets of features are computed: coarse features

which describe relationships between neighbouring medial atoms and refinement

features which measure geometrical differences between corresponding pairs of

medial atoms. Then shapes are classified using Fisher linear discriminants. The

method can analyse variability in the coarse-scale description of an entire object

separately from the fine-scale variability in a part of the object. Shen et al. [143]

presented a deformable model for segmentation and definition of point correspon-

dences in brain images that incorporates geometric and statistical information in

a hierarchical fashion. The important feature of this work is the incorporation

of an attribute vector used to characterise the geometric structure of the model

around a point of interest, from a local to a global scale. Neumann et al. [117]

used a local method called negative symbols to compute a number of statistical

and perceptual shape features for each connected component of an image and its

background. It also incorporated a global method that uses a wavelet decompo-

sition of the horizontal and vertical projections of the global image. In the end,

their proposed method is based on the relative performances of these two methods,

and it is applied to the problem of logo recognition.

In [78] a method for the analysis of 3D hippocampal shapes is presented. The

method generates a hierarchical level-of-detail (LOD) using an octree-based scheme

that allows it to discriminate the global shape difference and distinguish certain

shape differences in specific local regions. In the work of Tsai et al. [163] a para-

metric model is derived by PCA to obtain a connection between multiple shapes

within an image to capture co-variations among different shapes. In [22] a scale

parameter is introduced in the active contour formalism using evolution equations

(Polyakov functional) for active contours in scale spaces. The idea developed deals

with the shape of objects at different scales of observation/resolution. Because at

large scales the global shape of the object can be observed, since smaller shape

features are suppressed, and at lower scales, finer characteristics appear in the
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shape of the object, it seems natural to perform analysis not only at one scale but

at several.

When using Active Shape Models two important issues normally arise. First, the

requirement of homology, meaning the need for point-to-point correspondences.

A key step in building shape models is the need to establish correspondences

between shape boundaries over a reasonably large set of training images. It is

important to establish correctly such correspondences, otherwise, an inefficient

parameterisation of shape will be determined. The importance of finding the cor-

rect correspondences is even more evident in shape analysis, as new knowledge

and understanding related to diseases and normal development is extracted based

precisely on the establishment of correct correspondences [152]. In 2D, correspon-

dence is often established using manually determined landmarks [19], but this is

time-consuming and error-prone. Work has focused on this, like in [39] where

a model for establishing automatically optimal correspondences between sets of

shapes is described. This is done by casting the correspondence problem as a

problem of finding an ‘optimal’ parameterisation of each shape in the training

set, where the correspondences are found using the Minimum Description Length

(MDL) principle. In [154] Styner et al., a comparative study into three anatomi-

cal structures of four different correspondence establishing methods is presented.

The studied methods include a Manually initialised Subdivision Surface (MSS)

method and three automatic methods that optimise the object parameterisation:

parametric surface description that uses spherical harmonics (SPHARM), Mini-

mum Description Length (MDL) and the Determinant of the covariance matrix

(DetCov) method. The results suggest that for modelling purposes the best of the

studied correspondence methods are MDL and DetCov. More recent methods di-

rectly combine the search of correspondences and SSM, e.g. [186]. In this work the

aim is to establish a pair-wise surface correspondence using a deformable model

algorithm derived from the Adaptive Focus Deformable Model (AFDM). Lately,

Hufnagel et al. [71] presented a work where in order to solve for inexact corre-

spondences, a probabilistic approach based on an affine Expectation-Maximisation

(EM) - Iterative Closest Point (ICP) registration algorithm is used. Here, the exact
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correspondences are replaced by iteratively evolving correspondence probabilities

which provide the basis for the computation of mean shape and variability model.

The second problem is the size of the training set and it happens that the ho-

mology problem makes it worse, since it is laborious and tiring to label manually

homologous points for big samples. Moreover, the size of the training sample in-

creases with the complexity of the shape, meaning with this that detail of shape

variation will appear at higher modes, those associated with smaller eigenvalues

of the PCA. This is not convenient since according to the model, usually most

of the variation can be explained by a small number of modes, and additionally,

this leads to another issue known as the flexibility of the SSMs. The power of the

statistical model increases and falls with the amount of available training data.

In the case of medical analysis the quantity is low as in practice there are rarely

enough images to train the model. This leads to over-constrained models, meaning

with this that the imposed restrictions on the deformations do not enable them

to adapt accurately to new data [68]. But, the lack of training samples also im-

plies that it is difficult to estimate a high-dimensional probability distribution of a

shape from a relatively small number of samples. As a consequence, the subspace

of “allowable shapes” spanned by the few available eigenvectors limits the capacity

of the ASM to follow the finer details of the shape [38]. In order to overcome this

problem in [33] there has been work that uses finite element methods to create

vibrational modes of the shape training sets. These are used to generate a series of

modified shape instances. Then a SSM is constructed including all the variants of

the generated vibrational modes, which results in a model featuring original and

synthetic variations. Depending on the given amount of training data, the model

adapts the number of generated synthetic shapes. In a subsequent publication

[29], the same authors present another technique for the same purpose, where the

synthetic variation is added directly to the covariance matrix. A similar approach

is presented in [169], to build flexible models where a mixed covariance matrix

uses a combined prior of the smoothness and statistical variation modes. It is able

to adapt gradually to use more statistical modes of variation as larger data sets
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are available. In Lötjönen et al. [91] several different techniques to increase artifi-

cially the number of deformation modes were studied. They concluded that from

their set, the best results are achieved by the use of a non-rigid movement strat-

egy which deforms shapes randomly by local warping. In a more recent paper by

Koikkalainen et al. [80], a comparison of different methods is performed and they

conclude that results can be improved by introducing artificially generated defor-

mation modes. In summary, the best techniques to introduce artificial variation

were the nonrigid movement, and PCA and Finite Element Model techniques.

A different approach to increase model flexibility is to divide the SSM into in-

dependently modelled parts. The idea behind this is that smaller parts exhibit

less variation, which can be easily captured using fewer training samples than the

variation for the full shape [68]. In Davatzikos et al. [38] a hierarchical representa-

tion of shape in terms of its wavelet transform followed by a PCA on the wavelet

coefficients is used. Here, the wavelet transform is used to organise their model

into a hierarchy where the lower bands of the transform correspond to the global

shape changes and higher bands to the local ones. Each band is modelled inde-

pendently from the others. Another approach is given in [185]. In this approach,

given a PDM, a mean mesh is partitioned into a group of small tiles. In order

to constrain deformation of tiles, the statistical priors of tiles are estimated by

applying PCA to each tile. Once again, each part or tile of the mesh is modelled

separately, but the parameters for individual tiles are connected by curves in a

combined shape space. More recently, Manousopoulos et al. [100] presented an

approach called Fractal Active Shape Models (FASMs), an extension of the ASM

using fractal interpolation. In the FASM framework, a shape is represented by a

fractal interpolation curve rather than a set of landmark points. The proposed

model has the advantage of requiring fewer landmark points, even for irregular

shapes, and of using fewer variables for representing a shape.

In the context of shape analysis, a Local shape Model (LSM) refers to a mathe-

matical construct that attempts to characterise the shape variation of parts from

a shape, making emphasis on the local details. On the other hand, global models
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deal with the whole structure with less relevance on the finer details of the shape

in question.

A local SSM approach was proposed in [15] and it was demonstrated how local

deviations from the fractal characteristics of space-filling curves could be analysed

based on pose-alignment and an SSM. This work allows the pose variation between

symmetrical parts of the curve to be eliminated and, in theory, allows the SSM

to represent the interesting variation between parts. The model, namely Contour

Warplet, cuts-up a given shape into a set of partitions and then each partition is

modelled using Legendre polynomials. Next, a correspondence-free alignment is

performed over the set of partitions into an affine shape space. Then, the Warplets

are decomposed by PCA, and by retaining pose parameters, the entire contour can

be reconstructed measuring the partition-to-partition variation or if necessary to

drive a deformable template. An important conclusion of this work was that the

localisation of the shape space to contour parts implies that periodic and repetitive

structural variation can be modelled using a single training sample. However, an

open question of this work was what should be a good partition of a given contour

into local parts and how can this be determined in a simple and efficient way.

The method presented herein can be seen as complimentary to the work by

Bhalerao and Wilson [15], which is similar to a PDM, except from the param-

eterisation in polar coordinates and the modelling of the partitions. The main

objective of this research is to generate and develop a statistical shape model to

analyse the local variation in shapes. It is important to mention that most of the

applications of the PDMs have been useful for the creation of image segmenta-

tion methods. Here, a method for analysis of local variation based on PDM, i.e.,

the correlation of the shape in parts of certain structures, in this particular case

natural shapes (leaves and squids) and brain structures is proposed. The model

uses a combination of other well known techniques such as Curvature Scale Space

(CSS) representation of shapes and Diffusion Maps for spectral shape clustering.

Particularly, the aim here is to be able to partition the contour into a set of objects

which are related by affine symmetry so the variations from these local symmetries

can be identified. Within this particular context, this work addresses the question
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of What is local? as well as helping to solve some of the problems of the SSMs such

as the flexibility, that is directly related to the size of the training set problem.

1.3 Generating Local Shape Models

Here a method for local shape analysis is proposed, as sketched in figure 1.3. In

general the method is based on the PDM, that will be described in Chapter 2,

and works as follows: the input data consists of plane coordinates, so a source

image (figure 1.3-(a)) is processed so the contour (2.16) (figure 1.3-(b)) can be

drawn out of it, and if needed, it can be resampled to a desired number of points.

Then, using the CSS process (figure 1.3-(c)) this contour is divided into local

segments or partitions (figure 1.3-(d)). From here, it is possible to follow one of

the two subsequent flows. One of them is to proceed with the alignment (figure

1.3-(e)) or pose removal, so that rotation and translation, namely rigid body

transformations, are removed from each partition. To perform this, one of the

segments should be selected as a reference one, and the others will be transformed

with reference to this one. Then to perform the shape analysis a PCA analysis

(figure 1.3-(f)) is used. The other option is to proceed to find a low-dimensional

embedding of the sub-manifold using Diffusion Map clustering to identify a set of

local shape models (figure 1.3-(α)) and then follow the aforementioned process to

complete the shape analysis. All this is explained in more detail in the following

sections.

1.3.1 Contour Localisation

By contour localisation we refer to the process of decomposing a whole contour

into several parts. This is a common problem in areas such as machine vision and

pattern recognition: breaking up (partitioning) information from the perceived

world into coherent or meaningful parts. As most machine vision and pattern

recognition systems involve some form of partitioning to simplify the analysis
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Figure 1.3: Process for our local shape model: (a) The source image is pro-
cessed so the contour (b) can be drawn out of it. Then the CSS process (c) is
applied in order to obtain the partitions of the contour (d). From here there
are two flows, first we can proceed with the alignment (e) and finish with the
PCA analysis (f) or we can proceed to (α) and identify a set of local shape

models.

process or minimise information storage, it is important to find a significant subset

of the partitioning problem which may be solved using an algorithmic procedure.

Contour partitioning can be defined as a computer process designed to decompose

a contour or its interior into simpler parts [37].

Several methods for contour partitioning have been reported in the image analysis

literature. One of the first research works was the Primal Sketch by Marr [103].

The Primal Sketch is a description of the grey-level changes present in an image.

The description is expressed in a kind of vocabulary of intensity changes (edges,

shades, lines, etc.). The modifying parameters are bound to the elements in the

description, so they can specify elements like their position, orientation, or size.

The importance of this descriptor relies on the fact that it can be regarded as

a way to encrypt the information of the image, since the retained information

corresponds very closely to the original image. So this means that in order to

perform subsequent analysis, it is enough to read the primal sketch and not the
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data from which it was computed, in this case the image [103]. Even though this is

an image based technique its importance relies on the inspiration it has provided

in the development of other methods.

Richards and Hoffman [129] developed shape descriptors known as Codons that

are regarded as simple primitives to describe planar curves. Codons are basic

representations based upon the singular points of curvature, in this case minima,

maxima and zeros of curvature along the input curve. The aim of this descriptor is

to segment a curve at concave (or minima of negative curvature) points in order to

break the shape into parts. The study considers 2D objects having closed bounding

contours (figure 1.4-(b)), but the presence of concavities in the silhouettes is used

to infer boundary parts in 3D objects as well. A possible constraint of the method

is that it needs to know the orientation of the boundary to determine the side

of the figure (or conversely to know the figures’ side to get the orientation), to

determine the Codons. The determination of either side or orientation produces

different results on the generated shape parts. It is not mentioned if the method

is sensitive to noise or pose.

Asada and Brady [7] introduced a method based on a scale space approach to

represent significant changes in curvature (figure 1.4-(e)). The approach proposes

the creation of a set of curvature changes as primitives that are used to create

a tree. Then the tree is parsed in order to sort the primitives according to the

scale, providing a multi-scale interpretation of the contour. The representation

is named Curvature Primal Sketch because the representation of the significant

changes in curvature is analogous to the Marr’s Primal Sketch representation of

intensity changes in grey level images. The work presents sensitivity to noise, and

efficiency is proven by using a set of tool contours (figure 1.4-(e)). No results are

given on different sets such as the ones derived from natural shapes that might

reflect a more complex construction. In addition, and as in other methods, there

are no experiments regarding the sensitivity of the method to noise or pose.

Baruch and Loew [12] reported a method that uses the differential chain code

of the edge to segment it into sections with constant curvature. Each section of
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the boundary is assigned a code that represents the change in slope between the

current and the previous section. To achieve this the first stage is the calcula-

tion of the discrete ψ − S curve, denoted by ψ(s). ψ(s) is obtained by applying

an integrating transformation to the chain code list derived from the boundary

of a two-dimensional object. Then, the ψ(s) curve is segmented by a recursive

algorithm, that finds breakpoints that divides the curve into segments that are

approximately linear. Results are presented on ideal shapes (circles and triangles)

and a chromosome-like shape (figure 1.4-(a)). It is not clear by the results shown

how the method would behave on other shapes, more complex or less linear. Even

though the method exhibits low sensitivity to changes in orientation and noise

presence, the performance on other data sets is unclear.

In [156] a method based on the detection of dominant points was introduced

by Teh and Chin. The proposed algorithm is motivated by an angle detection

procedure. Dominant points on a curve correspond to points of high curvature,

so first an estimation of the curvature at each point on the curve is computed.

Next, a two-stage procedure is applied to derive the dominant points. In the first

stage a threshold is used to eliminate those points whose curvature is below such

a threshold. In the second stage, a non-maxima suppression process is applied to

the remaining points to eliminate those whose curvature estimates are not local

maxima in a sufficiently large segment of the curve. The points remaining after

the removal process are the dominant points. A comparison with other algorithms

using different dominant point detection algorithms is presented, and results on

standard shapes (such as figure 1.4-(a)) are given. The method seems to work

better than the ones compared but no further mention of different applications

or data sets is done, making this a limited approach. Emphasis is made of the

robustness of the method under different scale conditions.

Furthermore, Wuescher and Boyer created a technique for partitioning contours

into constant curvature segments [174]. The method is based on two ideas. The

first is to filter some contour elements called “blips”. Blips can be regarded as local

single pixel displacements that represent a form of noise that are able to induce

large local variations making it difficult to fit segments of constant curvature. The
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second idea is to identify contiguous segments based on an overlapped voting and

sequential extraction. Several result examples are provided with simple shapes,

canonical shapes compared with other methods and stereo vision images (figure

1.4-(c)) to demonstrate the robustness of the method. Still, is not clear how this

method might work with medical or biological image data sets.

More recently Cronin [37] proposed a method based on parsing concavity to par-

tition digital contours into concave and convex sections. Such a method is based

on the concavity code, that is derived from the chain code, and the algorithm

consists of the implementation of rules to parse it. The set of six parsing rules are

based on curvature and the location of the contour vertices. The result is a two-

state boundary partitioning, where the points of high curvature are promoted as

the points of interest to detect concave and convex sections of the portions of the

contour remaining after the removal of concavities and convexities are regarded as

the boundary residue. Even though the method was successfully tested on natural

contours, such as fish contours (figure 1.4-(e)), it is not clear if the result of identi-

fying convex and concave section on contours are enough to be applied to natural

data, and likewise to other methods. No further description of its performance

under noise conditions or pose variation is given.

Certain types of curves, e.g. fractals, can only be characterised by their local

properties and are either repetitive arrangements of similar patterns or the result

of applying a syntactical rule over a set of scales. Here, the aim is to decompose

a contour into partitions according to this property to generate a proper set for

local shape analysis (figure 1.5).

A partition, Pk, of any given shape, Si can be defined as a subset of ordered points

along part of the shape

Pk = {(x, y)j+0, (x, y)j+1, . . . , (x, y)j+m−1} ⊂ Si, 0 < m ≤ n. (1.1)

We assume that n is large enough to allow a reasonable piece-wise-linear approx-

imation of the shape and that the partitions can capture local shape variation.



Chapter 1. Introduction 18

Figure 1.4: Some example of the figures used in previous approaches for con-
tour partitioning: (a) Segmentation of two-dimensional boundaries using the
chain code [12], (b) Codon constraints on closed 2-D shapes [129], (c) Robust
contour decomposition using a constant curvature criterion [174], (d) Visual-
ising concave and convex partitioning of 2D contours [37] and (e) Curvature

Primal Sketch [7].

Figure 1.5: Decomposition of a brain contour into local segments according
to specific properties.

Any partition is defined in S by picking its end points {ej+0, ej+m−1} to be closest

to two given points {ϕk, ϕk+1}. In this way, Pk is ‘cut out’ of a given Si.
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1.3.2 Shape Clustering

Classification is a basic human conceptual activity. In general the problem of

classification consists in assigning a class label to an object, a physical process or

an event [165]. Cluster analysis is the generic name for a collection of procedures

that can be used to create a classification. These form subsets of highly similar

entities or clusters [4]. In each subset the resemblance between the objects is larger

than with other objects in other subsets.

This introduces the problem of how to define the resemblance between the ob-

jects, and often the similarity or dissimilarity is assessed according to a proximity

measure (or distance measure) between the objects [175]. First the Minkowski dis-

tance is introduced which depends on the value of ρ to generate different measures.

Having two d-dimensional objects qi and qj, it is denoted as:

D(qi, qj) =

(
n∑
i=1

|qil − qjl|ρ
)1/ρ

(1.2)

Then, when ρ = 2 the distance becomes the Euclidean distance:

D(qi, qj) =

(
n∑
i=1

|qil − qjl|2
)1/2

(1.3)

It is possible to obtain two other common special cases of the Minkowski distance:

the city-block, also called Manhattan distance when ρ = 1,

D(qi, qj) =
n∑
i=1

|qil − qjl| (1.4)

and the sup distance when ρ→∞:

D(qi, qj) = max
1≤l≤n

|qil − qjl|. (1.5)
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The Mahalanobis distance is another metric and is defined as:

D(qi, qj) = (qi − qj)
TC−1(qi − qj), (1.6)

where C is the covariance matrix defined as C = E[(q−µ)(q−µ)T ], µ is the mean

vector and E[·] calculates the expected value of a random variable.

In this work only five similarity measures have been presented, but examples and

applications of these and others can be found in [175].

The problem of clustering arises when in many practical applications the training

objects, or only a small fraction of them, are not labelled. In these cases, the

structure of the data needs to be discovered without the help of labels. Clustering

techniques are generally classified as hard partitional and hierarchical [175]. Hard

partitional clustering attempts to divide data points into some prespecified number

of clusters without any hierarchical structure. On the other hand, hierarchical

clustering groups data with a sequence of nested partitions from single clusters

to a cluster that includes all individuals. The following is a simple mathematical

description. Given a set of input patterns O = o1, . . . ,oj, . . . ,om, where oj =

oj1, oj2, . . . , ojn ∈ Rn, with each measure oji called a feature (attribute, dimension,

or variable):

1. Hard Partitional clustering attempts to search a K-partition of O, Z =

Z1, . . . ,Zk with (k ≤ n) such that:

• Zi 6= ∅, i = 1, . . . , k;

•
⋃k
i=1Zi = O;

• Zi ∩ Zj = ∅, i, j = 1, . . . , k and i 6= j

2. Hierarchical clustering attempts to construct a tree-like, nested structure

partition of O, H = H1, . . . , Hl(l ≤ n), such that Zi ∈ Hs,Zj ∈ Hz, and

s ≥ z implies that Zi ⊂ Zj or Zi ∩ Zj = ∅ for all i, j 6= i, s, z = 1, . . . , l.

Here the two classical types of clustering have been briefly introduced, neverthe-

less, there are more approaches that consider alternative ways to perform clustering
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such as neural network-based, kernel-based, sequential data, large-scale data, and

high-dimensional data clustering. Data observations with thousands of features

implies working with high dimensions, as a consequence, applications require clus-

tering algorithms that are able to process the data with more features than the

number of observations, hence high-dimensional data clustering. This approach

requires diverse algorithms to achieve the clustering. According to [175] the meth-

ods can be linear, non-linear, projected and subspace. The method used in this

work belongs to the category of non-linear projection or non-linear dimensionality

reduction algorithms. For a comprehensive review of these methods refer to [175].

Spectral clustering has become one of the most popular modern clustering algo-

rithms. They are simple to implement, can be solved efficiently by simple linear

algebra, and very often outperform traditional clustering algorithms. For example,

K-means and learning a mixture-model using EM are methods based on estimat-

ing explicit models of the data, that provide high quality results when the data

is organised according to the assumed models. However, when data is arranged

in more complex way and there are unknown shapes, these methods tend to fail.

Spectral clustering is shown to handle such structured data well since it does not

require estimating an explicit model of a data distribution, rather it uses a spectral

analysis of the matrix of point-to-point similarities [180].

Spectral methods for clustering use eigenvectors corresponding to the highest eigen-

values of a matrix derived from the distance between points. They are closely

related to spectral graph partitioning in which the second eigenvector of a graph’s

Laplacian is used to define cuts over the graph. But this analysis can be ex-

tended to perform the clustering by building a weighted graph in which the nodes

correspond to data points and the edges are related to the distance between the

points[118].

Here, the idea is to use Diffusion Maps for non-linear, spectral clustering to build

a set of linear shape spaces for statistical shape analysis (figure 1.6). The ideas,

mathematical foundations, algorithms, application and examples will be given in

Chapter 5.
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Figure 1.6: Diffusion Maps clustering is applied to find sets of linear shape
spaces useful in the proposed local shape analysis.

1.4 Contributions

As described in section 1.2 the main objective of this research is to generate and

develop a statistical shape model to characterise the shape variation of parts from

a shape, making emphasis on the local details. The adoption of the PDM seems

natural due to the fact that even though in image interpretation the use of rigid

models is well established, in many practical situations objects that belong to the

same class are not identical, so rigid models are inappropriate. This is particularly

true in medical and industrial applications where the appearance of the objects

can vary. In such cases flexible models or deformable templates can be used to

analyse the degree of variability in the shape of the object in question.

In general, one can argue that the resulting model can be considered as an exten-

sion of the PDM adapted for local shape modelling. Representation and matching

of the training set relies on the definition of a common origin from which correspon-

dences can be established. Pose parameters are estimated by an affine alignment

over a set of shapes, which is a form of General Procrustes Analysis (GPA) [60].

Then, PCA is subsequently applied to characterise the statistical shape variation.

Finally, any shape of the set can be approximated using the mean shape and a
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sum of the modes. Here, the proposed model cannot be considered by itself a

contribution, but its extension that offers ways to cut-up any given input shape

into a set of partitions and classify these according to spectral clustering to form

meaningful local sets of shapes for analysis, can be regarded as one (figure 1.7).

Figure 1.7: The proposed LSM (right side) uses a PDM (left side) to charac-
terise the statistical shape variation and at the same time offers ways to cut-up
any given input shape into a set of partitions. A classification method of these
is performed according to the Diffusion Maps spectral clustering technique to
form meaningful local sets of shapes for analysis. The additional features of the

method are highlighted in the purple rectangle on the right.

Thus, based on the latter, the main contributions of this work are focused on the

contour localisation and the clustering of those shapes generated by such methods.

Hence, the first contribution is the creation of a method cast in a Bayesian

framework combined with fractal analysis to estimate a set of contour partitions.

In detail, a Markov Chain Monte Carlo method is used along with box counting

dimension to characterise the fractal dimension. The idea behind this was to

innovate and create a different method than previous endeavours (section 1.3.1)
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by using the fractal dimension as the driving element for the algorithm, taking

advantage of the fractal nature of the brain (section 1.1.1).

The second contribution is the creation of an alternative method for contour

partitioning based on the utilisation of the Curvature Scale Space descriptor. No

modifications were made to the original method, here just the evolution of curves

is used to obtain a set of zero-crossing points that are used to create consistent

partitions in contours. Despite other methods have used the CSS descriptor (sec-

tion 1.3.1), this one is simpler yet effective in performing the task of obtaining

unique solutions.

A method for shape clustering useful in shape analysis is presented as the third

contribution. Such a model uses Spectral clustering (section 1.3.2) to create

clusters of closed and non-closed contours in an unsupervised way. The selected

spectral clustering method used was Diffusion Maps, and it outperforms the su-

pervised clustering method devised in Chapter 4. Moreover, it is useful in solving

the problem of choosing the prototypical shape used for the shape analysis (section

2.4.4).

Additionally, a novel Hierarchical Shape Analysis method based on Gaussian and

Laplacian pyramids (Chapter 6) is presented as the last main contribution. The

method is able to extract in a hierarchical fashion, the relevant shape variation

and is used to compare the performance of the LSM.

1.5 Published Work

The work corresponding to chapters 3, 4 and 5 of this thesis has been presented

in 3 peer-reviewed publications. A list of these publications may be found in

Appendix A.
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1.6 Equipment

All the experiments described in this thesis were run on an IBM IntelliStation

Z Pro, with two Dual-Core Intel Xeon Processors at 2.1 GHz and with 2 GB of

RAM. The operating system was Red Hat Enterprise Linux and for the developing

of the algorithms MATLAB R© v7.3.0.298 (R2006b) was used.

1.7 Outline of the thesis

Chapter 2 reviews basic concepts for this study, among them the concept of shape,

shape spaces and shape analysis . The chapter focuses in particular in the concepts

involved in statistical shape analysis, such as Procrustes methods or PCA, and

describes the details of the construction of the PDM.

Chapter 3 presents a method for modelling fractal curves, and partitioning such

curves into segments. Note that this chapter will present details on the utilisation

of the properties that regard the brain as a fractal object (see chapter 1). The rest

of the chapter is devoted to reviewing Bayesian statistics, with particular reference

to Monte Carlo methods, Markov Chains and the Metropolis Hastings algorithm.

Details of the implementation are given along with a discussion of the use for

building local statistical shape models.

In Chapter 4, the first part states the principles of the CSS method, devised as

a useful and natural way to set partitions on a contour so the rest of the chapter

explains how the CSS representation is used in different ways in this research and

an interactive tool was built for its use.

Next, Chapter 5 explores the use of spectral clustering concepts to develop a way of

improving the clustering of data sets for use in shape analysis. The first part of this

chapter describes how Fourier descriptors can be used to represent a given shape

contour. Then it continues with the definition of manifolds, and with explanations

of diffusion maps and how they can be used to build a shape model together with
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the use of extrema points from a CSS. Results on different shapes are given along

with a discussion of them.

In Chapter 6 a new Shape Analysis method is introduced. The method is based

on Gaussian and Laplacian pyramids, concepts that are explained in the chap-

ter, along with an explanation of the method to derive shape information out of

Laplacian pyramids. Since the presented technique extracts and quantifies corre-

lated behaviour between the different levels of the Laplacian pyramid it is named

Hierarchical Shape Analysis. Additionally, this provides a useful method to com-

pare the LSM introduced in this thesis by experiments on the compactness of the

eigenvalues. Results are presented along with a discussion of how to extend this

method.

Finally, in Chapter 7 conclusions are presented and at the same time the limitations

of this work and further research opportunities are also discussed.



Chapter 2

Shape, Shape Analysis and

Statistical Shape Analysis

2.1 Introduction

Statistical shape models have proven to be useful to study variation in anatomical

shapes [30]. The purpose of this chapter is to introduce the background useful to

understand the proposed shape model. The chapter focuses mainly on the concepts

related to shape and its analysis. The first part defines important concepts of:

shape, shape descriptors, shape spaces, landmarks and shape signatures. Next,

two similar concepts are presented, Morphometry and Shape analysis but, since

Morphometry can be regarded as an antecedent to Shape Analysis, it is worth

mentioning in order to understand the differences. Statistical Shape Analysis is

introduced, along with two important aspects of it, Procrustes methods and PCA.

After this, Eigenshape analysis is presented as it exhibits similarities with the

PDM, which is the last part of chapter. PDMs represent the core of this work

since the proposed model is based on this. It is important to note that in this

last section, descriptions of how the contours are extracted from images, how

registration analysis is carried out, how the statistical shape variation is captured,

27
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and how the shapes are reconstructed, is given. Finally, the chapter concludes

with a summary.

2.2 Shape, Shape Descriptors and Shape Spaces

Shape is an important feature of the human visual system (HVS) as it is one of

the basic features used to describe perceived objects, both natural and man-made.

Technology has led to a collection of a great amount of visual information where

there is a need to identify such objects in a wide variety of disciplines, commonly

done by the use of the notion of shape. However, shape tasks such as recognition,

representation and description are difficult to achieve. In the context of image

processing, shape information extracted from the input data only represents the

projected object in a partial way. Additionally, to make the problem more com-

plex, shape is often corrupted with noise, distortion and occlusion.

One of the first studies to analyse mathematically the variation of shape was On

Growth and Form by D’Arcy Thompson [158]. In this work, it is possible to

see that the author was concerned with the explanation of biological growth and

form in terms of mathematics and physics. The book covers a wide range of mor-

phological studies and constitutes a study of the laws governing the dimension of

organisms and their growth, the statics and dynamics in cells and tissues includ-

ing the phenomena of geometrical packing, membranes under tension, symmetries,

and cell division. As well, it deals with the engineering and morphology of skele-

tons in simple organisms. Thompson conceived the form as a product of dynamic

forces that are shaped by flows of energy and stages of growth. The last chapter on

transformations is perhaps the most remarkable contribution to the shape analysis

field. It shows diagrams of how differences in the forms of, for example, species

of fish or different bones from animals, can be construed in terms of distortions of

the co-ordinate systems onto which they are mapped. It is important to remark

that most of the work in shape analysis is heavily influenced by D’Arcy’s seminal

work.
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Dryden and Mardia discuss shape [45] as the geometrical information that stays

when location, scale and rotational effects are filtered out from a particular object.

Small complements this idea by further adding that the remaining information

should be invariant to transformations [145] (Figure 2.1).

In general, an affine transformation is a composition of rotations, translations, di-

lations, and shears. An affine transformation is any transformation that preserves

collinearity and ratios of distances. Let A be a n × m matrix and x and y are

n× 1 column vectors, then an affine transformation has the form [145]:

x 7→ Ax + y (2.1)

meaning that it consists of a linear transformation followed by a translation.

Figure 2.1: The concept of shape is invariant to transformations so for exam-
ple, a rectangle’s shape can be identified even if it is in different positions or
present different sizes. Here rectangles are related by similarity transformations.

Therefore, in order to be able to analyse the objects from a scene this needs to be

represented. Shape representations in general look for effective and perceptually

important shape features that are based on either shape boundary information or

interior content of the boundary [184]. At the same time, shape representation

methods result in a non-numeric representation of the original shape so the im-

portant features or characteristics of the shape remain [90]. Another important

concept is shape descriptor that, in general, can be regarded as a set of numbers
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produced to represent a given shape feature. Such descriptors attempt to quantify

the shape in ways that agree with human concepts of shape or with task-specific

requirements [107]. Some of the basic descriptors are area, perimeter, compact-

ness, eccentricity, elongation, rectangularly, orientation, variance or principal axes.

Nevertheless, there are several ways to classify them; reviews, surveys and com-

plete details of the descriptors can be found in [123, 90, 184, 107].

Shapes can be described by a series of finite points locating points on the sample

to be analysed, called landmarks. According to Bookstein [19], the points at which

one’s explanations of biological processes are grounded are so called landmarks.

A less intuitive definition [45] defines a landmark as a point of correspondence on

each object that matches between and within populations (Figure 2.2). Dryden

identifies three basic types of landmarks. An anatomical landmark is a point that

corresponds between organisms in some biologically meaningful way. These are

assigned by an expert. Mathematical landmarks are points located on an object

according to some mathematical or geometrical property of the figure. Pseudo-

landmarks are points constructed on an organism, located either around the outline

or in between other landmarks, mathematical or anatomical.

Traditionally, the process of identifying landmarks is a labour-intensive part of

shape analysis techniques since presently this is usually done manually. Conse-

quently, attempts to develop completely automated and reliable systems to iden-

tify landmarks in digital images have been an important goal of research, as in

[69, 41, 72, 135, 121, 67].

Bookstein defines the shape space as the set of all possible shapes in the orbit space∑m
k of the non-coincident k point set configurations in Rm that is under the action

of the Euclidean similarity transformations [19]. For example, when there is a set

of k labelled points in the Euclidean space Rm, the centroid of the points can be

considered as the origin. Then the described basic object will be called a pre-shape

and any two configurations of the labelled points will be considered as having the

same shape if either of their pre-shapes can be transformed into another by a

rotation about the shared centroid. Therefore the shape space can be considered
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Figure 2.2: A leaf with mathematical landmarks in red and pseudo-landmarks
in yellow.

as the collection of all possible shapes [77]. The fundamental space for this work is

Kendall’s shape space, since it provides a complete geometric setting useful for the

analysis of Procrustes distances among sets of landmarks [44]. Each point in this

shape space represents the shape of a configuration of points in some Euclidean

space, irrespective of size, position, and orientation. In this shape space, scatters

of points correspond to scatters of entire landmark configurations, see [144]. The

importance of this space relies on the fact that most of the multivariate methods

of geometric morphometrics are linearisations of statistical analyses of distances

and directions in this space. It is relevant for this work since the analysis of shape

variation for contour or contour partitions requires them to be registered to the

common coordinate frame: Kendall’s shape space.

A shape signature can be defined as any 1D function that represents 2D areas

or boundaries [181]. Shape signatures are able to capture the perceptual feature

of the shapes, and therefore are often used as a preprocessing to other feature
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extraction algorithms, such as Fourier descriptors. [107]. Complex coordinates,

Centroid distance function, Tangent angle (Turning angles), Curvature function,

Area function, Triangle-area representation and Chord length function are the

commonly used shape signatures. For a complete description and use of these

refer to [120, 76, 182, 181, 107].

2.3 Shape Analysis and Morphometrics

2.3.1 Morphometry

Morphometry can be defined as the measurement of shape. Morphometry allows

the transformation of visual information into its mathematical representation. For

Bookstein [19] morphometrics is the study of biological shape and shape change

through statistics.

Morphometrics is interested in the degree of relationship of the variables that

explain the shape variation in a sample or in a population, and not on the identi-

fication of the objects as pattern recognition does.

Morphometric methods can be used to describe and compare shapes of whole

organisms or particular structures of them. The principal characteristic of mor-

phometry is the use of multivariate statistical methods over sets of variables. The

variables are frequently measures taken from organisms. These measures usually

correspond to lengths or widths of an object and to distances between reference

points (Figure 2.3). Results are commonly expressed as graphs or numbers in terms

of linear combinations of variables. PCA, canonical correlation analysis, discrimi-

nant functions or generalised distances are examples of the techniques used [131].

Eigenshape analysis is another technique that will be explained later with more

detail.
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Figure 2.3: Graphical representation of the four-step morphometric protocol.
A Landmarks recorded on the body of a child fish are quantified. B remove non-
shape variation from landmarks of 412 specimens before and after Generalised
Procrustes Analysis (GPA). C statistical analysis and graphical presentation
of results. Deformation grids (left and right) are presented for two different

species. Adapted from [2]

Morphometry can be regarded as an antecedent to the use of shape to analyse

the variation and change in the form (size and shape) of organisms, hence many

concepts are needed and used in Shape Analysis and Statistical Shape Analysis.

2.3.2 Shape Analysis

Measurement is a very important activity in many disciplines, not only to describe

objects, but also to compare the shape of different objects. Therefore, the field of

Shape Analysis implies the study of the relationship of measures with shape theory

and its methods. The analysis of shape is related to the study of the geometrical

properties of objects. The study of the shape of objects in mathematical terms,

is necessary for the description and comparison of shapes. Hence, shape analysis

is of great interest in a wide variety of fields of study and can find applications in

a diverse variety of disciplines such as Biology, Medicine, Genetics, Archaeology,

Geography, Geology and Agriculture [45].
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The use of landmarks is fundamental to summarise and work with the objects.

Shape Analysis involves methods for the geometrical study of objects where loca-

tion, rotation and scale information can be removed [45], elements of rigid variation

that are not of particular interest in Shape Analysis. In the same way, methods

for quantifying the shape components and deriving information from it need to be

considered.

The study of shape analysis has been achieved through different approaches. One

of them is multivariate morphometrics [128] and the other major area of work is

Allometry [139] (Figure 2.4).

Figure 2.4: Examples of landmarks in an allometry study. Adapted from [139]

2.4 Statistical Shape Analysis

As was previously stated, shape analysis involves methods for studying the shapes

of objects where location, rotation and scale information can be removed. This

is important because the shape of an object is not changed when any of these

transformations are applied. Statistical Shape Analysis (SSA) is the geometrical

analysis from a set of shapes in which statistics describe the geometrical properties

from similar shapes [45]. The field of SSA involves methods for quantifying the

shape components of visual data and deriving information from them.

In the context of shape analysis, a statistical model is a term used to describe the

mathematical construct that attempts to characterise how individuals within a
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population vary [85]. The selection of the appropriate model is important because

the adopted model influences the results. The choice of a suitable model depends

on factors like the previous experience of the investigator, knowledge and famil-

iarity with the data or mathematical convenience. All the available models can be

regarded as approximations, so unfortunately, there is no correct model [85].

Methods in 2D shape analysis can typically be divided into three high level steps.

The first step is to establish a geometric representation of the shapes. The second,

involves the derivation of a set of features from the representation. These features

must be invariant under the similarity transform. And finally in the third step, a

statistical analysis method is chosen and applied to the features [179].

A Statistical Shape Model (SSM) is a statistical representation of a shape obtained

from data. Statistical shape models study variation in shapes. SSMs have been

applied to image segmentation especially in medical image applications, where

expert knowledge is necessary [143].

The basic idea in statistical shape model building is to establish from a training set,

the pattern of legal variation in the shapes and as well, the spatial relationships

of structures for a given class of images. Statistical analysis is used to give a

parameterisation of this variability, providing an appropriate representation of

shape and allowing shape constraints to be applied [34].

The construction of a SSM consists of extracting the mean shape and deriving a

series of modes of variation from a collection of training samples. The methods

employed on this construction process strongly depend on the chosen shape rep-

resentation. Here this work utilises a PDM, which will be explained with more

detail in subsequent sections.
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2.4.1 Procrustes Methods in the Statistical Analysis of

Shape

Procrustes was a character from Greek mythology that claimed to have a magic

all-fitting bed. The victims were fitted to the bed perfectly by either stretching

their limbs or cutting them off [62]. Following the Procrustes story, there are

three elements: the unfortunate traveller, say K1; the Procrustean bed K2; and

the treatment to make the traveller fit in the bed, regarded as T. The simplest

algebraic statement of a Procrustes problem seeks a matrix T that minimises:

S =‖ K1T−K2 ‖ (2.2)

This means that the minimisation problem 2.2 is called a Procrustes problem

because K1 is transformed by T to fit the ‘bed’ K2. This can be regarded as a

multivariate multiple regression problem, estimating T by:

T = (K′1K1)−1K′1K2. (2.3)

In (2.2) K1 is matched to K2, the target matrix. Sometimes it is more appropriate

to consider K1 and K2 symmetrically, so equation 2.2 transforms into

S =‖ K1T1 −K2T2 ‖ . (2.4)

This two-sided variant of (2.2) seeks to find transformation matrices T1 and T2

such that K1T1 best matches K2T2.

Then, according to the SSA, two geometrical figures or shapes K1 and K2 in

Rk, each consisting of n landmark points have the same shape if they differ by

rotation, translation and scaling [60]. Procrustes analysis involves matching these

configurations with transformations so they be as close as possible by Euclidean

distance using least square techniques [45]. Procrustes methods are also useful

in estimating an average shape to explore the structure of shape variability in a
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data set. In order to compare such configurations in shape a measure of distance

between the two configurations needs to be established.

Considering two centred configurations ζ1 and ζ2, both in Ck, a suitable procedure

to find such a distance, is to match them using similarity transformations. The

differences between the fitted and the observed ζ2 indicate the magnitude of the

difference between ζ1 and ζ2. Considering the complex regression equation:

ζ2 = ξTeiθ + 1kβ + ε = ΥR+ ε (2.5)

where β ∈ C is the location, ξ ∈ R+ is the scale, θ is the angle of rotation,

Υ = [1k,T] is the design matrix, R = [β, ξeiθ]T ∈ C2 are the regression parameters

and ε is a complex k-vector of errors. The most straightforward approach to

estimate the regression parameter β is to perform a least squares approach, this

means to minimise ε∗ε where ε∗ is the complex conjugate of the transpose of ε.

The solution is given by [44]:

R̂ = (Υ∗Υ)−1Υ∗ζ2 (2.6)

A measure of residual discrepancy between ζ1 and ζ2 is:

DG(ζ2, ζ1) = ‖ζ2 − ζ1R̂‖ = ‖(Ik −Υ(Υ∗Υ)−1Υ∗)ζ2‖, (2.7)

and D2
G(ζ2, ζ1) is known as the Procrustes sum of squares [60]. So, as is well

known, the full and partial Procrustes distances in Kendall’s shape space for two

dimensional points can be obtained as the solution to complex linear regression

problems.

But, Procrustes analysis is limited in its application since it is the comparison of

only two sets of configurations (shapes). Therefore, there is the need to use a

method of evaluation for k sets of configurations. With Generalised orthogonal

Procrustes analysis (GPA) [61] k sets can be aligned to one target shape or aligned

to each other.
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With k sets, the natural form of the norm to be minimised is:

k∑
i<j

‖ KiTi −KjTj ‖ . (2.8)

Having the following identity is useful:

k∑
i<j

‖ KiTi −KjTj ‖= k

k∑
m=1

‖ KmTm − G ‖ . (2.9)

where

G = k−1

k∑
m=1

(KmTm) (2.10)

The matrix G is known as the group average configuration of the initial matrices

K1,K2, . . . ,Kk after being transformed by T1,T2, . . . ,Tk. Its relevance relies on

the fact that it provides a basis for algorithms and shows that the sum of the pair

wise Procrustes solution may be expressed in terms of deviations from a single

matrix, in this case G.

An algorithm for generalised orthogonal Procrustes analysis can be [132]:

1. Select one shape to be the approximate mean shape, i.e. the first shape in

the set.

2. Align the shapes to the approximate mean shape.

a) Calculate the centroid of each shape.

b) Align all shapes centroid to the origin.

c) Normalise each shape’s centroid.

d) Rotate each shape to align with the newest approximate mean.

3. Calculate the new approximate mean from the aligned shapes.

4. If the approximate mean from steps 2 and 3 are different then return to step

2, otherwise the true mean shape of the set has been found.
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For more details about GPA and its algorithms refer to [45, 61, 62].

2.4.2 Principal Components Analysis

Principal Components Analysis is a multivariate statistical technique that provides

means to identify patterns in data, and to highlight similarities and differences

in them, see [146]. Moreover, as noted by Jolliffe [74] the idea of PCA is to

simplify a data set of interrelated variables, by reducing the number of dimensions

without meaningful loss of information about the variation in the data. Another

outstanding feature of the technique is that it has no underlying statistical model

of the observed variables so it concentrates on the explanation of the total variation

in the variables based on the maximum variance properties of principal components

[46].

PCA is a method to transform the original variables into uncorrelated ones. The

new variables are called principal components, and each of these is a linear combi-

nation of the original variables. Variance is a measure of the amount of information

reflected by each principal component [3], but since the aim of statistical analysis

is usually to analyse how much dimensions vary from the mean with respect to

each other, covariance is used [146].

Let C be a covariance matrix. The jth principal component of the sample of

k-variate observations is the linear compound [116]:

yj = ψj1x1 + · · ·+ ψjpxk =
k∑
i=1

ψjixi (2.11)

whose coefficients are the elements of the characteristic vector of the sample co-

variance matrix C corresponding to the jth largest characteristic root. PCA finds

the optimal weight vector ψj = (ψj1x1 + · · ·+ ψjkxk) and the associated variance

of yj usually denoted by λj, therefore these are the main statistical results from a

PCA analysis [46]. These lead to the matrix equation:

Cψ = λψ (2.12)
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where λ is the eigenvalue of the covariance matrix C and ψ is its associated

eigenvector [87]. Hence, there are j linear transformations or principal components

of the original j variables and equation 2.11 can be expressed as:

y = ΨTx (2.13)

where y is a j element vector of principal component scores, Ψ is a j × j matrix

of eigenvectors:

Ψ = (ψ1 ψ2 . . . ψt) (2.14)

where the ith row corresponds to the elements of the eigenvector associated with

the ith eigenvalue and x is a j element column vector of the original variables [46].

PCA implies a linear transformation that transforms the data to a new coordinate

system. PCA is equivalent to Karhunen-Loève and Singular Value Decomposition

transforms used in the context of multivariate statistical analysis [57]. It is also

known as the Hotelling transform [6].

The steps to perform PCA are as follows. The data is arranged in an m by n

matrix, with a column for each dimension. Then the mean is calculated for each

dimension and subtracted. The next step is to calculate the covariance matrix,

then the eigenvectors and eigenvalues are obtained performing an SVD transform.

Formally singular value decomposition (SVD) can be defined as [151]: Any m by

n matrix K can be factored into

K = Q1ΣQT
2 = (orthogonal)(diagonal)(orthogonal) (2.15)

The columns of Q1 (m by m) are eigenvectors of K KT , and the columns of Q2

(n by n) are eigenvectors of KT K. The n singular values on the diagonal of Σ (m

by n) are the square roots of the nonzero eigenvalues of both K KT and KT K.

The number of principal components retained must be determined by the rule that

asserts that the number should be enough to explain a certain percentage of the

total variance. A common cutoff point is 80%, but some researchers have different
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ways to select the number of components [3]. There are other strategies to select

the components, for instance, the Kaiser criterion, Scree plot, Parallel Analysis,

Minimum average partial criterion, Variance explained criteria, Joliffe criterion,

Mean eigenvalue, or Comprehensibility, among others. More details are given in

[55] and [46].

2.4.3 Eigenshape Analysis

Eigenshape analysis is a PCA technique developed by Lohmann in 1983. Its aim

is to represent a collection of shapes by the fewest number of orthogonal functions

necessary to represent the greatest proportion of the shape’s variance [89].

Eigenshape analysis derives a set of empirical orthogonal shape functions by an

eigenfunction or PCA of a matrix of correlations between shapes, so it is this

derivation that is called eigenshape analysis. In his paper [89], Lohmann describes

a procedure that in general is as follows:

1. Acquire shape’s outline data. This refers to the x, y Cartesian coordinates

of the outline from the specimen. In [95], MacLeod quotes that the number

of points to be digitised to represent any curve depends on the complexity

of the curve. Since the specimen’s orientation is arbitrary, rotation does not

affect the shape’s outline in the x, y plane. But on the other hand, rotation

on the z direction can affect the silhouette of the specimen.

2. Represent the shape as the shape function φ∗(l), the normalised net angular

change in direction φ at each step around the perimeter (l) of the shape.

φ∗(l) is an exact description of how a shape differs from a circle, and it

retains the necessary information (except size) to reconstruct precisely the

outline (Figure 2.5). In other words, the resulting function is like a road

map around the shape and represents mathematically the precise way to say

“take one step, turn 20 to the right, take another step, turn 10 to the left,...”

[95].
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3. Homoligise shapes. There are cases where no homologous points can be

determined, so in those, shapes are defined to match homologously once their

shape function are mutually rotated to positions of maximum correlation.

In practice this is equivalent to selecting a single representative specimen

as a reference shape, and locate the other shapes rotated with respect to

it. An interpolation of the perimeter to the same number of equal-length

segments, between the data digitisation and the computation of φ∗(l), must

be performed. This is to ensure the possibility of a point to point comparison

between shapes in cases without identifiable landmarks.

4. Compute the eigenshapes. Through PCA, eigenvalues are obtained, and

these reflect the proportion of observed shape variation that each eigen-

shape represents. The φ∗(l) shape functions represent the observed shapes,

matched point by point. The variation observed among them can be repre-

sented by linear combinations of a few of these uncorrelated shape functions.

The fewest is the set of empirical orthogonal shape functions derived by an

eigenfunction analysis of correlations between the shapes. These eigenshape

functions represent the fewest shapes needed to represent most of the origi-

nal, observed shape variation.

One of the main advantages over other morphometric procedures is that the orig-

inal shape, no matter how complicated, can be reconstructed from its eigenshape

representation. The latter is only as complex as necessary to describe the observed

differences between the shapes [89]. Another important aspect of the eigenshape

method is that it allows a graphical representation of the results of any analysis.

This is important because, according to MacLeod [95], this is powerful and un-

derutilised aspect, since it can provide a qualitative way to communicate research

results in an understandable way to morphologists.

Comparisons between eigenshape analysis and other morphometric studies can be

found in the works by Lohmann [89], MacLeod [95] and [96], Macleod and Rose

[97], Cadrin [24], and Ubukata [164].
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Figure 2.5: Graphical representation of the shape of a Circinatum leaf in x,y
Cartesian coordinates (a), the shape function φ(l) (b) and φ∗(l) (c).
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2.4.4 Point Distribution Models

A Point Distribution Model (or PDM) is a way to represent shapes through a

model that reflects the position of labelled points [32]. The model also represents

the mean geometry of a shape and derives statistical modes of geometric variation

inferred from a training set of shapes. It has become a standard in computer

vision for statistical shape analysis and especially for segmentation purposes on

medical images. Therefore this had led to the creation of two important techniques:

Active Shape models (ASM) [31] and Active Appearance Models (AAM) [29]. A

comparison between both models can be found in [28].

PDMs rely on landmark points, defined in section 2.2 of this chapter. These points

represent the boundary of an object. The method can be generalised as follows:

(a) Obtain a training set of outlines with enough landmarks so they are able to

sufficiently approximate the geometry of the original shapes (Figure 2.6).

(b) Align the sets of landmarks using the Generalised Procrustes Analysis. The

idea behind this is that the shape information is not related to affine pose

parameters, so they need to be removed. Having this, a mean shape can now

be computed by averaging the aligned landmark positions (Figure 2.7).

(c) PCA is a relevant tool to study the correlations of shape between groups of

landmarks among the training set population. PCA computes the eigenvectors

and eigenvalues of the training set using a covariance matrix. Each eigenvector

describes a principal mode of variation along the set, the corresponding eigen-

value indicating the importance of this mode in the shape space scattering

(Figure 2.8). If correlation is found between landmarks, then the total varia-

tion of the space is concentrated on the first few eigenvectors, that present a

very rapid decrease in their corresponding eigenvalues. Otherwise, if no cor-

relation is found, that might suggest that the training set has no variation or

that the pose of the landmarks has not been properly removed.
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Figure 2.6: Training set of 20 leaves of the type Macrophyllum.

Figure 2.7: Shape alignment and Mean shape.
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Figure 2.8: PCA modes log plot.

(d) Using the set of generated eigenvectors and eigenvalues, any shape of the

training set can be approximated using the mean shape and a weighted sum

of deviations obtained from the modes (Figure 2.9).

Figure 2.9: The figure in red is the mean shape, and here the effects of varying
the first parameter of the leaves model ψ1 in the interval −3

√
λ1 (left) to +3

√
λ1

(right) are shown.

The generated eigenvectors, can be seen as a sequence of vectors associated to

corresponding landmarks, where each comprise a mixture of shape variation for

the whole shape. Here, the model consists of the mean positions of these points

and the main modes of variation, which describe how the points tend to move

from the mean.
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The most important idea behind the PDMs is that eigenvectors can be linearly

combined to create new shape instances that will be similar to any in the training

set [32].

The remaining subsections corresponding to the steps (a) to (d) of the aforemen-

tioned PDM, provide a description of how the steps of the proposed model perform

the tasks of contour tracing, how the shapes are aligned by Registration, how the

Statistical Variation of an aligned set of shapes is captured and finally, how the

shapes can be reconstructed.

2.4.4.1 Contour Tracing

The input data of our model are plane coordinates that are extracted from images

(see figure 2.11). The process to extract the boundary information or the coordi-

nates of the boundary from the images can be summarised in the following figure

2.10:

The assumption here is that the input images contain the shapes of interest on

plain backgrounds. The first step is to binarise the image, hence a thresholding

can be applied to convert the image or alternatively can be saved in such format.

Often images are corrupted with noise, therefore a denoising process is applied so

that isolated pixels can be eliminated. Then, the shape is traced and the bound-

ary coordinates are obtained. In practice, preprocessing is done using standard

Matlab functions from the Image Processing Data Toolbox. Different functions

were used, for instance, im2bw to convert the image to a binary one and filter

the noise, then to find the remaining shape the function find was used to get the

indices and values of nonzero elements in the image. And finally, bwboundaries

was used to trace the region boundaries in the filtered binary image and obtain

the contour coordinates. The final step is to resample the resulting contour to

a desired number of coordinates using cubic spline data interpolation functions.

The created contours are always closed.
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Figure 2.10: Processing to extract the boundary coordinates of an image:
(a) Original image, (b) binarisation of the image, (c) denoising process, (d)

boundary coordinates and (e) resampled contour.

Any Contour can be defined as a set of n points in the plane, Ci = (xi, yi) with

1 ≤ i ≤ n, denoted by:

C = (x1, y1, x2, y2, . . . , xn, yn)T (2.16)

2.4.4.2 Registration Analysis

To describe geometrically any object it is possible to decompose it into registration

and shape information. For example, the location, rotation and size of a shape can

be the registration information and the geometrical information that remains can
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Figure 2.11: 256 points contour from the boundary of a leaf of the type
Macrophyllum (a) and zoom into an upper section (b).

be regarded as the shape of the object. Then, the shape of an object is invariant

under registration transformations and two objects have the same shape if they

can be registered to match exactly [44]. The implications of this are fundamental,

because if the variability in shape in a population of objects needs to be estimated,

then the registration information is not relevant and can be neglected. Hence, by

registration, the objects to be analysed are corrected for position, rotation and

scale variation.

Having sets of clustered partitions, an important step in the proposed local shape

model is registration analysis or pose removal. Given a set of shapes Φ =

S1,S2, . . . ,Sn, the registration analysis consists of estimating an affine warp by

transforming any shape Sj to some prototype shape Si. The warps Sj → Si are

searched by determining rigid body transformation parameters for each Sj, and

the parameters are kept to reconstruct the shapes accordingly. It is important to

mention here that the shapes are just corrected in rotation and translation since

the data used is considered to have the same scale, so the general formulation of

this problem can be written as:

Si = RSj + ν (2.17)

Where R is the rotation matrix and ν is a translation vector. Later, the method
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to obtain these is explained, but first Procrustes analysis is discussed. The ba-

sic idea in Procrustean analysis is to find the required similarity transformations

through objective function minimisation. This objective function can be defined

by choosing an appropriate shape distance measurement and an appropriate ref-

erence shape, with respect to which the distance measure is evaluated.

The process to determine the rigid body transformations parameters (rotation and

translation) that describe the transformation of points from one reference frame to

another is now explained. To perform this, one of the segments should be selected

as the reference one, and the others will be transformed in reference to this one.

This relationship can be expressed as follows:

yi = Rxi + ν (2.18)

where yi is the ith point measured in the reference frame Sk, R is the rotation

matrix, xi is the ith point measured in the reference frame Sj and ν is a translation

vector of the origin of reference frame Sj measured in reference frame Sk.

To determine both the rotation matrix R and the translation vector ν, least squares

is used to minimise:

1

n

n∑
i=1

(Rxi + ν − yi)T (Rxi + ν − yi) (2.19)

Then the mean vectors are computed (x and y ) so the vector ν can be determined

using them as:

ν = y −Rx. (2.20)

Next, the cross dispersion matrix C is computed from:

C =
1

n

n∑
i=1

(yi − y) (xi − x)T . (2.21)
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Then the SVD of C is computed by:

C = UΛVT (2.22)

where U and V are orthogonal matrices with the eigenvectors, and Λ contains the

eigenvalues of C. Now using U and V, it is possible to calculate R as:

R = UVT (2.23)

With R and ν we use (2.18) to complete the registration step. The method used

in this work to determine such parameters is described in more detail in [25].

2.4.4.3 Capturing the Statistical Variation of a Set of Aligned Shapes

The following is an account of how the statistical variation of a set of aligned

shapes is captured using the PCA. Under correspondence free conditions, meaning

with this after all the shapes are registered, our set is ready for us to capture the

statistics of the set of aligned shapes [32].

Let Φ = S1,S2, . . . ,Sn be a set of partitions or shapes, and nS the cardinality of

the set. Then for each shape of the form 2.16, Si, i = 1, . . . , nS we obtain the

mean:

Si =
1

nS

nS∑
i=1

Si (2.24)

The modes of variation, or the ways in which the points of the shape tend to move

together, can be found applying PCA to the deviations from the mean as follows.

First, for each shape in the training set the deviation from the mean is calculated

as:

dSi = Si − S (2.25)
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Now, the 2n× 2n covariance matrix C is calculated using:

C =
1

nS

nS∑
i=1

dSidSTi (2.26)

The modes of variation of the points of each shape are described by the unit

eigenvectors of C, ψi (i = 1, . . . , 2n) (see equation 2.12) such that:

Cψi = λiψi (2.27)

where λi is the i’th eigenvalue of C, with λi ≥ λi+1.

In practice, to derive the eigenvectors and their corresponding eigenvalues, an SVD

(equation 2.15) is performed over the covariance matrix C, which is an already im-

plemented function in MATLAB. In general, PCA derives modes that influence all

variables simultaneously, meaning that varying one mode will affect all landmarks

of the shape model.

It can be demonstrated that the eigenvectors that correspond to the largest eigen-

values of a covariance matrix describe the most significant modes of variation [54].

Additionally, the modes of variation can be used in an alternative way to evaluate

its importance. In this case, the sizes of the principal non-zero eigenvalues are

plotted against the number of principal mode (see figure 2.8). So it is possible

to use this plot to compare the performance of the methods based on eigenshape

analysis in the following way. Having the eigenvalues plots for different data sets

or methods, it is likely to observe how compact is the shape space, meaning with

this that the most compact method will be reflected on the plot that gives the

least variation from the mean [15].

2.4.4.4 Shape reconstruction

Finally, an important feature of this analysis and of this work is the way the

reconstructions are presented. Any shape of the set can be approximated using
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the mean shape and a sum of the modes: S̃ = S + Ψ, where Ψ is the matrix of

the first k eigenvectors as equation 2.14.

Here an alternative way to visualise results has been created, and it consists of

presenting the reconstructed partitions blended back into the smoothed version

of the contour to which they belong (figure 2.12). The blending is achieved by

performing a window function using a squared cosine. Suppose that we have 2

partitions to blend, namely Pi and Pj of the same size m, then we use a window

ω(k) of size m as well such that each new blended partition, P̂n, is given by

P̂n = ω(k)Pi + ω(1− k)Pj (2.28)

with

ω(k) = cos2(k),−π/2 ≤ k ≤ π/2

Figure 2.12: Example of a reconstructed partition blended back into the
smoothed version of the contour it belongs to.

Later, in Chapter 4 more examples of this reconstructions will be given.
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2.5 Summary

This chapter has described in overview the background useful in order to under-

stand the proposed method and it has focused mainly on the concepts related to

shape and its analysis.

Shape is an important feature of the human visual system (HVS) as it is one of

the basic features used to describe perceived objects, both natural and man-made.

Dryden and Mardia discuss shape [45] as the geometrical information that stays

when location, scale and rotational effects are filtered out from a particular object.

Small complements this idea by further adding that the remaining information

should be invariant to transformations [145]. Another important concept is shape

descriptor that, in general, can be regarded as a set of numbers produced to

represent a given shape feature. Such descriptors attempt to quantify the shape in

ways that agree with human concepts of shape or with task-specific requirements

[107]. Shapes can be described by a series of finite points locating points on

the sample to be analysed, called landmarks. Shape space can be considered as

the collection of all possible shapes [77]. The fundamental space for this work is

Kendall’s shape space, since it provides a complete geometric setting useful for the

analysis of Procrustes distances among sets of landmarks [44]. Another impotant

concept is shape signature, that can be defined as any 1D function that represents

2D areas or boundaries [181]. Shape signatures are able to capture the perceptual

feature of the shapes, and therefore are often used as a preprocessing to other

feature extraction algorithms, such as Fourier descriptors.

Morphometry can be defined as the measurement of shape. Morphometry allows

the transformation of visual information into its mathematical representation. As

previously stated, Morphometry and Shape analysis but, since Morphometry can

be regarded as an antecedent to Shape Analysis, the difference relies on the fact

that Shape Analysis is related to the study of the geometrical properties of ob-

jects. Statistical Shape Analysis (SSA) is a geometrical analysis from a set of

shapes in which statistics describe the geometrical properties from similar shapes

[45]. Two important aspects of SSA are introduced as well, Procrustes methods
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and PCA. Procrustes analysis is a form of statistical shape analysis used to anal-

yse the distribution of a set of shapes. The name Procrustes refers to a bandit

from Greek mythology who made his victims fit his bed either by stretching their

limbs or cutting them off. Principal Components Analysis is a multivariate statis-

tical technique that provides means to identify patterns in data, and to highlight

similarities and differences in them [146]. The next section of the chapter was

dedicated to Point Distribution Models that are models for representing the mean

geometry of a shape and some statistical modes of geometric variation inferred

from a training set of shapes. In this section as well, descriptions of how the con-

tours are extracted from images, how registration analysis is carried out, how the

statistical shape variation is captured, and how the shapes are reconstructed, was

given. To obtain the shape contours, first the image they come from is binarised

and denoised, then the shape is traced and the boundary coordinates are obtained.

In practice, preprocessing is done using standard Matlab functions from the Image

Processing Data Toolbox. Given a set of shapes, the registration analysis consists

of estimating an affine warp by transforming any shape to some prototype shape.

The warps are searched by determining rigid body transformation parameters for

each shape from the set, and the parameters are kept to reconstruct the shapes

accordingly. Under correspondence free conditions, after all the shapes are reg-

istered, the set is ready to capture the statistics of the set [32]. The modes of

variation, or the ways in which the points of the shape tend to move together, can

be found applying PCA to the deviations from the mean. Finally, any shape of

the set can be approximated using the mean shape and a sum of the modes.

The next two chapters are devoted to the study of the best way to find partitions

out of contours. Chapter three illustrates the first attempt to generate parti-

tions through the use of Fractal Dimension in a Bayesian framework (MCMC).

Chapter four presents a more stable solution to the problems presented by the

Markov Chain Monte Carlo algorithm and shows an alternative solution using the

Curvature Scale Space method.



Chapter 3

Fractal Analysis and Markov

Chain Monte Carlo Simulation

for Contour Localisation

3.1 Introduction

Being able to partition a contour into a set of meaningful local parts has many ap-

plications in machine vision, image retrieval, terrain classification or handwriting

recognition. As presented in Chapter 1, several methods for contour partitioning

have been developed but none of them take into account the fractal nature of the

objects such as brain contours, since none of them consider types of these curves.

This section presents a method of modelling fractal curves, such as the boundary

of brain white matter, and partitioning them into segments having equal fractal

dimension. This might lead to a better set of partitions for SSA, one of the aims

of this work (refer to section 1.4). Since the solution space, for a given number of

contour points and a required set of partitions is very large, a Bayesian framework

of reversible-jump Markov Chain Monte Carlo (MCMC) is used together with a

sampler based on the Metropolis-Hastings test. Details of the algorithm are pre-

sented as well as the theoretical concepts behind it. Results on simple contours

56
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(animal silhouettes) and space-filling brain contours are shown, along with the

convergence characteristics of the method. Limitations and the contributions of

the method are discussed at the end of the chapter.

3.2 Fractals, Space Filling Curves and Fractal

analysis

3.2.1 Fractals

A fractal can be defined as an object or quantity that unfolds self-similarity on

all scales [170]. Although the object does not necessarily exhibit exactly the same

structure at all scales, the same ‘type’ of structures can be viewed on all scales.

(Figure 3.1).

Figure 3.1: Central set surrounded by mini-Mandelbrot sets. In each picture
a small rectangle indicates the limits of the following picture (Adapted from

[92])

It is easy to find approximate fractals in nature, since these objects present self-

similar structure (Figure 3.2). Therefore to a certain extent, fractals can be con-

sidered to be descriptors of the geometry of nature. Nevertheless, it is important
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to emphasise that fractals should not be considered as the only approximation to

nature’s geometry [98] [99] [11].

Figure 3.2: (a) Broccoli and Mandelbrot set, (b) Fern and Iterated Function
Systems (IFS) fern, (c) Blood vessels (lung) and IFS branch, and (d) Mount
Llullaillaco and Death Valley computer generated simulation. (Adapted from

[155], [20] and [59]).

3.2.2 Space Filling Curves

Space filling curves are a type of fractal, and intuitively they can be regarded as

a continuous path that visits each point exactly once and never crossing itself, so

they fill the space without leaving ‘holes’ (Figures 3.3 and 3.4).

Figure 3.3: Hilbert Space Filling Curve

More precisely, a curve f?(I), exists if there is a continuous function mapping the

interval I = [0, 1] to an n-dimensional Euclidean space En such that f : I → En.

Then the curves that pass through every point of an n-dimensional region with

positive Jordan content (area for n = 2, volume for n = 3) such as the square Q

in E2 and the cube W in E3 are called space-filling.
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Figure 3.4: Cerebrospinal fluid (CSF) images of the brain [10]. From left to
right: sagittal, coronal and axial views. The cerebral cortex is the folded grey
tissue that covers the surface of each cerebral hemisphere. In Chapter 1 it was
discussed that an analysis of the geometry of the human cerebral cortex was
performed in [79] and it was shown that the human cerebral cortex does possess

self-similarity that resembles a fractal structure.

Mathematically, if f : I → En, with n ≥ 2, is continuous and Jn (f? (I)) > 0,

then f? (I) is called a space filling curve. Where Jn represents the Jordan content

(area, volume) of a Jordan measurable subset of En [136].

3.2.3 Fractal Analysis

The fractal geometry of shapes can be a useful tool to describe and understand

biological systems with fractal properties. In general, fractal analysis can quantify

the irregularity of a fractal object, with the fractal dimension acting as an index

or descriptor for the shape complexity. This method has been successfully applied

to different areas of brain research, such as cell morphometrics ([147],[149],[5]),

macroscopic structures of grey matter ([53],[79],[94]), sulci surfaces ([160],[17]) and

interior structure of cerebellar white matter ([183],[88]). It is relevant to mention

that, to the best of the author’s knowledge, only one study has examined the entire

shape of the brain: [79].

Fractal Dimension may be helpful as an index to quantify structural or functional

complexity of the neural system during the stages of development, degeneration,

reorganisation, or evolution. This is because it can change dynamically in these

processes [88].
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3.2.3.1 Fractal Dimension

In general, fractal dimension is an estimate of how much space a set occupies near

to each of its points. Although there is a wide variety of ‘fractal dimensions’ in

[49], the principal definition is the Hausdorff dimension. The Hausdorff dimension

can be defined for any set F ⊂ Rn formally as:

dimHF = inf{s : Hs (F) = 0} = sup{s : Hs (F) =∞} (3.1)

where s is considered a positive real number (s ≥ 0).

This means that, for a given set F, there is a unique value dimH ∈ [0,∞] such

that:

Hs (F) =

∞ if 0 ≤ s < dimHF

0 s > dimHF.

(3.2)

where Hs (F) refers to the Hausdorff measure [49].

The Hausdorff dimension gives us a way of measuring the size of a set for dimen-

sions s other than the integers 1, 2, 3, · · · [47]. It also has the advantage of being

defined for any set and is at the same time mathematically convenient. How-

ever, in many cases the Hausdorff dimension is hard to calculate or estimate by

computational methods [49].

The Fractal Dimension can be explained in an alternative way. If any object

residing in Euclidean dimension D reduces its linear size by the factor r in each

spatial direction, its measure (length, area, or volume) would increase to N times

the original, where

N = rD (3.3)

Informally speaking, this means that it is possible to decompose a line, a square

or a cube into rD self similar pieces, each holding a magnification factor of r (see

figure 3.5).
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Figure 3.5: Alternative definition for fractal dimension

The latter offers another way to specify the dimension of a self-similar object,

therefore the dimension is simply the exponent of the number of self-similar pieces

with magnification factor r, into which the figure may be broken.

Then, given equation 3.3, it is possible to derive the following definition for di-

mension:

D =
log N(r)

log (r)
(3.4)

However, the dimension defined by equation 3.4 is still equal to the Euclidean

dimension. By applying the above equation to fractal structure, it is possible to

obtain the dimension of fractal structure (or an approximation to the Hausdorff

dimension) as a fractional number:

D = lim
δ→0

log N(δ)

log (1
δ
)

(3.5)

where N(δ) represents the number of self-similar structures of linear size δ needed

to cover the whole structure. Closely related to this is the box counting dimension,

which is discussed next.
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3.2.3.2 Box counting dimension

The Box counting dimension was used in this research because it is relatively

easy to calculate mathematically and can be estimated empirically. Let F be any

non-empty bounded subset of Rn and let Nδ(F) be the smallest number of sets

of diameter at most δ which can cover F. If the lower and upper box-counting

dimensions of F are equal, then we refer to the common value as the box-counting

dimension or box dimension of F [49]:

dimBF = lim
δ→0

log Nδ(F)

−log δ
(3.6)

In other words, to obtain the box dimension of a plane set F we can consider

drawing a mesh or a set of boxes of side length δ and then count the number

Nδ(F) that overlap the set for various sizes of δ (hence the name ‘box counting’)

(Figures 3.6 and 3.7). Thus, we may determine the fractal dimension by finding

the slope of log Nδ(F) plotted as a function of −log δ [50].

Figure 3.6: Box Counting Fractal Dimension for the Koch fractal (Adapted
from [137]).
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Figure 3.7: Box Counting Fractal Dimension result plot (b) for a white matter
brain contour (a).

3.3 Bayesian Analysis, Monte Carlo methods and

Markov Chains

In this section the main concepts that underpin the proposed Metropolis Hastings

based algorithm that was used to obtain the presented results are described.

3.3.1 Bayesian Analysis

In general, Bayesian Analysis uses methods for making inferences from data using

probability models. The data can be quantities we observe or we wish to learn

about [56]. Specifically, Bayesian Analysis is about finding the best methods

for making inferences about distributions of random variables. This implies that

a random variable B possesses a given type of distribution depending upon an

unknown parameter A. So the objective is to to draw some inference concerning

A [70].

When we need to make conclusions about a parameter A, these are made in terms

of probability statements of Bayesian statistics. The probability statements are
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conditional on the observed value of B, simply written as p(A|B) [56]. To make

probability statements about A given B, a model that provides a joint probability

distribution for A and B is needed. This model is provided by the Bayes’ theorem

for random variables (or vectors) [56, 84]:

P (A|B) =
P (A)P (B|A)

P (B)
(3.7)

where

P (B) =

∫
P (A)P (B|A)dA (3.8)

so it can be written in a more compact form as:

posterior ∝ prior × likelihood, (3.9)

or in detail

π(A|B) ∝ P(A) · L(B|A). (3.10)

Commonly, the conditional distribution π(A|B) is known as the posterior distri-

bution of A, P(A) is referred as the prior distribution and, the likelihood, L(B|A)

is the sampling or data distribution.

The Prior distribution, P(A), is known prior to the experimentation that is carried

out to make an inference concerning A [70]. It reflects preliminary knowledge of

the ‘likely’ values of B, so a prior that reflects this is needed.

From Bayes’ theorem (3.10), it can be shown that once a probability model is

chosen the dataB affects the posterior inference only through the function P (B|A),

when regarded as a function of A, for a fixed B. This is called the Likelihood

function [56] and is defined as follows [130]:

L(A|B) = L(a1, . . . , ak|b1, . . . , bk) =
n∏
i=1

f(bi|a1, . . . , ak) (3.11)

Finally, the Posterior can be described given a probability distribution of a random

variable B that depends on a parameter A. So, the aim here is to make inferences
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regarding A on the basis of some observed values of the random variable B and of

a prior for A [70]. In other words the posterior distribution can be considered as

a representation of the knowledge about A given B.

3.3.2 Monte Carlo methods

Monte Carlo methods are often used when simulating physical and mathematical

systems. They provide approximate solutions to many mathematical problems by

performing statistical sampling experiments. Thus the analysis of the approxi-

mation error is a major factor to take into account when evaluating answers from

these methods. The attempt to minimise this error is the reason there are so many

different Monte Carlo methods.

Broadly speaking, they can be defined as statistical simulation methods, where

statistical simulation is defined in general terms to be any method that utilises

sequences of random numbers to perform the simulation. So, it is possible to state

that the defining characteristic of Monte Carlo methods is the use of random num-

bers in its simulations. Hence, the methods are a collection of different techniques

that basically all perform the same process. In fact, these methods derive their

name from the fact that in the Monte Carlo casinos, the roulette wheels are a good

example of a random number generator. Formally speaking, Monte Carlo methods

are related to the idea of integration as a method of finding an expectation, but

they also provide an extension, by importance sampling.

3.3.3 Markov Chains

A Markov chain is a sequence of random variables that evolve over time with a

transition probability depending on the particular set in which the chain is drawn.

This means that the random variables can only assume values from a certain finite

or enumerable infinite set [43]. Additionally, the process A is a Markov chain if it

satisfies the Markov condition [64].
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A random process A = An, n = 0, 1, 2, . . . taking values in the state space E (a

discrete finite space) is a Markov chain if:

P (An+1 ∈ K|An = an, an−1 = An−1, . . . , A0 = a0) = P (An+1 ∈ A|An = an)

for all n ≥ 0, K ⊆ E and a0, a1, . . . , an ∈ E .

More intuitively, this says that the probability law to generate the next state in

the chain from the current state is governed entirely by the current state and is

independent of previous ones.

3.3.4 Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo simulation is a method based on drawing values of

A from values that approximate it, and then these draws are corrected to obtain

a better approximation to the target posterior distribution π(A|B). Since the

samples are drawn sequentially and the distribution that generates these samples

depends only on the last value drawn, consequently, the draws form a Markov

chain [56].

To ensure the success of the algorithm it is necessary to create a Markov process

whose stationary distribution is the specified π(A|B) and then run the simulation

long enough so that the distribution of the current draws is close enough to the

stationary distribution [56].

3.3.5 Metropolis-Hastings algorithm

The Metropolis-Hastings (M-H) algorithm can be considered as a general term for

a family of Markov chain simulation methods for drawing samples from Bayesian

posterior distributions [56].

To understand how the transitions of a Metropolis-Hastings chain are produced,

first E needs to be defined as the state space of a target distribution. Then, choose
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for each a ∈ E a density q(a, ·) on E , so this specifies the transition probabilities

(densities) of a Markov chain on the state space E given that the current state is a.

Another requirement is that these transition probabilities/densities q(a, ·) should

be relatively easy to sample.

Next, suppose the current state of the proposed Markov chain is An = a, then a

state z is sampled according to q(a, ·), so this state z is a new state of the chain

and is accepted with probability:

α(a, z) = min

{
1,
π(z)q(z, a)

π(a)q(a, z)

}
. (3.12)

If the proposed state z is accepted, then the Markov chain moves to z that is

An+1 = z. Otherwise the chain remains in a, that is An+1 = a. See [26, 162] for

full details.

A summarised version of the Metropolis-Hastings algorithm is [26]:

Algorithm 3.1 Metropolis-Hastings algorithm

Initialise with the arbitrary value a(0)

for j = 1 to n do
Generate b from q(a(j), y) and u from U(0, 1)
if u ≤ α(a(j), b) then

set a(j+1) ← b
else

set a(j+1) ← a(j)

end if
end for
Return the values a(1), a(2), . . . , a(n)

This comprises some of the basic concepts that are needed to understand the

Metropolis-Hastings algorithm. Now, a more detailed explanation of the imple-

mentation and adaption to the problem of contour partitioning is given.
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3.4 Methodology, modelling and practical con-

siderations

In the following section the implementation details of a M-H algorithm for con-

tour partitioning are presented. Figure 3.8 presents an schematic of the proposed

method for contour partitioning that uses the Metropolis-Hastings algorithm with

the corresponding adaptions, reviewed before in this section. Basically, the algo-

rithm starts with a random partitions set, then creates a new one choosing one

of the partitioning moves, so the posteriors can be calculated for each of the par-

titions sets. Next, the probability of moving to a new state is calculated, if the

new value is accepted then the value is updated and if not it remains in the same

state. The process is repeated n steps.

Let a piece-wise linear contour of n points be defined by its coordinates (equation

2.16), and let a given partition of m exclusive subsets be the parameter sets Θ =

{Θ1,Θ2, . . . ,Θm}. Let the posterior probability of a given partition be given by

π(Θ|X ). (3.13)

Then by Bayes’ rule (3.10), π(Θ|X ) ∝ L(X|Θ)P(Θ), which is the product of the

likelihood of the data given a partition Θ and the prior probability of the partition

Θ.

As the aim of the partitioning process is to end up with τm contour subsections

Θk of more or less equal size and equal fractal dimension, we can:

1. Model the prior as

Pn(k; Θj) =
e−τnτ kn
k!

, (3.14)

which is a Poisson density with rate parameter τn.

2. Model the data distribution by the likelihood function

L(Θj|X ) = e−|FD(Θj)−t|, (3.15)
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Figure 3.8: Schematic that depicts the used Metropolis-Hastings algorithm:
the current state (a) is a random partition set to start the algorithm, then it
updates according to the probability of move. To create the next state of the
chain (c), a partitioning move is selected at random (split, merge or alter).
Posterior distributions are then calculated for both states (d) so the proposal
is ”accepted” as the next value of the chain (h) if α (e) drawn from U(0, 1)
(f) satisfies the condition (g). If the proposal is not accepted, then the current
value is retained an the process is repeated n times. The posterior probability
values (i) of the current state are returned and a plot is created (see figure 3.10).
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which favours the partition having a fractal dimension, FD, of t. Here, t

represents an estimate of the fractal dimension of a contour, so 1 < t < 2.

3. Penalise the posterior by a density to keep the number of partitions to be

the desired number, τm = m, the required partition size,

pm(k; Θ) =
e−τmτ km
k!

. (3.16)

Taken together, we can now expand the posterior (3.13) as

π(Θ|X ) ∝ pm(card[Θ]; Θ)
m∏
j=1

L(Θj|X )Pn(card[Θj]; Θj) (3.17)

where (card[Θj]) is the cardinality of any partition Θk.

To keep the posterior calculations numerically stable, they are performed in the

log domain. Taking natural logs of (3.17) we can replace the products by sums of

log likelihoods and log Poisson densities. Also, for small m, factorial of (card[Θj])

can become large, so it is convenient to use Stirlings approximation of factorial,

ln n! ≈ n[ln n− 1], (3.18)

thus:

ln π(Θ|X ) ∝ m(ln[τm]− ln[m]− 1)− τm

−
m∑
j

|FD(Θj)− t|

+
∑
j

nj(ln[τn]− ln[nj]− 1)− τn,

(3.19)

where nj = card[Θj] and m = card[Θ]. As the M-H algorithm states, given a

candidate-generating density, π(Θ,Θ′), of moving from state Θ to Θ′ , it is clear

that the stationary distribution is reached when π(Θ′|X )P(Θ,Θ′) = π(Θ|X )π(Θ′,Θ)
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is satisfied for all Θ, Θ′. The M-H algorithm performs rejection sampling by com-

paring the validity of the two states by forming an acceptance ratio:

α(Θ,Θ′) = min

[
1,
π(Θ′|X )π(Θ,Θ′)

π(Θ|X )π(Θ′,Θ)

]
,

and then, if α = 1, the move Θ −→ Θ′ is accepted, otherwise it is accepted with

probability α ≥ r ∼ U [0, 1]. It is easy to see that if the candidate-generating

densities are equal for the state changes Θ −→ Θ′ and Θ′ −→ Θ, then the chain

automatically moves to a higher probability state.

One of the important features of the approach is the creation of the new states of

the Markov chain. In this case a new state can be defined as a new set of partitions

of the contour. Every new potential partition set is created by moves in the state

space, and there are three allowable potential moves that are chosen at random

with probability 1
3
. The first move is merging 2 adjacent partitions (fig 3.9-(a)),

where a partition is selected in the range 1 . . . n, and then a contiguous partition

is selected to be merged. The second allowed move is splitting a partition (fig

3.9-(a)) at a random point, so this random point is chosen from the set of points

of the current selected one. The third move is Altering the ending or starting

point of a partition (fig 3.9-(b)), which is just a shift in the points to reduce the

size of a partition by taking some points of a neighbouring one.

Figure 3.9: Illustration of the Split, Merge (a) and Alter Position (b) moves.
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In the simulations presented below, for the likelihood function a value of t = 1.57

is used, which is based on studies of brain contours. This value was obtained by

averaging the fractal dimension of 77 contours from different brain parts.

Note that this probability model is setup to assume that there are local parts of

the contour which have fractal dimension t. Of course, if it were a fractal and

not discretely sampled then by definition this assumption would hold at arbitrary

scales.

As with all MCMC implementations, trial and error was used to determine at

what number of steps convergence was being achieved. For the contours presented

below (each with approximately 3000 points) we began by running 1000 steps,

however convergence was observed after about 300 steps (see figure 3.10). Also,

we manually selected one point on the contour as a fixed point which marked a line

of symmetry: for all contours, this was one of the two points along the principal

axis of the contour.

Figure 3.10: Typical convergence characteristics. Plot shows log posterior
against iteration (move) number. (This plot is for the brain white matter con-

tour ‘slice 179’ used in the experiments below.)
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3.5 Experimental Results

Results of contour partitioning using MCMC simulation are presented on real

contours: animal silhouettes (birds, fish) and brain white matter outlines. It

was decided to vary the number of required partitions, τm e.g. 2, 4, 8 etc. and

set the mean number of points per partition by τn = n/τm. Up to 1000 steps

(moves) were run, although we saw convergence earlier. Each of the figures show

results for different number of partitions. The plots of the resulting partitions

present a colouring code going from black for the partition with the highest fractal

dimension, to yellow, depicting the lowest. For each resulting set of partitions, a

table is presented as well with the corresponding information regarding the number

of points and the fractal dimension per partition.

The idea of experimenting on the bird and squid contours was to demonstrate that

the proposed algorithm is able to find symmetries on the shapes, since these are

not objects that present fractal behaviour. The fish/squid contours were from the

University of Surrey’s SQUID image database: www.ee.surrey.ac.uk/Research/

VSSP/imagedb/demo.html.

Points 1029 1021
FD 1.4621 1.4523

Table 3.1: Results for the bird shape: τm = 2

Points 522 514 508 508
FD 1.2755 1.2986 1.3922 1.4615

Table 3.2: Results for the bird shape: τm = 4

Points 281 242 247 246 247 257 261 275
FD 1.2591 1.6376 1.5819 1.3312 1.3312 1.6037 1.6104 1.2591

Table 3.3: Results for the bird shape: τm = 8

www.ee.surrey.ac.uk/Research/VSSP/imagedb/demo.html
www.ee.surrey.ac.uk/Research/VSSP/imagedb/demo.html
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(a) τm = 2

(b) τm = 4

(c) τm = 8

Figure 3.11: Example results on the bird contour divided in 2, 4, and 8
partitions
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(a) τm = 2

(b) τm = 4

(c) τm = 8

Figure 3.12: Example results on the squid database contours divided in 2, 4,
and 8
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Points 258 256
FD 1.4086 1.5084

Table 3.4: Results for the squid shape: τm = 2

Points 130 129 129 128
FD 1.3307 1.4100 1.3984 1.3689

Table 3.5: Results for the squid shape: τm = 4

Points 66 64 59 59 68 65 73 66
FD 1.2591 1.3448 1.2819 1.4028 1.1938 1.2082 1.3399 1.3791

Table 3.6: Results for the squid shape: τm = 8

For the brain experiments, white matter slices (Subject #04) were used from the

database from McGill University which contains 20 anatomical models of normal

brains: www.bic.mni.mcgill.ca/brainweb.

Points 1636 1653
FD 1.7802 1.7281

Table 3.7: Results for the brain contour #179: τm = 2

Points 835 792 840 824
FD 1.7313 1.6758 1.6515 1.6778

Table 3.8: Results for the brain contour #179: τm = 4

Points 378 455 441 432 440 403 380 366
FD 1.7107 1.5794 1.6357 1.6138 1.5362 1.6208 1.4745 1.5955

Table 3.9: Results for the brain contour #179: τm = 8

Points 1636 1653
FD 1.7811 1.7281

Table 3.10: Results for the brain contour #182: τm = 2

www.bic.mni.mcgill.ca/brainweb
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(a) τm = 2

(b) τm = 4

(c) τm = 8

Figure 3.13: White matter brain contour partitioning - slice #179. Results
shown for different partition sizes after 1000 iterations
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(a) τm = 2

(b) τm = 4

(c) τm = 8

Figure 3.14: White matter brain contour partitioning - slice #182. Results
shown for different partition sizes after 1000 iterations
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Points 765 785 755 809
FD 1.6848 1.6081 1.6089 1.6028

Table 3.11: Results for the brain contour #182: τm = 4

Points 325 343 361 394 430 406 435 424
FD 1.6689 1.5502 1.5259 1.6208 1.5316 1.5929 1.6689 1.5973

Table 3.12: Results for the brain contour #182: τm = 8

3.6 Evaluation and Discussion

For the bird (figure 3.11) and squid contour (figure 3.12), the data clearly has

a one-fold symmetry along its length and this was expected to be found. In

both cases the symmetry is close to that required, but since these are relatively

low fractal dimension elements it will not change much in moving the partition

boundary by a few points. Results for 4 and 8 partitions are less accurate but it

is significant to observe that the partitioning is mirrored along the principal axis

in both cases. Results for the bird (figure 3.11 and tables 3.1 to 3.3) and squid

contour (figure 3.12 and tables 3.4 to 3.6) illustrate that the algorithm is able to

find solutions that preserve symmetry and that present similar number of points

and similar fractal dimension.

Figures 3.13 and 3.14 show results on a contour taken from white matter segmen-

tation of two slices of a MRI brain image. The contours are similar as they are

taken from brain slices which are close by to each other (slices #179 and #182).

Likewise, tables 3.7, 3.8, 3.9, 3.10, 3.11 and 3.12 show the numerical results for

the brain contours, showing once again that the solutions are good enough be-

cause they present similar number of points and similar fractal dimension in each

resulting partition set. The MCMC partitioning was run for 500 steps for these

cases, because the increase in the number of points for these shapes (3000 points)

increases the convergence time. A point on the line which separates the left and

right hemispheres of the brain, (on the sagittal line) was marked by hand. The

symmetries of the two halves, and the anterior and posterior lobes are correctly
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found in both case (τm = 2 and τm = 4). The results illustrate that the likelihood

is sufficiently strong to drive the result away from the Poisson rate of τm = 8. As

an observation, if this were used to partition all the brain slices from an exper-

imental set, a way to achieve better correspondence between slices might be to

initialise neighbouring slices with converged partitions from the current slice.

Poisson distribution was chosen here since it is a discrete probability distribution

that expresses the probability of a number of events occurring in a fixed period of

time, if these events occur with a known average rate and independently of the time

since the last event. Hence, Poisson distributions are generally a natural choice for

constructing a Markov chain because of the similarity between the behaviour of

both the systems. Markov chains and Markov processes are memoryless processes

were the next event in the chain, strictly depends on the current event only. The

switch between two events in a Markov chain is dependent on the current state

and time interval between the events. These two basic properties make Poisson

distribution suitable to model a Markov chain. As mentioned before, the Poisson

process specifies a fixed arrival rate, then by this assumption, the rate of arrivals

or in this case the number of contour partitions is being fixed (eq. 3.14). The

same is done for the penalisation term to fix the required partition size (eq. 3.16).

Additionally, there is scope to model the likelihood function in different ways. We

chose to use fractal dimension but mean curvature could be a viable alternative,

but also, our density uses an absolute norm |FD(Θj)− t| and perhaps a Gaussian

could be used instead.

For a genuine fractal curve, by definition, any arbitrary partition should have the

same fractal dimension. Even contours found in biology are not always fractals but

can exhibit self-similarity, they must be discretely sampled and they may be made

up of parts which are fractal and non-fractal. Brain contours are space filling (in

2D and 3D) and the presented method shows potential in being able to produce

a reasonable set of partitions. In the next chapter it is shown how the resulting

sets from contour partitioning are useful for analysis of local variation in brain

structures, results from this chapter only illustrate how partitions can be made

taking in count the fractal dimension cast in a MCMC simulation.
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The Metropolis-Hastings algorithm is a stochastic method that that prevents the

processes to falling into local minima, therefore is able to search through large

areas of parameter space in a single run. Moreover, it has been successfully used

in many optimisation problems as well as in a variety of areas. By using a Bayesian

framework and a stochastic sampler, the convergence is theoretically guaranteed:

in practice, our experiments show convergence after a relatively modest number of

moves. Even though convergence seems to be reached even after 300 steps, in fact

taking the last value of the chain is actually the same as taking any value after

convergence has been reached. The proposed MCMC simulation approach has

some important characteristics. It is only necessary to set the number of required

partitions and the simulation is able to effectively search the state space and adapt

locally to shrink and grow to equalise the fractal dimension over the whole contour.

This would not be possible to do exhaustively for nontrivial numbers of segments.

Likewise, the idea here was to explore an alternative solution to this problem in

the fashion of the Bayesian paradigm and to gain insight about the complexity of

the brain structure.

Nevertheless, the described approach faces two major problems. The first problem

is related to the need for a fixed set of partitions. The use of the MCMC simulation

leads to different sets of valid results (see figure 3.15), but ideally an effective

method should derive a unique result. The second problem is that the Fractal

Dimension is not a stable enough criteria to find the best set of partitions. This

means that due to the variability of the Fractal Dimension in self similar curves,

this should not be the only criterion to generate the contour partitions, especially

if objects that do not present any self similarity are used for experimentation.

3.7 Summary

The chapter began with a review of the two basic topics useful to understand the

proposed method: fractal analysis and MCMC methods. A fractal can be defined

as an object or quantity that unfolds self-similarity on all scales [170]. Although
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Figure 3.15: Two different results from the MCMC sampler: column (b) is
the same as figure 3.12. Even though both partitions sets present valid results

it is desirable to have a unique solution.

the object does not necessarily exhibit exactly the same structure at all scales,

the same ‘type’ of structures can be viewed on all scales. Space filling curves are

a type of fractal, and intuitively they can be regarded as a continuous path that

visits each point exactly once and never crossing itself, so they fill the space without

leaving ‘holes’. The fractal geometry of shapes can be a useful tool to describe and

understand biological systems with fractal properties. In general, fractal analysis

can quantify the irregularity of a fractal object, with the fractal dimension acting as

an index or descriptor for the shape complexity. Fractal dimension is an estimate

of how much space a set occupies near to each of its points. Although there is a
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wide variety of ‘fractal dimensions’ in [49], the principal definition is the Hausdorff

dimension. Closely related to this is the box counting dimension, that was used

in this research because it is relatively easy to calculate mathematically and can

be estimated empirically.

This chapter has described and given details about the implementation of a method

of modelling fractal curves, such as the boundary of brain white matter, and par-

titioning such curves into segments having equal fractal dimension. Since the

solution space, for a given number of contour points and a required set of par-

titions is very large, a Bayesian framework of MCMC and a sampler based on

the Metropolis-Hastings test was used. Results on both simple contours (animal

silhouettes) and space-filling brain contours were presented and showed the conver-

gence characteristics of the method. A discussion of the results and the approach

problems was included as well.

From the results and the discussion, it becomes evident that other shape descrip-

tors should be used to generate the partitions. It is possible to employ curvature

using the zero-crossings/extrema points generated by the contour evolutions of the

Curvature Scale Space method [112], which is discussed in the next chapter.



Chapter 4

Curvature Scale Space

Representation for Contour

Localisation

4.1 Introduction

The previous chapter introduced a method for partitioning curves that used fractal

dimension and the Metropolis-Hastings test. The described approach faces a major

problem as Fractal Dimension is not a stable enough criteria to find the best set

of partitions: it produces multiple solutions, and there is the need for a unique

one. As an alternative solution, in this chapter a method for contour partitioning

based on the use of Curvature Scale Space to localise the contour and create sets of

partitions in a supervised way is presented. The novel contribution of this work is

the creation of a method that provides a simple way to cut-up self similar contours

and obtains a set of meaningful shapes useful for shape analysis. The first part

of the chapter describes briefly the concept of scale space representation which

forms the basis of a CSS. Then in the following section, the CSS representation

and its mathematical framework is introduced. Next, a description of the method

and a explanation of how this can be incorporated into the analysis of local shape

84
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variation proposed in Chapter 1 are given. Results on white-matter and leaf

contours are shown, and finally in the last section, a discussion of these along with

proposals on how this work can be taken forward are presented.

4.2 Scale Space representation

Scale-space theory is a framework for multi-scale image representation that has

been developed by the computer vision community and complements ideas from

physics and biological vision. The basic idea is to use the multi scale nature of

real-world objects, implying that such objects may be perceived in different ways

depending on the scale of observation. In computer vision and image analysis,

the concept of scale is particularly important to design methods for deriving in-

formation from images and multi-dimensional signals. The idea of a scale-space

representation of image data is, that in the absence of prior information about the

scales that are appropriate for a given visual task, the only reasonable approach

is to represent the data at multiple scales [86].

One of the precursor methods to represent the input data at multiple scales was

given by Witkin [172]. This method breaks the curve into several segments such

that each segment is a single valued function. Then a scale space image of the

curve is constructed. Here the idea is to take a one-dimensional signal and first

expand it into a two-dimensional scale-space image by convolution with Gaus-

sians over a continuous sequence of sizes. The problem of this representation is

that it is not invariant under rotation [111]. Nevertheless, the idea behind this

work is taken by Mokhtarian and Mackworth to develop a more efficient method:

the Scale Space Image of a planar curve or Curvature Scale Space (CSS) image

[111]. The use of CSS as proposed by Mokhtarian in [112] and later applied by

Abbasi et al [1] in their work on contour modelling for retrieval (the University of

Surrey’s SQUIDS retrieval-by example database), is also an important and useful

development (figure 1.4-(e)).
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4.3 Curvature Scale space representation

The Curvature Scale Space (CSS) representation finds its roots in the curvature

deformation and heat equation [109]. It can be regarded as a multi-scale organisa-

tion of invariant geometric figures (curvature zero-crossing points and/or extrema)

of a planar curve. This shape representation for planar curves presents some basic

properties [110, 108]:

• It is robust with respect to noise, scale and orientation changes of the objects.

• Retains local information of the input shape. This is due to the fact that

every concavity or convexity on the shape has its own corresponding contour

on the CSS image. In addition, every point in the horizontal axis of the CSS

image has its corresponding points on the actual boundary.

• The evolved contours generated by the method can be regarded as an early

version of active contours (snakes) as they present similar behaviour in the

absence of external constraints. In this case, both tend to shrink and min-

imise their curvature.

The CSS image is a fundamental concept of this study, since part of it is based on

this representation. At present, an evaluation of the CSS representation according

to the proposed criteria in [113] is presented.

The first criterion is invariance; meaning that the shape of the input curve should

not change under shape-preserving transformations, namely rotation, scaling and

translation. Neither translation or scaling causes changes to the CSS represen-

tations, and rotation causes only a horizontal shift of it. The second criterion is

uniqueness, that requires that two curves with different shapes may be mapped

to different representations. A CSS fulfils this criterion by showing that a planar

curve can be reconstructed from any of its CSS representations. The third crite-

rion is stability. This claims that any small change in the shape of the curve leads

to a small change in its representation and vice-versa. It has been demonstrated

that planar curves remain connected during the evolution process and therefore
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their CSS representation can always be constructed. Also, experiments carried

out show that the CSS representations are stable under the presence of significant

uniform and non-uniform noise of the curves they represent.

The following criteria make reference to properties that the CSS representation

has to be suitable for shape tasks. Local support is a criterion referring to the fact

that very often it is necessary to recognise that the shape of a segment of a curve

has the same shape as another curve segment. Since the CSS representation can

be computed for open contours and, except near endpoints of the curve, will re-

semble the corresponding representation for a closed contour of which it is a part.

Therefore, it is believed that this representation satisfies the local support crite-

rion. The efficiency criterion means that the computational complexity should be

a low-order polynomial. The CSS representations are computed by convolutions,

so this process can be performed efficiently by using Fast Fourier transforms, par-

allelising the operations, expressing convolutions that involve Gaussians of large

widths in terms of convolutions involving Gaussians of small widths only or con-

volving only in small neighbourhoods of the existing zero-crossings in order to find

the zero-crossings just at the next higher levels. The next criteria makes reference

to shape properties. A useful representation needs to be able to determine such

properties of a curve. For example, if a curve has a symmetric shape, it might

be desirable to be able to determine that fact from its representation (symmetry

criterion). What is more, if the shape of a whole curve or part of it is the same as

the shape of part of another curve, it might be useful to determine that relation-

ship using its representations (part/whole criterion). This criterion is satisfied by

the CSS since the representation of symmetric curves are also symmetric since a

symmetric curve also has symmetric curvature zero-crossings across scales.

The representation, as mentioned before, is computed by convolving a parametric

representation of a curve with a Gaussian function. This process of describing a

curve at increasing levels of abstraction is referred as the evolution of the curve

(Figure 4.1-(b)). As the standard deviation of the Gaussian varies from a small

to a large value, it is possible to extract the curvature zero-crossing points of

the resulting curves. The final step is the construction of the CSS image (Figure
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4.2), which is obtained by plotting the smoothing factor against the number of

curvature zero crossings. Only the generation of evolved versions of the curve and

the locations of the curvature zero-crossings are relevant for this work, for further

details see [113].

Figure 4.1: Evolution of a contour: (a) Original Contour and (b)-(n) Evolved
versions or evolution of the curve.
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Figure 4.2: Final step of the CSS representation: CSS Image obtained by
plotting the smoothing factor σ against the number of curvature zero crossings.

The following experiments were carried out to test the stability of the curvature

scale space image under conditions of noise and rotation. Figure 4.3(a) presents

the contour of a leaf of the type Macrophyllum and in 4.3(b) its CSS image. Figure

4.3(c) shows the leaf contour with a significant amount of uniform, random noise

added to it. Figure 4.3(d) shows the curvature scale space image of the leaf contour

with uniform noise. As expected, the CSS images in figures 4.3(b) and 4.3(d) show

differences in detail. Even so, similarities can be found in the basic structures of

the two CSS images. Figure 4.3(e) shows the Macrophyllum contour with severe,

uniform noise added and figure 4.3(f) shows its corresponding CSS image. Even

with the presence of severe noise, similarity can be observed between the two

CSS images shown in figures 4.3(b) and (f). The same is valid for contours with

non-uniform noise as in figure 4.3(g). Once again, figures 4.3(b) and (h) present

similarities in the basic structures and differences in detail. The last experiment

on figure 4.3(i) presents the input contour rotated and figure 4.3(j) shows its CSS

image with the same characteristics as the others with respect to the CSS image

4.3(b). This experiment shows that the CSS image is robust and stable under
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different levels of noise corruption of the contours, and similarly, under rotation

of the input curve. Other examples of this can be verified in [113].

4.3.1 Mathematical framework

To build the CSS representation, the curve needs to be considered as a parametric

vector equation Ci = (xi, yi), then a series of evolved versions of Ci are produced

by increasing σ from 0 to ∞. Every new evolved version is defined as Cσ =

(X(i, σ), Y (i, σ)), where

X(i, σ) = x(i) ~ g(i, σ) , Y (i, σ) = y(i) ~ g(i, σ) (4.1)

Here, ~ denotes the convolution operator and g(i, σ) is a Gaussian of width σ [112].

Since the CSS representation contains curvature zero-crossings or extrema points

from the evolved version of the input curve, these are calculated directly from any

Cσ by:

κ(i) =
Ẋ(i, σ)Ÿ (i, σ)− Ẏ (i, σ)Ẍ(i, σ)

(Ẋ(i, σ)2 + Ẏ (i, σ)2)3/2
, (4.2)

where

Ẋ(i, σ) =
∂[x(i) ~ g(i, σ)]

∂t
= X(i) ~

(
∂g(i, σ)

∂i

)
,

Ẍ(i, σ) =
∂2[x(i) ~ g(i, σ)]

∂i2
= X(i) ~

(
∂2g(i, σ)

∂i2

)
.

Similar equations are used to compute Ẏ (i, σ) and Ÿ (i, σ):

Ẏ (i, σ) =
∂[y(i) ~ g(i, σ)]

∂i
= Y (i) ~

(
∂g(i, σ)

∂i

)
,

Ÿ (i, σ) =
∂2[y(i) ~ g(i, σ)]

∂i2
= Y (i) ~

(
∂2g(i, σ)

∂i2

)
.
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Figure 4.3: Results of experiments carried out to test the stability of the
curvature scale space image under conditions of noise and rotation. (a) Contour
of a leaf of the type Macrophyllum and (b) its CSS image. (c) leaf contour with
a significant amount of uniform, random noise added to it. (d) curvature scale
space image of the leaf contour with uniform noise. (e) Macrophyllum contour
with severe, uniform noise and (f) its corresponding CSS image. (g) contour
with non-uniform noise and (h) its corresponding CSS image. (i) rotated input

contour and (j) shows its CSS image.
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4.4 CSS for Local Shape Modelling

It is important to mention that in this work CSS is not used to describe the

shape, since a PDM is the featured shape descriptor. Here, only a part of the CSS

representation is used, in this case the evolutions of the curve and the extrema or

zero-crossings. The following is an explanation of how these are employed, in the

particular case of the proposed local shape model, to create contour partitions.

Given an input contour (Figure 4.4-(a)), there is the need to select the appropriate

level of smoothing σ. Applying different values of sigma to the contour produces

the aforementioned evolutions of the curve (Figure 4.4-(b)), and for each evolved

contour it is possible to find the zero-crossings (displayed as red dots). This are

the points where there is a change in the sign of the curvature of the contour.

Then, having selected a value of σ, the set of generated inflection points are used

to create the contour partitions (Figure 4.4-(c)), where each point constitutes the

start and end for each partition. So these points provide a basic but efficient way

to create meaningful contour partitions.

4.4.1 Supervised Shape Partitioning and Clustering

Having stated how CSS is used to create partitions, the aim here is the localisation

and clustering of the featured model presented on the right side of Figure 1.7 in

Chapter 1. The first task is done using CSS and the second using an interface, both

in a supervised fashion. This section then, describes the the way these two tasks

are incorporated into the local shape modelling framework, for which an overview

is shown in figure 4.5-(b). On the mentioned figure, part (a) corresponds to the

data step in figure 1.7 and part (c) corresponds to the steps of registration, PCA

and reconstruction, as well in figure 1.7.

To facilitate the research, a tool with a graphical interface was created, which

was divided into 3 main sections corresponding to the three main steps of our

methodology (Figure 4.5). Refer to Appendix A for a full description of this tool.
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Figure 4.4: (a) Original contour, (b) CSS evolution of a white-matter brain
contour. At some appropriate level of smoothing, a set of meaningful partitions
can be identified. (c) Pairs of zero-crossings (red points) are used to create

contour partitions.

Successive steps of the the method will now be described. From the input data set

of images, we obtain the contours for each of them as a set of (x, y) coordinates

with the method explained in section 2.4.4.1 (Figure 2.10).

The first step is to select a shape that will be the reference one to create the

partitions for the rest of the contours in the set. In Figure 4.6-(a) the reference

contour is shown together with the set of zero-crossing points, and a pair of these

is manually selected to create a reference partition. Afterwards, to create the set

of partitions from all the contours in the set, each one is smoothed with the same

scale factor σ as the one the reference contour. Here, zero-crossings are taken in

combinations of point-pairs and occupying the points between each of these com-

binations is how partitions are created. After obtaining the set of shapes, the next
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Figure 4.5: Overview of the method for proposed LSM with the incorporation
of CSS for contour partitioning and the supervised clustering: (a) Contours are
obtained from MRI brain data; (b) CSS is used first to obtain a reference shape
from the smoothing of a target contour at some large scale, σ. A pair of zero-
crossings selects a prototype section and all others are ranked accordingly by
search and rigid alignment; (c) Statistical Shape Modelling and reconstruction

based on selected modes.

major concern is deciding which of these partitions could be useful for the shape

analysis. An MSE ranking plot (Figure 4.6-(c)) is constructed by doing a pose

alignment of the partitions (Figure 4.6-(b)) and then calculating the mean square

error of Euclidean distances for each partition of the set against the reference shape

using:

D(Cm, Cn) =
√

(xmj − xni)2 + (ymj − yni)2 (4.3)
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Figure 4.6: CSS for contour partitioning and the supervised clustering process:
(a) A shape is selected that will be the reference one to create the partitions
for the rest of the contours in the set. The reference contour is shown together
with the set of zero-crossing points, and a pair of these is manually selected
to create a reference partition. Then, to create the set of partitions from all
the contours in the set, each one is smoothed with the same scale factor σ as
the one the reference contour. Here, zero-crossings are taken in combinations
of point-pairs and occupying the points between each of these combinations is
how partitions are created. After obtaining the set of shapes, a pose alignment
of the partitions is performed using the reference partition from previous step
(b) and then MSE ranking plot is constructed (c). This plot is used to indicate
the number of partitions (by setting an error threshold) that are going to be

used in the statistical analysis (d).

This plot is used to indicate the number of partitions (by setting an error threshold)

that are going to be used in the statistical analysis (Figure 4.6-(d)). Now, having a

smaller set of shapes is possible to perform shape analysis in the way described in

section 2.4.4.3. Finally, a reconstruction of the selected partitions can be visualised

along with the modes of variation of the shape set (Details in section 2.4.4.4). In

the next section this will illustrated in a more effective way with examples from

two different data sets.

4.5 Experimental Results using natural contours:

MRI Brain and Leaf data sets

A set of 40 simulated digital brain phantom images from normal subjects was

used in this test. Each digital brain was created by registering and averaging four
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T1, T2 and PD-weighted MRI scans from normal adults (Figure 4.7). For further

details on the construction of these simulated brain images see [10]. The second

set comprises 40 leaf contours of the type Quercus Kelloggii from the Oregon State

University ([40]).

Figure 4.7: Three samples of brain white matter MRI simulator from subject
4 at different coordinates.

Having a set of contours (in this case brain contours), any of these can be used to

obtain a prototype partition. This partition is the one that is used to create the

ranking plot (Figure 4.8-(b)). It is obtained by selecting a pair of zero-crossings

from a reference contour previously smoothed at a given scale factor σ (Figure

4.8-(a)).

Afterwards, a set of partitions is created by smoothing each of the available con-

tours of the set with the same scale factor as the one in the reference contour,

then the zero-crossings are taken in combinations of two points and occupying the

points between each of these is how each partition is created. After obtaining the

set of shapes, the next issue is how to decide which of all these partitions might

be useful for the shape analysis. Pose alignment is performed and each partition

is ranked with the prototype partition (Figure 4.11-(a)) following the method de-

fined in the last section. Thus, an affine alignment is done over the set, where each

shape is aligned to the selected reference shape (See figures 4.9 and 4.10). This is

achieved by using the method explained previously in section 2.4.4.2.
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Figure 4.8: Creation of the prototype partition from a reference contour: (a)
Selection of the prototype partition using a pair of zero crossings and (b) result

of the selection in red.

Finally, Figure 4.11-(c) shows the smoothed CSS contour and the corresponding

zero-crossings based partitions that are mapped to the original contour. The in-

terface allows any given partitions to be selected and ranked against all remaining

partitions. Since the brain contours exhibit self-similarity, using the CSS, at cer-

tain scales the potential partitions derived from the extrema points look the same

(Figure 4.11-(b) and (c)). It is the case as well of the leaf contours as can be seen

in figure 4.12. Here it is possible to observe that given the reference partition it

is likely to find similar ones according to the manual threshold over the smoothed

version of the contours.

Figures 4.13 and 4.14 shows reconstructions from the local shape model, with the

partitions blended back into a smooth version of the original (see equation 2.28).

It can be noted from the results that the local parts are similar and localised

according to the prototype selection. It is important to mention that the brain

phantoms are only used for the purpose of illustration. This is because they

are suitable for generating realistic simulations where for instance, inter-subject

anatomical variability’s can be considered [10].
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Figure 4.9: Example of pose alignment step needed to rank the partitions and
perform the shape analysis, for the white matter example. (a), (d) and (g)
Prototype shape; (b), (e) and (h) parts to be aligned from a different white
matter contour than the prototype and (c), (f) and (i) alignment of the selected

prototype with the contour localisations of the second column.

4.6 Evaluation and Discussion

The main contribution of this chapter has been the creation of a simple way to

extract similar partitions of the data input contours. The principal feature of

this method has been the use of the consistency of the curvature extrema at low

resolutions of the contour to partition similar parts of a irregular shape, such

as brain and leaf contours. This localisation allows a linear shape space to be

used directly on the aligned parts. The extrema points generated by the CSS

representation are constant over a range of scales, i.e., as σ increases no new
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Figure 4.10: Example of pose alignment step needed to rank the partitions and
perform the shape analysis, for the leaf example. (a), (d) and (g) Prototype
shape; (b), (e) and (h) parts to be aligned from a different leaf contour than
the prototype and (c), (f) and (i) alignment of the selected prototype with the

contour localisations of the second column.

curvature zero-crossings can appear on the contour (Figure 4.4). Also, since the

contours of interest exhibit self-similarity, using the CSS method it is possible

to find that at a certain scale the possible partitions derived from the extrema

points look the same (Figures 4.11-(c) and 4.12-(c)). This provides a natural way

to identify consistent parts in the contour by local variation. It is important to

note that the evolved contours (Figure 4.1) can be regarded as an early type of

active contours (snakes) as they have similar behaviour in the absence of external

constraints. In this case, both tend to shrink and minimise their curvature [108].

Additionally, the CSS itself is a wavelet representation (by Gaussians), so it could
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Figure 4.11: (a) Calculation of the MSE for each of the shapes results in
plot used for ranking; (b) A manual threshold selects the number of shapes
to be used in statistical shape analysis (pose alignment is already done); (c)
Selected shapes from (b) along with their original positions in the smoothed

and non-smoothed version of a given shape.

be used directly in a parametric, dimensionless way.

Due to the consistency of the CSS it is possible to overcome the problems presented

in the MCMC approach. The first problem was related to the need for a fixed set

of partitions, and with the CSS it is possible to obtain such a set based on the

curvature zero-crossing and/or extrema points. The second problem was that the

Fractal Dimension was not a stable enough criteria to find the best set of partitions.

Here the CSS approach is a stable criteria as shown before to obtain the sets of

shapes, due to its robustness with respect to noise or pose, and also because it
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Figure 4.12: Example of the self similarity of the leaf partitions: (a) Reference
partition in red (b) A set of similar partitions from the same contour and (c)
Selected shapes from the MSE ranking along with their original positions in the

smoothed and non-smoothed version of a given shape.

retains local information of the input shape (Figure 4.15). Hence, the contours

are always partitioned in the same way, obtaining unique solutions.

Furthermore, the CSS could be improved by using it in conjunction with other

shape parameters. This means that a more robust way of partitioning the con-

tours can be produced by using for example the aforementioned fractal dimension

measurement for the case of curves that present self similar structures, such as

brain contours. The curvature sign at each point of the contour could be used

to find concave or convex partitions, suitable to decompose curves that do not

present a fractal behaviour like the leaf data set.

Nevertheless, there is a problem with the supervised method to rank the created

set of partitions. The idea here as well, was to create a method to find a set of
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Figure 4.13: Reconstruction of the chosen set of white matter shapes, by
adding a sequence of principal modes of variation: 0, 2, 4, 8, 16, 32. The mod-
elled partitions are blended back into a smooth scale of the CSS, σ defocussing

the general, irrelevant shape variations for the purposes of visualisation.
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Figure 4.14: Reconstruction of the chosen set of leaf contours, by adding
a sequence of principal modes of variation: 0, 2, 4, 8, 16, 32. The modelled
partitions are blended back into a smooth scale of the CSS, σ defocussing the

general, irrelevant shape variations for the purposes of visualisation.
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(a) (b)

Figure 4.15: Column (a): Results from the MCMC partitioning method and
column (b) results from the CSS partitioning. By using CSS it is possible to
overcome the problems presented in the MCMC approach, obtaining a unique

set of partitions.
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partitions ready for the shape analysis. The problem is that the ranking of shapes

based on measuring the distances between the different shapes and the selected

prototype is a limited method to create good sets of partitions. This is because

this criteria is not flexible enough to create several sets for different types of shapes

because the set is generated by the selection of a prototype shape. And there is a

need for a supervised selection of this prototype shape and the use of a threshold

to create shape data sets. Hence, a new solution needs to be explored. However,

the novelty here was to introduce an initial approach to solve this problem. An

unsupervised version of this method can be envisaged if the prototype selection

and ranking step is replaced by a suitable clustering method. The resulting clusters

could be used to build a set of shape-models, or, alternatively, a non-linear shape

learning could be used as in [126].

4.7 Summary

This chapter has introduced an approach to the construction of a method for the

creation of sets of partitions useful for local shape analysis based on the use of the

CSS method. Here, a supervised method setting a threshold manually is used to

create the sets. The mean square error of Euclidean distances for each partition

of the set against a previously selected reference shape is used. Once a threshold

is assigned, a set of partitions is created by letting those partitions with lower or

equal distance to the set threshold to be part of the set. The methodology and

details of the model have been presented with example results on white matter

brain contours from MRI and leaf contours. As well, the problem of obtaining fixed

sets of partitions has been addressed by using CSS, so it is possible to overcome the

problems presented in the MCMC approach, obtaining a unique set of partitions.

A solution to overcome the problems mentioned regarding shape ranking can be

addressed by unsupervised clustering using non-linear shape learning. This might

also solve the problem of supervision in the creation of such sets. This is the main

subject of the next chapter.



Chapter 5

Diffusion Maps for Local Shape

Clustering and Analysis

5.1 Introduction

The study of variability in natural objects has been a topic of research for many

years. Data derived from such research describes the characteristics and depicts the

properties of such objects. Understanding the biological variability of anatomical

objects is essential for scientific analysis and to distinguish between healthy and

pathological structures. One of the most important activities for such analysis is

to classify or group the gathered data into a set of categories or clusters [175]. In

this chapter, a method that uses Diffusion Maps for non-linear, spectral clustering

to build a set of linear shape spaces for local shape modelling and analysis is

presented. The method uses a CSS description of shape to partition them into

sets of self-similar parts (see last chapter for details) and these are then linearly

mixed to more compactly model the global shape. Results on both synthetic (such

as the Swiss roll) and natural data sets (leaves and white matter brain contours)

are presented to assess the veracity of the method. The main contribution is

the creation of a method that obtains a set of meaningful shapes according to a

non-supervised spectral clustering technique, that is useful in local shape analysis.

106
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5.2 Shape signatures

A shape signature can be defined as any 1D function that represents 2D areas or

boundaries [181]. From the literature [120, 181, 182, 76] it has been reported that

the most suitable shape signature is the Centroidal.

The Centroidal distance function is defined as the distance from the boundary

points from the centroid of the shape [181]:

r(i) =
√

(xi − x)2 + (yi − y)2 (5.1)

where x and y denotes the coordinates of the centroid of the object.

Figure 5.1: (a) An example of the centroidal distance function of the boundary
and (b) its plot.

5.3 Fourier Descriptors for shape representation

Fourier transformation of shape signatures is a common first step in shape analysis,

and methods based on Fourier descriptors are also used in other areas such as

character recognition, shape coding, shape classification and shape retrieval [182].
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5.3.1 Fourier Descriptors

In the context of shape analysis, the Fourier transformation of a boundary signa-

ture function generates a set of complex numbers, the Fourier descriptors. These

descriptors represent the shape of an object in the frequency domain.

Given a closed curve C like in equation 2.16, we can derive a shape signature r(m)

where m represents the mth point on the boundary such that 1 ≤ m ≤ LB, and

LB is the length of the boundary. Since r(m) is periodic it is possible to expand

r(m) into Fourier series as [93]:

r(m) =
∞∑

n=−∞

a(n)e2jπnm/LB (5.2)

where the Fourier coefficients are given by:

a(n) =
1

LB

LB∑
m=1

r(m)e−2jπnm/LB (5.3)

The lower frequency descriptors contain information about the general shape, and

the higher frequency descriptors contain information about the local details of

the shape [76, 181]. Since the Fourier transform can only capture the structural

features of a shape, it is crucial to derive FDs from a meaningful shape signature,

in this case the Centroidal distance function.

5.4 Manifold Learning and Spectral Clustering

A manifold is a topological space that is locally Euclidean, meaning that around

every point, there is a neighbourhood that is topologically the same as the open

unit ball in Rn [134].

Manifold learning is a useful tool in data driven methods to interpret data when

it lies on a low dimensional, non linear manifold. Manifold learning approaches

seek to define either explicitly or implicitly a low-dimensional embedding of the
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data points that preserves some properties of the high-dimensional point set [150].

The implied dimensionality reduction normally relies on classical techniques such

as Principal Components Analysis and Independent Component Analysis. The

problem with these techniques is that they try to represent data as linear combi-

nations of a small number of basis vectors, and tend to fail because the data sets

have an intrinsic dimensionality that is much less than the basis vectors required

to linearly reconstruct them.

The generic problem of dimensionality reduction is the following. Given a set

A = (a1, . . . , az) of z points in Rk, find a set of points B = (b1, . . . , bz) in Rj

(j � k) such that bi “represents” ai, or in other words [13]:

Ψ : A ∈ Rk → B ∈ Rj (5.4)

In this work the special case where (a1, . . . , ai) inM andM is a manifold embed-

ded in Rk is considered.

From this definition, it can be observed that the global structure of the manifold

can be more complicated or at least different than the lower dimensional domain.

This implies that one needs to be aware of the geometry of the manifold and

therefore the use of geodesic distances is needed [133, 66, 150]. The later idea is

illustrated by figure 5.2.

Figure 5.2: (a) Euclidean distance between data points a and b. (b) Geodesic
distance between data points a and b.
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Figure 5.2 is a simple example that shows the advantage of geodesic distances

on manifolds over Euclidean distance. In this case, the data is sampled from a

spiral, a one dimensional manifold. Figure 5.2 (a) shows the Euclidean distance

between data points a and b and (b) shows the geodesic distance along the spiral.

In this example we can see that the intrinsic geometrical structure can only be

characterised by the geodesic distance.

The approach of dimensionality reduction considered in this work utilises maps

provided by the eigenvectors of the graph Laplacian and eigenfunctions of the

Laplace-Beltrami operator on the manifold [126]. Similarly, this solution can be

interpreted in the framework of clustering and has very close relation to other

spectral based clustering techniques. Here, the top eigenvectors of a matrix derived

from the distances between points are used.

Manifold learning is a useful tool in data driven methods to interpret data when

it lies on a low dimensional, non linear manifold. Manifold learning approaches

seek to define either explicitly or implicitly a low-dimensional embedding of the

data points that preserves some properties of the high-dimensional point setHence,

given a set of n objects, it is possible to create a matrix of pair wise similarities

between the objects and to formulate a general graph-theoretic framework for

clustering as follows [13]. Let G = (V,E) be a weighted graph, with W as the

matrix of weights where the vertices are numbered arbitrarily. Any weight Wij

associated with the edge eij is namely a similarity between vi and vj. If a clustering

of two classes is considered, then the aim is to divide V into two disjoint subsets

A, B such that, A ∪ B = V , so that the “flow” between A and B is minimised.

This “flow” can be regarded as the measure of similarity between the two clusters

and the simplest definition of the “flow” or “cut” between A and B is the total

weight of the edges that have to be removed to make A and B disjoint:

cut(A,B) =
∑

u∈A,v∈B

W (u, v) (5.5)

Trying to minimise this cut(A,B) will favour cutting off weakly connected outliers

that lead to poor partitioning quality. To avoid this problem a measure on the
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set of vertices is introduced. The weight of a vertex is its “importance” relative

to other vertices:

vol(A) =
∑

u∈A,v∈V

W(u, v) (5.6)

where W(u, v) is the weight on the edge between u and v.

It so happens that the combinatorial optimisation problem as stated is NP-hard,

but the problem can be reduced to minimising the Laplacian of the graph under

certain conditions [13]. Graph Laplacians will be explored in greater depth in

the next section, but first the general algorithm for the graph-based methods is

presented.

Graph-based algorithms perform three steps [148]:

1. Build an undirected similarity graph G = (V,E).

2. Estimate local properties, i.e. define a weight matrix W to define the

weighted similarity graph G = (V,E,W), where wij ≥ 0 represents the

weight for the edge between vertex i and j. These weights are obtained by

means of a kernel, a term defined later. A weight of 0 means that the vertices

are not connected.

3. Define an optimal global embedding Ψ which preserves these local properties.

There are two often used variations to building the similarity graph G, also known

as an adjacency graph:

1. ε-neighbourhood graph which connects vertices i and j using:

||ui − uj||2 < ε (5.7)

2. k-nearest neighbour (kNN) graph that connects vertices i and j by an edge

if i is among the k-nearest neighbours of j or if j is among the k-nearest

neighbours of i.
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Finally, a kernel k is defined as k : X×X→ R2 on a data set X as a function that

defines edge weights for a matrix W in the weighted graph.

Once an adjacency graph is defined, manifold learning consists of mapping data

points into a lower dimensional space while preserving the local properties of the

adjacency graph (See equation 5.4). This dimensionality reduction can be achieved

using spectral methods, which means analysing the eigen-structure of matrices

derived from the adjacency matrix [48].

There are various techniques to achieve the dimensionality reduction such as

Isomap [157], Locally Linear Embedding (LLE) [138], Hessian LLE [42], Diffu-

sion Maps [27] or Laplacian Eigenmaps [13]. In the remaining part of the section

Laplacian Eigenmaps will be discussed due to their strong relationship to Diffusion

Maps, a technique that will be fully described in the next section.

5.4.1 Laplacian Eigenmaps

In general, Laplacian 1 Eigenmaps use the notion of the Laplacian of the graph

to compute a low dimensional representation of the data set which preserves the

local neighbourhood information in an optimal way. Then, a representation map

is generated that can be viewed as a discrete approximation to a continuous map

that arises from the geometry of the manifold [13].

Laplacian Eigenmaps are similar to LLE in that they try to preserve distance rela-

tions and that they can be solved by an eigenvalue problem. However, they differ

in the fact that they additionally reflect the geometric structure of the manifold

by approximating the Laplace-Beltrami operator using the weighted Laplacian of

the similarity graph only when the manifold is uniformly sampled. The Laplace-

Beltrami operator is an extension of normal Laplacians to manifolds [148].

Graph Laplacians are the central tool in spectral graph theory. The normalised

and unnormalised versions, both based on the similarity graph, are built in the

1Laplacian or Laplacian operator (denoted by ∆) is a differential operator with many ap-
plications in physics and mathematics. For more information see [51].
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first step of all the presented non-linear algorithms. Now, some of the variations

are defined.

The unnormalised graph Laplacian is defined as:

L = D−W (5.8)

where is W defined using a kernel as described in the previous section, and the

degree matrix D is diagonal such that:

dii =
n∑
j=1

wij and dij = 0 ∀i 6= j (5.9)

Next, the Normalised graph Laplacian (random walk) is defined as:

Lrw = D−1L = I −D−1W (5.10)

Bearing in mind the previous equation, a mathematical formulation of Laplacian

Eigenmaps for data in Rn and its extension to shape manifolds is presented as

in [48]. Let M be a manifold of dimension m lying on Rn with (m � n). Let

m = 1, since generalisation to any dimension (m < n) is immediate. Here, the

dimensionality reduction problem consists of finding a mapping f : M −→ R,

such that if two points x and z are close in M, then so are f(x) and f(z). To

characterise such mapping the following inequality is given [13]:

|f(x)− f(z)| ≤ dM(x, z)||∇f(x)||+ o(dM(x, z)) (5.11)

where dM is the geodesic distance on the manifold M. Then the optimality

condition can be defined as:

f ∗ = argmin
||f(x)||L2(M)=1

∫
M
||∇f ||2 (5.12)

= argmin
||f(x)||L2(M)=1

∫
M
L(f)f (5.13)
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where L = −div(∇f) is the Laplace-Beltrami operator and div is the divergence

of the vector field. It follows from Stokes’ theorem that −div and ∇ are formally

adjoint operators, hence the equivalence of 5.12 and 5.13.

Minimising the objective function of equation 5.12 can be reduced to finding the

eigenfunctions of the Laplace-Beltrami operator L, i.e. the problem is equivalent

to solving the eigen problem L(f) = λf . The optimal mapping is then given by

the eigen functions corresponding to the smallest m non-zero eigenvalues. However

in practice the discrete formulation must be used, that is given by the matrix in

equation 5.8. Optimal dimensionality reduction is then accomplished by finding

the eigenvectors of L, corresponding to the m smallest non-zero eigenvalues.

As in the previous section, an algorithm to compute the embedding Ψ in three

steps is given [148]:

1. Build the undirected similarity graph G = (V,E).

2. Choose a weighted matrix W either by setting wij = 1 for all connected

vertices or using the heat kernel with parameter t:

wij = e(−||zi−zj ||2/t) (5.14)

If the graph is not fully connected, proceed with step 3 for each connected

component.

3. Find the eigenvalues 0 = λ1 ≤ . . . ≤ λn and eigenvectors ψ1, · · · , ψn of

the generalised eigenvalue problem: Lψ = λDψ. Define the embedding:

Ψ : zi → (ψ2(i), . . . , ψd(i)).

The justification for the last algorithm comes from the role of the Laplace-Beltrami

operator that provides an optimal embedding for the manifold. The manifold is

approximated by the adjacency graph computed from the data points. Then,

the Laplace Beltrami operator is approximated by the weighted Laplacian of the

adjacency graph with the weights chosen in an appropriate way, in this case using
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the heat kernel. The fundamental role of the Laplace-Beltrami operator in the

heat equation makes it possible to use this kernel to choose the weight decay

function in a principled manner. As a result, the embedding maps for the data

approximate the Eigenmaps of the Laplace-Beltrami operator which are maps

intrinsically defined on the entire manifold [13].

Laplacian Eigenmaps can be regarded as an special case of Diffusion Maps, as they

only handle cases where the manifolds from which the data is uniformly sampled.

5.5 Diffusion Maps

A Diffusion Map is a kernel eigenmap method based on diffusion processes. It

uses the eigenfunctions of Markov matrices that define a random walk on the

data to obtain new data set descriptors via a family of mappings called “diffusion

maps”. These mappings embed the data points into Euclidean space, in which

the usual distance describes the relationship between pairs of points in terms of

their connectivity. This defines a useful distance between points in the data set

termed “diffusion distance”. Different geometric representations of the data set

are then obtained by iterating the Markov matrix of transition. An equivalent

method is to run the random walk forward. Here, diffusion maps are the tool that

allows us to set up a relationship of the spectral properties of the diffusion process

with the geometry of the data set. In particular, it is important to note that not

only a single representation of the geometry is obtained, but a multi-scale family

of geometric representations corresponding to descriptions at different scales is

obtained [27].

It is worth mentioning that despite the fact that Diffusion Maps use the same

kernel definition (defined in section 5.4) as other methods there is a difference.

This is that a new diffusion operator P is used instead of the operator in equation

5.10 [148].
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5.5.1 Construction of a random walk

The goal here is to define a distance metric on an arbitrary set that effectively

reflects the point connectivity within the set. Given V = {v1, . . . , vk} and W =

{w(u, v)}u,v∈V , let G = (V,W ) be a finite graph with n nodes. The graph G

represents our knowledge about the local geometry of the set. Next the Markov

walk on this graph is defined by introducing the degree d(u) of node u as [27]:

d(u) =
∑
w∈V

w(u,w) (5.15)

Now, if P is defined as a n× n matrix whose entries are given by:

P = p(u, v) =
w(u, v)

d(u)
(5.16)

then p(u, v) can be viewed as the transition kernel of a Markov chain on V .

As P contains geometric information about the data set, the transitions that it

defines directly reflect the local geometry defined by the immediate neighbours

of each node in the graph of the data. In other words, p(u, v) represents the

probability of transition from node u to node v in one time step [83]. For t > 0,

the probability of transition from u to v in t time steps is given by pt(u, v), which

is the kernel of the t-th power Pt of P. One of the main ideas of the diffusion

framework is that if the chain is run forward in time, or equivalently, powering P,

will allow the integration of the local geometry and therefore reveal the relevant

geometric structures of V at different times. In other words, the higher the value

of t, the further a probability weight can diffuse to other points further away.

Under such a framework, a cluster is a region in which a probability of escaping

this region is low.

The generated Markov chain is reversible, since it follows the detailed balance

condition:

%(u)p(u, v) = %(u)p(v, u) (5.17)
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where %(u) represents the stationary distribution of the generated Markov chain.

Then, equation 5.17 means that P has a discrete sequence of eigenvalues {λt}t>0

and eigenfunctions {Ψl}l>0 such that:

1 = λ0 > |λ1| > |λ2| > · · · (5.18)

and

PΨl = λlΨl (5.19)

5.5.2 Diffusion Distances and Diffusion Maps

The relationship between the spectral properties of the Markov chain and the

geometry of the data set can be described as follows. The idea of defining a random

walk on the data set is based on the principle that the kernel k specifies the local

geometry of the data and captures some geometric feature of interest. Then, the

Markov chain defines fast and slow directions of propagation, based on the values

taken by the kernel, and as the walk runs forward, the local geometry information

propagates and accumulates in the same way local transitions of a system can be

integrated in order to obtain a global characterisation of this system [27].

As previously mentioned, running the Markov chain forward is equivalent to com-

puting powers of the operator P. In theory, this can be computed using the eigen-

values and eigenvectors of P but instead, these objects can be directly employed

in order to characterise the geometry of the data set.

A family of diffusion distances {Dt}t∈N at time t is defined as:

Dt(u, v)2 , ||p(w, t|u)− p(w, t|v)||2w =
∑
w

(p(w, t|u)− p(w, t|v))2w(z) (5.20)

where p(w, t|u) is the probability that the random walk that started at u arrived

at w in t steps.

For a fixed value of t, Dt defines a distance over the data set, and by definition,

the notion of proximity that it defines reflects the connectivity in the graph of the
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data. This means that Dt(u, v) will be small if there is a large number of short

paths connecting u and v, that is, if there is a large probability of transition from

u to v and vice versa.

As mentioned before, λ1, λ2,..., tend to 0 and have a modulus strictly less than 1.

As a consequence equation 5.20 can be computed to a present accuracy γ > 0. If

the following term is defined:

s(γ, t) = max{l ∈ N such that |λl|t > γ|λ1|t}, (5.21)

then, up to relative precision γ, the diffusion distance can then be approximated

using the first nontrivial eigenvectors and eigenvalues according to:

Dt(u, v) =

s(γ,t)∑
l=1

λ2t
l (ψl(u)− ψl(v))2

 1
2

(5.22)

Hence, its possible to define the family of diffusion maps {Ψt}t∈N given by:

Ψt(u) ,


λt1ψ1(u)

λt2ψ2(u)
...

λts(γ,t)ψs(γ,t)

 . (5.23)

Each component of Ψt(u) is known as a diffusion coordinate. The mapping Ψt :

V −→ Rs(γ,t) embeds the data set into an Euclidean space of s(γ, t) dimensions.

The connection between diffusion maps and diffusion distances can be summarised

as follows. The diffusion map Ψt embeds the data into the Euclidean space Rs(γ,t)

so that in this space, the Euclidean distance is equal to the diffusion distance (up

to relative accuracy γ), or equivalently:

||Ψt(u)−Ψt(v)|| = Dt(u, v). (5.24)
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5.5.3 Algorithm

The algorithm to apply the diffusion maps to spectral clustering is as follows:

1. Construct a similarity graph.

2. Compute the normalised Laplacian.

3. Solve generalised eigenvector problem, Lψ = λDψ.

4. Define the embedding into a n-dimensional Euclidean space via diffusion

maps.

5. Cluster points with K-means.

The implementation and results from this algorithm will be presented in a later

section.

5.6 Evaluating the Clusters

As mentioned earlier, what clustering methods do is to find some desired number

of groups, but what is really wanted is meaningful clusters that represent the

true phenomena. So, the resulting groups must be analysed and then determine

whether or not they aid in understanding the problem. In general, this can involve

an assessment of the data to see if it contains any clusters but more often, it means

an examination of the output of the algorithm to determine whether or not the

clusters are meaningful.

Here, in order to make an objective comparison the adjusted Rand Index (aRI)

performance measure is used. Such measure is based on counting pairs of points

found in the same clusters in two clustering results and those found in different

clusters in the two results. Having two partitions of the same data set called

Z1 and Z2 with z1 groups and z2 groups, respectively. This can be represented

in a z1 × z2 matching matrix N with elements nij, where nij is the number of
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observations in group i of partition Z1 that are also in group j of partition Z2. It

is interesting to note that the number of groups in each partition do not have to

be equal, and that the classifications can be obtained through any method. Then

the adjusted Rand Index can be calculated as:

RIA =
N

D
(5.25)

where

N =

z1∑
i=1

z2∑
j=1

(
nij
2

)
−

z1∑
i=1

(
n i •

2

) z2∑
j=1

(
n • j

2

)
÷
(

n

2

)
, (5.26)

D =

[
z1∑
i=1

(
n i •

2

)
+

z2∑
j=1

(
n • j

2

)]
÷ 2 −

z1∑
i=1

(
n i •

2

) z2∑
j=1

(
n • j

2

)
÷
(

n

2

)
,

(5.27)

and

n • j =

z1∑
i=1

nij , n i • =

z2∑
j=1

nij . (5.28)

For more details of the measure refer to [104].

5.7 Shape Clustering using Diffusion Maps

The shape clustering problem is of practical importance since it can significantly

facilitate the automatic labelling of objects present in data collections, where la-

belling objects usually requires manual examination. Another challenge in shape

clustering is the high dimensionality of the input space and the presence of noise

or outliers, where performing clustering may be meaningless therefore a suitable

dimensionality reduction is required.

It has been demonstrated that the manifold learning techniques can be applied

in shape clustering. This is because it is possible to find a non-linear projection

algorithm that can attract together similar shapes. This suggests the existence
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of an isometry between the shape space and a low dimensional nonlinear embed-

ding [177].

Since a shape representation invariant to translation, rotation, and scale trans-

formations is desirable in the context of shape analysis, we have chosen Fourier

descriptors (FD) as the shape representation since they are effective in many prob-

lems of pattern classification and computer vision [76]. As the main scope of this

work is to analyse the unsupervised learning of shape manifolds, no claim of opti-

mality is made about the shape representation using FDs. The following describes

the procedure followed elsewhere ([118, 126]) that use FDs and Diffusion maps for

spectral clustering.

Let us regard any shape as a contour (closed curve) represented as a set of bound-

ary points represented as in equation 2.16. Then the Centroidal distance function

is calculated using 5.1. Next, the distance vector r = {r(1), r(2), . . . , r(N)} is

transformed into the frequency domain using a DFT. Now the feature vector f is

derived as follows:

f =

(
|F1|
|F0|

,
|F2|
|F0|

, · · · ,
|FN/2|
|F0|

)
. (5.29)

Here |Fi| denotes the ith Fourier coefficient and |F0| the DC component. In the

last equation, due to the fact that the centroidal distance function is real valued,

only half of the FDs are needed to index the shape. Taking the magnitudes of the

coefficients yields rotation invariance, and scale invariance is obtained by dividing

them by the DC component [181].

Like most manifold learning methods, the first step of diffusion maps is to define

the feature vectors. Ω = {f1, f2, . . . , fn} (where n denotes the total number of

shapes) can be regarded as the set of feature vectors which correspond to our data

set of various shapes. Then, Ω become the nodes of an adjacency graph G such

that G = (Ω,W), where W, is the similarity matrix between fi and fj, and is

computed using a Gaussian kernel of width σ:

w(fi, fj) = e
(−||fi−fj ||

2)

2σ . (5.30)
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The graph G with weights W represents our knowledge of the local geometry of

the set. We next define a Markov random walk on this graph, by defining the

degree d(fi) of node fi as:

d(fi) =
∑
z∈Ω

w(fi, z). (5.31)

Now, if P is defined as an n× n matrix whose entries are given by:

P = pij =
w(fi, fj)

d(fi)
, (5.32)

then P can be viewed as the transition kernel of a Markov chain on V .

The definition of the Markov matrix for a given set of shapes belonging to different

classes allows the embedding of the sub-manifolds corresponding to the shape

classes in a lower dimensional space as follows. As a result of equation 5.17 we

have 5.18 and 5.19, then a mapping from the shape feature Ω to a lower dimensional

Euclidean space Rm is given by 5.23.

Finally, the last stage is to perform K-Means clustering over the obtained diffusion

coordinates. In practice, the MATLAB implementation of the K-Means algorithm

from the Multivariate Statistics toolbox was used.

5.8 Experimental Results

First results for common data sets to verify the accuracy of the method are pre-

sented. In this case we experiment with the helix, toroidal helix and the Swiss roll

data sets, each with 800 points (See figures 5.3, 5.4, 5.5 respectively).

The next experiments used the same data set as in [126], which consists of six

different shape classes from the Kimia database of silhouettes [141]. The classes

are: carriage (20 shapes), dog (49 shapes), rat (20 shapes), fish(32 shapes), hand

(16 shapes) and horse (20 shapes) for a total of 157 samples (Figures 5.6 and 5.7).

The following results correspond to the use of six different species of leaves 5.8

belonging to two genera, Acer (Maples) and Quercus (Oaks) from the Oregon
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Figure 5.3: Helix data set: (a) Original set of 800 points, (b) Diffusion coor-
dinates plot.

Figure 5.4: Toroidal helix data set: (a) Original set of 800 points, (b) Diffusion
coordinates plot.

State University ([40]). The other data set is the same brain data used in the

previous chapter [10].

A couple of experiments were performed in order to assess the veracity of the
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Figure 5.5: Swiss roll data set: (a) Original set of 800 points, (b) Diffusion
coordinates plot.

Figure 5.6: Types of shapes used for the experiments: carriage, dog, rat, fish,
hand and horse.

method using non-closed contours. Two data sets where used: a single leaf data

set of 50 contours each divided in 16 partitions for a total of 800 shapes; and a

single white matter contour dataset of 100 contours each divided in 8 partitions

for a total of 800 shapes.

The following results correspond to the single leaf data set where after obtaining

the CSS zero-crossings, 4 different types of partitions can be clearly identified
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Figure 5.7: Results from the Diffusion coordinates and K-means to cluster the
data from Kimia database. Classes (carriage, dog, rat, fish, hand and horse)

can be distinguished easily.

Figure 5.8: Sample plant species used for performance evaluation: (a) Acer
Circinatum, (b) Quercus Garryana, (c) Acer Glabrum, (d) Quercus Kelloggii

(e) Acer Macrophyllum and (f) Acer Negundo.
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(figure 5.9-(a)). Then, the clusters are identified after the spectral clustering

(figure 5.9-(b)) and the resulting cluster sets can be visualised in (figure 5.10)

with the correspondent number of members in each class presented in table 5.1.

Figure 5.9: Single leaf contour data set: (a) Different types of partitions ac-
cording to the CSS zero-crossings and (b) Diffusion coordinates plot illustrating

the clusters of the data set.

Class 1 Class 2 Class 3 Class 4
350 50 200 200

Table 5.1: Results for the single leaf contour: 4 clusters

Similar results are presented for the single white matter contour data set. In figure

5.11-(a) 5 different types of partitions can be identified and in figure 5.11-(b) the

resulting cluster sets can be visualised. The resulting cluster sets can also be seen

in figure 5.12 with the corresponding number of members in each class given in

table (5.2).

Class 1 Class 2 Class 3 Class 4 Class 5
100 200 200 200 100

Table 5.2: Results for the single white matter contour: 5 clusters
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Figure 5.10: Different types of clusters according to the diffusion maps clus-
tering over the single leaf contour set.

These results begin to demonstrate that it is possible to effectively cluster shapes

and create accurate clusters. Next, results on multiple shape data sets are pre-

sented. The following were obtained using different leaf images from the class

Quercus Kelloggii. Once again we created partitions out of each contour using

CSS zero-crossings and then submitted the output to the Diffusion Maps.

In the following experiments, two different clustering methods were used: Lapla-

cian Eigenmaps and Diffusion Maps. Therefore, to establish comparative results

the aRI performance measure was employed, comparing the resulting labels from

each method against the manual labels for each contour partition of the data sets.

In this case, the correct value of σ is determined by the highest value on the aRI
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Figure 5.11: Single brain contour data set: (a) Different types of partitions ac-
cording to the CSS zero-crossings and (b) Diffusion coordinates plot illustrating

the clusters of the data set.

measure that should correspond to the highest value closest to one.

The first experiment was made using leaf contours of the Quercus Kelloggii and

the total number of partitions obtained from 50 contours was 662. Comparative

results between both clustering methods are presented in table 5.3 and from here,

the value that produced maximum aRI value was σ = 0.0003 (in red) for the

Diffusion Maps and σ = 0.003 (in magenta) for the Laplacian Eigenmaps.

After obtaining a suitable value of σ from the Diffusion Maps spectral clustering

method (figure 5.13) it was possible to identify four different classes. Figure 5.14-

(a) presents four different leaves with its partitions coloured according to the

identified classes and in 5.14-(b) it is possible to observe the original hand labelling

for comparison purposes.

The final experiment was maid using the brain contours data set that consisted of

501 partitions from 60 white matter contours. Once again as in the last experiment,

to estimate the correct value of σ a ground truth test was used. Once more all the

shapes were manually labelled and then results for different values of σ from both

methods were compared against this using the aRI measure. Results are presented
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Figure 5.12: Different types of clusters according to the diffusion maps clus-
tering over the single brain contour set.
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aRI aRI
σ Dif. Maps Lap. Eigenmaps σ Dif. Maps Lap. Eigenmaps
10 0.09693 0.03105 0.01 0.16633 0.06337
20 0.09802 0.02940 0.02 0.15643 0.05494
30 0.09830 0.03105 0.03 0.15160 0.03252
40 0.09802 0.03105 0.04 0.14227 0.03525
50 0.09802 0.03105 0.05 0.11069 0.03784
60 0.09802 0.03105 0.06 0.11069 0.03646
70 0.09802 0.03105 0.07 0.10101 0.03227
80 0.09802 0.03105 0.08 0.09833 0.03129
90 0.09802 0.01753 0.09 0.10020 0.03017
100 0.09802 0.03105 0.001 0.16633 0.09436
1 0.09906 0.03105 0.002 0.15643 0.08735
2 0.09830 0.03004 0.003 0.15160 0.19513
3 0.09802 0.03004 0.004 0.14227 0.06461
4 0.09802 0.01485 0.005 0.11069 0.06582
5 0.09830 0.01485 0.006 0.11069 0.06362
6 0.09802 0.03105 0.007 0.10101 0.06143
7 0.09802 0.03105 0.008 0.09833 0.04828
8 0.09830 0.03105 0.009 0.10020 0.05393
9 0.08603 0.03105 0.0001 0.21115 0.0303917

0.1 0.10290 0.03160 0.0002 0.23502 0.0514889
0.2 0.10001 0.01397 0.0003 0.27156 0.0709292
0.3 0.09990 0.03121 0.0004 0.13644 0.09425
0.4 0.09924 0.03073 0.0005 0.20549 0.07110
0.5 0.09924 0.03073 0.0006 0.18056 0.06119
0.6 0.09919 0.03073 0.0007 0.13758 0.05242
0.7 0.09919 0.03073 0.0008 0.16751 0.03893
0.8 0.09906 0.03073 0.0009 0.13758 0.07748
0.9 0.09906 0.03004

Table 5.3: Comparison between Laplacian Eigenmaps and Diffusion Maps
using the aRI measure for the leaf contours data set. The biggest value of
σ (in red) is determined by the highest value on the aRI measure that should
correspond to the highest value closest to one, in this case corresponds to 0.0003

from the DM method.

in table 5.4 and from here, the value that produced a maximum aRI value was

σ = 0.003 again from the Diffusion Maps method.

Figure 5.15 show the diffusion coordinates plot for four classes of partitions. Fi-

nally, figure 5.16 depicts the identified classes.
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Figure 5.13: (a) Diffusion coordinates plot identifying four different clusters
from 50 leaf contours and (b) zoom on the plot.

5.9 Evaluation and Discussion

The main contribution of this chapter is the creation of a method that obtains a

set of meaningful shapes, so that it is possible to find local parts that are similar

and localised according to a non-supervised clustering technique. Furthermore,

another objective of this was to generate ordered sets of partitions from contours

to establish a way of determining meaningful local sets of shapes. Additionally,

another contribution of this work is that it helps to clarify a way to solve the

problem of the choice of the prototypical shape used for the shape analysis (See [16]

as well). Here, the sets of generated clusters are created with similar shapes, and

potentially, any shape of the resulting set could be used as the prototypical shape.

The first four experiments (figures 5.3 to 5.6) were made with the intention of

analysing the performance of the Diffusion Maps method under commonly used

data sets. Results were satisfactory using such data as can be seen in [173] and

[126]. This shows that the spectral clustering is effective in discovering the non-

linear manifold of the shape space. A major concern in obtaining the results was

that in most reported experiments in the literature closed contours were used.

Since in this work non-closed partitions of whole contours derived from the CSS

are used, the loss of fine detail representation caused by the use of half of the
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aRI aRI
σ Dif. Maps Lap. Eigenmaps σ Dif. Maps Lap. Eigenmaps
10 0.12047 0.10181 0.01 0.24233 0.25299
20 0.09544 0.04505 0.02 0.27515 0.07412
30 0.11265 0.07244 0.03 0.28550 0.10808
40 0.11275 0.10181 0.04 0.22788 0.11289
50 0.12304 0.10181 0.05 0.25438 0.11655
60 0.11275 0.10181 0.06 0.18952 0.11547
70 0.09544 0.10798 0.07 0.17658 0.11522
80 0.10754 0.10181 0.08 0.16773 0.11259
90 0.12501 0.10181 0.09 0.16177 0.11199
100 0.09544 0.10403 0.001 0.18014 0.01655
1 0.11422 0.106555 0.002 0.20778 0.03244
2 0.13091 0.09991 0.003 0.19963 0.04521
3 0.09874 0.10798 0.004 0.22100 0.05523
4 0.13091 0.10798 0.005 0.22695 0.10211
5 0.12505 0.10181 0.006 0.23650 0.15634
6 0.12527 0.04319 0.007 0.24648 0.22088
7 0.09381 0.10181 0.008 0.25746 0.03862
8 0.10843 0.10181 0.009 0.22385 0.24533
9 0.09381 0.10798 0.0001 0.22231 0.01710

0.1 0.14852 0.10734 0.0002 0.36243 0.03936
0.2 0.10280 0.09767 0.0003 0.39919 0.02555
0.3 0.11831 0.10655 0.0004 0.31535 0.04190
0.4 0.11463 0.10396 0.0005 0.28894 0.05198
0.5 0.12293 0.10094 0.0006 0.26114 0.06640
0.6 0.10543 0.10094 0.0007 0.12246 0.06060
0.7 0.11234 0.10094 0.0008 0.13315 0.07650
0.8 0.12237 0.10621 0.0009 0.14684 0.01335
0.9 0.10504 -0.00603

Table 5.4: Comparison between Laplacian Eigenmaps and Diffusion Maps
using the aRI measure for the white matter contours data set. The biggest
value of σ (in red) is determined by the highest value on the aRI measure that
should correspond to the highest value closer to one, in this case corresponds to

0.0003 from the DM method.

Fourier descriptors (see equation 5.29) does not represent a problem due to the

“smoothing” nature of the CSS evolutions. To the knowledge of the author, this

is the first attempt in clustering non-closed contours using spectral clustering

techniques.

The first experiments on both data sets, leaf and brain white matter contours,

reflect that given the same shape repeated several times the method is effective in
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finding accurate clusters as it can be seen in tables 5.1 and 5.2, were it is possible

to find that each cluster has the right amount of shapes. For example, taking

the first experiment with the leaves, from figure 5.9 we can observe four different

labeled classes, so as the same contour was repeated 50 times, it was expected for

instance, to find 350 shapes for class 1 since there are 7 partitions of this type in

each repeated contour. Variation in the data sets for the following experiments

(see figures 5.14 and 5.16) is reflected in the low values of the aRI measure for

both methods, since for those experiments the shapes for both data sets were all

different, making more difficult the correct classification of partitions. Even though

results were not high according to the aRI measure (see tables 5.3 and 5.4) from

these experiments it is possible to conclude that the Diffusion Maps technique is

better than Laplacian Eigenmaps. The combination of CSS and diffusion maps is

a way to map self-similar contours to a piece-wise shape description.

Finally, in order to demonstrate the compactness of the proposed LSM, spectral-

clustering was used to build a set of four and five local (linear) shape models

respectively, and then comparing each model against a single (global) one. Figures

5.17 and 5.18 show the cluster variation for the local versus global models and

demonstrates the better compactness of the four classes over the global model for

the Kelloggii leaves and the Brain white matter data sets.

Some alternatives to improve this work can be considered. First, Fourier Descrip-

tors can be replaced by other techniques to extract shape features. An option is

to use shape context descriptors [14] that offers a globally discriminative charac-

terisation by capturing the distribution of remaining points in an image relative to

a reference point. Diffusion maps are sufficient in finding suitable clusters for the

shape analysis, nevertheless, experimentation with other spectral clustering tech-

niques such as Isomap [157] and other spatial clustering methods such as Gaussian

Mixture Models [106, 175] instead of K-Means, could be useful. This is because of

the elongated shape of the clusters (see figures 5.13-(b) and 5.15-(b)), where the

mentioned techniques can lead to better results.
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5.10 Summary

In this chapter a method that obtains a set of meaningful shapes using a non-

supervised clustering method has been introduced and explained.

The chapter began with an explanation of Shape signatures and Fourier Descrip-

tors, and then described Manifold Learning and Spectral Clustering. Manifold

learning is a useful tool in data driven methods to interpret data when it lies

on a low dimensional, non linear manifold. Manifold learning approaches seek

to define either explicitly or implicitly a low-dimensional embedding of the data

points that preserves some properties of the high-dimensional point set. They

are a useful tool in data driven methods to interpret data when it lies on a low

dimensional, non linear manifold and seek to define either explicitly or implicitly

a low-dimensional embedding of the data points that preserves some properties

of the high-dimensional point set. The subsequent section explained Laplacian

Eigenmaps technique since it is closely related to Diffusion Maps, the main matter

of this chapter. This technique relies on the basic assumption that the data lies in

a low dimensional manifold in a high dimensional space. Diffusion Maps were then

explained in the following section. Such methods use the eigenfunctions of Markov

matrices that define a random walk on the data to obtain new data set descriptors

via a family of mappings called “diffusion maps”. After this, an explanation of

how to evaluate the clusters was given and the aRI measure of compactness was

described.

Experiments that were carried out with different sets of shapes are described. First

experiments with synthetic data (Swiss roll and Kimia data sets for example) and

then with natural data (leaves and brain white matter contours). A discussion

of the results was given along with a demonstration of the compactness of the

proposed LSM by building a set of local (linear) shape models and then comparing

each model against a single global one. Finally, possible ways to improve the

obtained results was discussed.
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Figure 5.14: Column (a) Four different leaf contours with its partitions
coloured according to the class identified by the Diffusion Maps clustering and

column (b) contours with the manual labels.
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Figure 5.15: (a) Diffusion coordinates plot identifying four different clusters
partitions from 60 white matter contours and (b) zoom on the plot.
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Figure 5.16: Column (a) Four different brain white matter contours with
its partitions coloured according to the class identified by the Diffusion Maps

clustering and column (b) contours with the manual labels.
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Figure 5.17: Kelloggii leaves set: Log plot of eigenvalues for the different
clusters and for the global shape model in red.

Figure 5.18: Brain white matter set: Log plot of eigenvalues for the different
clusters and for the global shape model in red.



Chapter 6

Hierarchical Contour Shape

Analysis

6.1 Introduction

Having described and developed in previous chapters the proposed LSM, to asses

its validity it is desirable to compare its performance with some other method. This

chapter introduced a novel shape representation which performs shape analysis in

a hierarchical fashion using Gaussian and Laplacian pyramids. It then uses the

it to compare the proposed LSM model. A background on hierarchical shape

analysis is given along with a detailed explanation of the hierarchical method,

and as well results are shown on natural contours. Then, the comparison between

this method and the proposed LSM is performed using different shape sets. The

chapter concludes with a summary and how the new approach can be extended.

6.2 Hierarchical Shape Analysis

Hierarchical Shape Analysis can be regarded as a technique able to derive and

quantify correlated behaviour between any number of structures [127]. Among

these techniques, it is possible to find the Hierarchical ASM [38], where the premise

139
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of the method is that a small number of training samples can be used to estimate

the covariation of patterns of smaller numbers of variables, allowing their hierar-

chical model to capture local and fine shape details. This is done by representing

in a hierarchical fashion the shapes in terms of a wavelet transform followed by a

PCA on the wavelet coefficients.

In [185] a technique called Partitioned Active Shape Model (PASM) is introduced,

where these 3D PASMs can be regarded as partitioned representations of 3D ASMs.

Here a mesh is partitioned into ‘tiles’ or surface patches, then PCA is applied to

the coordinates of the tile vertices. Next, training samples are projected as curves

in a single hyperspace so the deformed points are fitted into an allowable region

of the model using a curve alignment scheme.

Rao et al. [127], presented an approach where two well known multivariate sta-

tistical techniques have been used to investigate the statistical variation of brain

structures. Canonical Correlation Analysis is used to quantify the correlations be-

tween a number of different brain structures and Partial Least Squares Regression

is performed over shapes of different structures to predict unknown shapes from

unseen subjects, given known shapes of other structures from that subject. As

well, CCA and PLSR facilitate the embedding of statistical shape modelling of

the brain within a hierarchical framework since they can be used to extract and

quantify correlated behaviour between any number of brain substructures.

More recently, Yu et al. [178] introduced a method that extracts shape features and

conducts statistical analysis using a procedure that registers and normalises cor-

tical surfaces, as well as decomposing them using spherical wavelets. The wavelet

coefficients obtained are used as shape features to study the folding pattern at

different spatial scales and locations, as the underlying wavelet basis functions

have local support in the space and frequency domains. Then, the patterns of

cortical shape variation are studied using PCA allowing the correlation of these

shape variations with age and neuropsychological measurements at different spa-

tial scales.
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In table 6.1 an overview of these methods is provided. Each entry in the table

contains information about the modelled object of interest, the image modality,

and the techniques used for the work.

Authors Object(s) of interest Core technique(s)
Davatzikos et al. (2003) Corpus Callosum Wavelet transform

PCA
Lateral ventricle PDM

Zhao et al. (2005) Left Thalamus PCA
Left Hippocampus Curve Alignment model fitting
Lateral ventricle
Pallidum
Caudate
Putamen

Rao et al. (2006) Thalamus PLSR
Amygdala CCA
Hippocampus
Accumbens
Brain Stem

Yu et al. (2007) White Matter SPHARM
Grey Matter PCA

Table 6.1: Shape analysis tasks solved with Hierarchical Shape Models. Refer
to the text for a description of abbreviations (Section 6.2).

6.3 Generating Hierarchical Shape Models

6.3.1 The Contour Laplacian Pyramid as a Compact Shape

Code

In 1983 Burt and Adelson [23] introduced an image encoding technique that uses

local operators at many scales as basis functions. The iterative process to encode

the image generates a pyramid data structure, which is equivalent to sampling

an image with Laplacian operators of many sizes, hence Laplacian pyramids. In

this section a novel method for shape analysis is introduced based on the idea of

Laplacian operators for image enhancement.
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As in Burt and Adelson’s method [23], the approach applies a Gaussian pyramid,

GP , as a first step. To generate a GP for any shape S (contour of form 2.16),

it is ‘reduced’ using a Gaussian function that acts as a low pass smoothing filter

and reduces the number of points. Such an operation is performed by the function

REDUCE, that can be defined as:

REDUCE(S) = ⇓(X(i, σ), Y (i, σ)) (6.1)

where X(i, σ), Y (i, σ) has the same form as in equation 4.1 and ⇓ denotes an

operator that downsamples the number of points of a shape by two. Hence,

GP(i) = REDUCE(S) (6.2)

with i = 0, . . . , l and l is the number of levels of the pyramid. Figure 6.1 presents

an example of a Gaussian pyramid for a leaf and a brain white matter contour.

Figure 6.1: Example of Gaussian pyramid for: (a) leaf and (b) brain white
matter contour.

The next step is the construction of the Laplacian pyramid LP , where each level

is a difference between two levels of the Gaussian pyramid. First the function
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EXPAND needs to be defined as:

EXPAND(S) = ⇑(GP(i)) (6.3)

where ⇑ denotes an operator that upsamples the number of points of a given shape

by two. Then, each level of the Laplacian pyramid LP is given by:

LP(i) = GP(i)− EXPAND(GP(i+ 1)) (6.4)

Since there is no level i+ 1 of GP , to serve as a prediction level for GP(l) we say:

LP(l) = GP(l) (6.5)

Figure 6.2 presents an example of a Laplacian pyramid for a leaf and a brain white

matter contour.

Figure 6.2: Example of Laplacian pyramid for: (a) leaf and (b) brain white
matter contour.

Finally, it is possible to recover the original contour by, expanding LP(l) once

and add it to LP(l − 1), then expand this once and add it to LP(l − 2), and so
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on until level 0 is reached and GP(0) is recovered (the level that corresponds to

the original contour). This procedure simply reverses the steps in the Laplacian

pyramid generation. From equation 6.4 we have that:

GP(i) = LP(i)− EXPAND(GP(i+ 1)) (6.6)

Figure 6.3 presents an example of the reconstruction of the Gaussian pyramid for

a leaf and a brain white matter contour respectively.

Figure 6.3: Example of the reconstruction of the Gaussian pyramid for: (a)
leaf and (b) brain white matter contour.

6.3.2 Deriving shape information from Laplacian pyramids

Intuitively, the idea is that the shape variation is encoded in the Laplacian pyra-

mid, so each level encodes the shape variation among the different levels of the

Gaussian pyramid.

Having a set of shapes Φ = S1,S2, . . . ,Sn, the first step as in any other shape

model is to align them. Then, to derive shape information, each level of the

Laplacian pyramid LP is collapsed to a longer vector where the different levels
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are concatenated LV :

LV = [GP(l),L(l−1),L(l−2), . . . ,L0)]. (6.7)

where L represents a level from LP .

Then, a covariance matrix C is created by the outer product of each LV :

C =
1

n

n∑
i=1

[LV i][LV i]T (6.8)

Then using equation 2.12 over C we obtain the corresponding eigenvectors and

eigenvalues by PCA. As before, the eigenvalues or modes of variation effectively

capture the variability of the set (refer to section 2.4.4.3 for more information).

6.3.3 Experimental results

The idea of the following experiment is to explore the compactness of the eigenplots

derived from PCA. The data set used was leaves of the type Macrophyllum (see

figure 2.6).

The following plots, reflect the results for each of the mentioned data sets for 4

different levels of the Gaussian pyramid and with different set sizes: 20 (Figure

6.4), 40 (Figure 6.5), 60 (Figure 6.6) and 80 (Figure 6.7) leaves were used.

In section 6.5 an evaluation of these results will be given. The next section shows

the results from comparing the LSM with the HSM.

6.4 Comparative assessment: LSM and Lapla-

cian Hierarchical Shape Model

In this section experiments were carried out to compare the proposed LSM and

the novel Hierarchical Shape Model (HSM). For consistency, the same data sets for
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Figure 6.4: 20 leaves set: Log plot of eigenvalues against number of principal
modes.

Figure 6.5: 40 leaves set: Log plot of eigenvalues against number of principal
modes.

the experiments in Chapter 5 have been used. Here, the classes identified by the

Diffusion Map clustering are compared against the HSMs. For both experiments,

different levels of the Gaussian pyramid were used, and the idea was to compare

the compactness of the eigenvalues from both models. In each of the following
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Figure 6.6: 60 leaves set: Log plot of eigenvalues against number of principal
modes.

Figure 6.7: 80 leaves set: Log plot of eigenvalues against number of principal
modes.

figures the resulting eigenmodes for the HSM are plotted in shades of green and

for the LSM in red.

The first data set contains 50 leaves of the type Quercus Kelloggii. Figure 6.8
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corresponds to the HSM using 3 Levels of the Gaussian pyramid, figure 6.9 to 4

levels, figure 6.10 to 5 and finally figure 6.11 to 6 levels.

Figure 6.8: Kelloggii leaves set, 3 levels of the Gaussian pyramid: in red the
plot for the HSM eigenmodes and in shades of green the different classes of the

LSM, plot of eigenmodes against number of principal modes.

Figure 6.9: Kelloggii leaves set, 4 levels of the Gaussian pyramid: in red the
plot for the HSM eigenmodes and in shades of green the different classes of the

LSM, plot of eigenmodes against number of principal modes.

Second data set contains 60 brain white matter contours, the same shape set used

for the experiments in Chapters 4 and 5. Again as in the previous data set, each
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Figure 6.10: Kelloggii leaves set, 5 levels of the Gaussian pyramid: in red the
plot for the HSM eigenmodes and in shades of green the different classes of the

LSM, plot of eigenmodes against number of principal modes.

Figure 6.11: Kelloggii leaves set, 6 levels of the Gaussian pyramid: in red the
plot for the HSM eigenmodes and in shades of green the different classes of the

LSM, plot of eigenmodes against number of principal modes.

figure (6.12 to 6.15) corresponds to the HSM using 3, 4, 5 and 6 Levels of the

Gaussian pyramid accordingly.

In the next section an evaluation of these results is given.
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Figure 6.12: Brain white matter set, 3 levels of the Gaussian pyramid: in blue
the plot for the HSM eigenmodes and in warm colours the different classes of

the LSM, plot of eigenmodes against number of principal modes.

Figure 6.13: Brain white matter set, 4 levels of the Gaussian pyramid: in blue
the plot for the HSM eigenmodes and in warm colours the different classes of

the LSM, plot of eigenmodes against number of principal modes.

6.5 Evaluation and Discussion

The resulting plots of section 6.3.3 (figures 6.4 to 6.7) show that even using dif-

ferent levels of the Laplacian pyramid and different sizes of the training sets, the

plots do not present significative variation in their compactness. Hence, from the
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Figure 6.14: Brain white matter set, 5 levels of the Gaussian pyramid: in blue
the plot for the HSM eigenmodes and in warm colours the different classes of

the LSM, plot of eigenmodes against number of principal modes.

Figure 6.15: Brain white matter set, 6 levels of the Gaussian pyramid: in blue
the plot for the HSM eigenmodes and in warm colours the different classes of

the LSM, plot of eigenmodes against number of principal modes.

experiments it is possible to conclude that the compactness of the method is con-

sistent, and therefore using few levels or a small set of shapes will not affect the

performance of the method.

Results from leaf contours (figures 6.8 to 6.11) and from white matter shapes
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(figures 6.12 to 6.15) illustrate that, in most cases, the HSM appears not to be

more compact than the LSM since is not possible to find significative variation

in the compactness of the eigenmode plots. Even though one can note that in

the construction of the HSMs there is more information coded for each shape, the

accuracy in deriving shape information does not always outperform the proposed

LSM. This can be graphically assessed in the resulting plots, where none of the

plots using different levels of the HSM were more compact than the ones produced

by the LSM. This means that the HSMs can be as good and compact as the LSM,

and consequently, this shows that the new method is worthy for performing shape

analysis but work in a different way than the proposed LSM. Additionally, with this

experiments and the experiments from Chapter 5, it is possible to conclude that

the proposed LSM is a compact and reliable method to perform shape analysis.

At the moment there is the scope for extending the presented technique in two

ways. The first is to adjust it to Local shape analysis by taking parts of the contour

at different scales of smoothing according to the CSS, and build its corresponding

Laplacian pyramids. The other direction will be to extend it to three dimensions

using surface patches. In [114], it is shown that by convolving local parameteri-

sations of the surface with 2D Gaussian filters iteratively it is possible to obtain

smoothed versions of the patches. This should be enough to derive the Gaussian

and Laplacian pyramids needed for the proposed HSM.

6.6 Summary

In this chapter a new shape model that derives shape information in a hierarchical

fashion was presented. Hierarchical Shape Analysis can be regarded as a technique

able to derive and quantify correlated behaviour between any number of structures.

To create a multilevel analysis, the method employs the same idea as in Burt and

Adelson’s method [23], i.e. that of using an iterative process to encode the image

generates a pyramid data structure, which is equivalent to sampling an image with

Laplacian operators of many sizes, hence Laplacian pyramids. In this case, the
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idea is that the shape variation is encoded in the Laplacian pyramid, so each level

encodes the shape variation among the different levels of the Gaussian pyramid.

The basic principles behind the method were explained along with examples to

illustrate its construction. Similar to other experiments in this work, brain and

leaf data sets were used to obtain results of the new model. From the experiments,

it is possible to conclude that the compactness of the method is consistent, and

when using few levels or a small set of shapes should not affect the performance

of the method.

Likewise, this new method has been used to establish a comparison with the LSM

proposed in previous chapters. The experiments used the classes identified by the

Diffusion Map clustering, compared against the HSMs resulting modes. Results

from leaf contours and from white matter shapes illustrate that, in most cases,

the HSM appears not to be more compact than the LSM since is not possible to

find significative variation in the compactness of the eigenmode plots. This means

that the HSMs can be as good and compact as the LSM, and consequently, this

shows that the new method is worthy for performing shape analysis but works in

a different way than the proposed LSM.

Further extensions of the proposed LSM are discussed in the following chapter,

together with a summary and conclusions of this research work.
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Conclusions

7.1 Thesis Summary

The work described in this thesis has been concerned with the development of a

statistical shape model to analyse local variation in shapes. The proposed method

is based on a Point Distribution Model, so the objective has been to analyse

the correlation of the shape of parts of certain structures. In this case, natural

shapes (leaves and squids) and brain structures were considered as the research

data. With the purpose of overcoming some of the aforementioned problems that

normally arise when using Active Shape Models, here an extension of the work

of Bhalerao and Wilson [15] was reviewed. In that work, a major conclusion was

that the localisation of the shape space to contour parts implies that periodic

and repetitive structural variation can be modelled using a single training sample.

Here, solutions to cope with the issue of what should be a good partition of a

given contour into local parts were presented. From all the results in this work

it is possible to conclude that local shape models are efficient in modelling the

statistical variation of shape of natural structures.

Chapter 1 had the purpose of setting the scene and motivate the work. First, a

general introduction to medical image analysis was given. Here, the importance

154
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of Computational Anatomy as a new discipline with its objective of creating al-

gorithmic tools to help in the analysis of the substructures of the human brain

was explained. Next, some background on fractal brain structure was introduced

since this is used as main driving direction for this research. Furthermore, the

importance of fractal geometry in many natural objects was given by the exami-

nation of a series of state of the art research papers that show that it is possible to

regard the brain as a natural fractal. The next section hightlighted the need for

local shape models compared with the global ones. As one of the objectives was

the partitioning of contours, a review of previous work in this area was presented.

Then, spectral clustering was introduced as a general method to construct sets of

contour partitions useful for shape analysis. Also in this section, a statement of

purpose was given and the thesis contributions, materials and outline presented.

Chapter 2 was mainly dedicated to the explanation of basic background of shape

and statistical shape analysis. The chapter starts with an introduction and then

in the next section, basic but important concepts such as shape, landmarks, shape

descriptors, shape spaces and shape signatures were explained. Then, in the fol-

lowing section Morphometry was introduced, followed by a brief introduction to

Shape Analysis. In the next section, first Statistical Shape Analysis was described

and then four basic parts of any SSA method are then explained: Procrustes

methods, PCA, Eigenshape analysis and PDM. The last one is described in a

more complete way since it comprises most of the aforementioned concepts and

because it is the shape descriptor used in this work. Hence, the next part of this

section, contour localisation or contour partitioning was explained along with a

formal definition of partitioning. Next, registration or the pose removal problem

was explained, along with an explanation of the Procrustes method. After that,

a description of how statistical variation in the shapes can be characterised by

Principal Components Analysis. PCA is a statistical technique aimed at reducing

the dimensionality of a data set, but it also useful to summarise information, in

this case, to express the shape variability of a data set. In the following part of the

section, it was explained how shape reconstruction can be carried out by retaining

the pose parameters obtained in the registration process and a novel, alternative
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way to visualise results was created. This consisted of presenting the reconstructed

partitions blended back into the smoothed version of the contour to which they

belong. Finally, a chapter summary was given.

Fractals, and in this case, space filling curves are considered important mathemat-

ical descriptions of the appearance and shape of common objects in nature. In

Chapter 3 their properties and how the property of self-similarity can be used in

shape analysis was explained. This chapter presented a new method for modelling

fractal curves, such as the boundary of brain white matter, and partitioning such

curves into segments with equal fractal dimension. For a given number of contour

points and a required set of partitions, the solution space is very large. A Bayesian

framework with reversible-jump Markov Chain Monte Carlo was developed with a

sampler based on the Metropolis-Hastings test. An introduction to fractal objects

was carried out in the first part of this chapter, and in particular space filling

curves, and the fractal dimension. The rest of the chapter was devoted to re-

viewing Bayesian statistics concepts, with particular reference to, Monte Carlo

methods, Markov Chains and the Metropolis-Hastings algorithm, which is used to

explore the solution space and find an appropriate solution.

Monte Carlo methods are often used to simulate physical and mathematical sys-

tems. Based on repeated computation and random or pseudo-random numbers,

Monte Carlo methods are suited to calculation by computers. Such methods tend

to be used when it is impossible to compute an exact result with a deterministic

algorithm. The implemented algorithm was explained in detail, and results were

presented on simple contours (animal silhouettes) and space-filling brain contours.

The chapter concluded by discussing an application of the algorithm, and its use

for building local statistical shape models.

Chapter 4 reviewed the Curvature Scale Space technique as a powerful and general

shape analysis descriptor that has been developed comprehensively during the last

20 years. The method consists of describing curves at various levels of detail using

features that are invariant with respect to transformations that do not change the

shape of the curves. The first part of this chapter stated the principles of the
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method, where the main idea is to find a representation by convolving curves with

a Gaussian function to extract the curvature zero-crossing points of the resulting

curves. Devised as a useful and natural way to set partitions on a contour, the rest

of the chapter explained how the Curvature Scale Space Representation is used in

this research. A tool built using CSS was presented and is explained in Appendix

B.

Due to the complexity of a high dimensional data set, it is often desirable to rep-

resent this data using as few parameters as possible, whilst preserving the relevant

information. It is assumed that the original data exists on a lower dimensional

manifold, that is embedded in a high dimensional feature space. Under this as-

sumption, it may be possible to learn the underlying manifold that generates the

data by using approaches based on graph-theory and differential geometry. It has

been shown that the eigenfunctions of Markov matrices can be used to construct

coordinates called Diffusion Maps that generate efficient representations of com-

plex structures, by embedding the data points into a lower dimensional space,

giving an insight into the geometry of the dataset. In Chapter 5 all these concepts

were explored to achieve dimensionality reduction, and also improve the clustering

of data sets for use in shape analysis. The first part of this chapter introduced

Fourier descriptors as a method of representing a given shape contour. Then we

continued with the definition of manifolds, manifold learning, spectral clustering,

an explanation of diffusion maps and finally, how a model can be built using the

curvature zero-crossing points from CSS. Results on different data sets were given,

with particular attention paid to the leaf and brain data sets. Next, a discussion

of the results is given along with a demonstration of the compactness of the pro-

posed LSM by building a set of local (linear) shape models and then comparing

each model against a single global one. Finally, possible ways to improve the

obtained results have been given.

Finally, Chapter 6 introduced a new SSM that is based on an image encoding

technique that uses Laplacian operators, more specifically Gaussian and Lapla-

cian pyramids. Since the method extracts and quantifies correlated behaviour

between the different levels of the Laplacian pyramid created for each contour of
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the set, we regard this as Hierarchical Contour Shape Analysis. In this chapter

an introduction to hierarchical shape analysis was given, including a review of

relevant work in the field. Similarly, details about the construction of the Lapla-

cian pyramids and the way to derive the shape information encoded on them were

explained. From the experiments it is possible to conclude that this method is

consistent, since the size of the data sets does not affect its compactness. This

technique was used to perform a comparative assessment between this model and

the LSM. Results of this comparison indicate that, in most cases, the HSM appears

not to be more compact that the LSM by looking at the eigenmode plots. Hence,

such shape models are worthy for performing shape analysis but in a different way.

7.1.1 Original Contributions

The main contributions of this work have been:

• The creation of a method cast in the Bayesian framework combined with

fractal analysis to estimate a set of contour partitions. A Markov Chain

Monte Carlo method was used along with the box counting dimension to

characterise fractal dimension.

• The utilisation of the Curvature Scale Space descriptor to obtain a set of

zero-crossing points that was used to create consistent partitions in contours.

• A method for shape clustering useful in shape analysis was presented. Such

a model combines the CSS representation and Spectral clustering to create

clusters of closed and non-closed contours in an unsupervised way.

• A novel Hierarchical Shape Analysis method based on the concept of the

Gaussian and Laplacian pyramids was proposed. The method is able to

extract in a hierarchical fashion, the relevant shape variation and is used to

compare the performance of the LSM.
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7.2 Discussion

This thesis provides a contribution to the problem of modelling local versus global

variation of shape. Local SSM approaches like in [16] have been demonstrated to

be effective in the characterisation and analysis of the variability of shape, based on

pose-alignment and an SSM. The novel contribution of this work is the creation of

a local statistical shape model that provides a way to cut-up a self similar contour,

obtain a set of meaningful shapes, obtain the shape variation and reconstruct the

contours. The presented method is based on the use of a SSM, specifically a PDM,

and the Curvature Scale Space representation of shapes.

Initially, one of the pursued aims of the LSM was to follow a semi-automatic

methodology through partial automation of different tasks of the model. The

author considers the model general enough to be able to represent a broad range of

shapes so it is useful in a wide range of medical or biological applications. To some

extent the proposed model has some robustness because it adopts a scale space

representation that is invariant to noise. All these are desirable characteristics for

the construction of effective models for medical image analysis [105].

7.2.1 Contour Localisation

This work introduces two different approaches to answer what should be a good

partition of any given contour into local parts and how this may be determined

in a simple and efficient way. The first approach is based on fractal dimension

and the Metropolis-Hastings algorithm to determine how to break up a contour

in partitions. Fractals and in particular space filling curves defy shape analysis

because of the relative complexity of the shapes. Therefore it is hard to establish

meaningful correspondences between shapes and require a much larger training

size. Despite this, the proposed solution is not stable enough to produce a best

set of partitions with fixed number of points but it is, to the knowledge of the

author, the first attempt to solve the problem by exploiting the fractal nature of

the brain. The second approach presented looked for a solution that overcomes
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the issues of the MCMC approach. In this case the CSS representation was used

to find a natural way to create partitions of a contour by local variation given by

the zero-crossings of the CSS algorithm. Although other approaches have used

Scale Space representations for such purposes, the proposed method is a simple,

yet effective, way to localise the contour. Moreover, since brain contours and

other natural structures like leaves exhibit self-similarity, using the CSS method

its possible to establish (at certain scales) possible partitions derived from the

extrema points that present local correspondences. This provides a natural way

to identify consistent parts in the contour by their local variation.

7.2.2 Shape Clustering

Once a robust enough technique for contour localisation was defined, the next

question to address was how could the partitions be grouped in an effective way

to create suitable sets for shape analysis. Here again we explored two different

solutions. The first one involved a supervised clustering performed with the help

of a tool with a graphical interface to facilitate the work flow and visualise results

directly. Although it is useful to select any partition from the generated data set

of shapes and obtain a set of similar figures that keeps the shape space relatively

compact, the need for interaction is a major drawback of any shape model. Hence,

another approach was investigated, based on spectral clustering techniques. In

this case Diffusion Maps were used to create corresponding clusters of shapes.

The method used Fourier transforms of the centroidal distance function (shape

signature), and therefore only half of the Fourier coefficients were needed. This

results in loss of fine detail when analysing the shape, but as the shapes in question

were obtained through the CSS technique they were already smoothed versions of

the original partitions. This implied that no meaningful local details were lost.

Similarly, another concern of the method arose in relation to the use of non-closed

contours. In the reported experiments of the spectral clustering literature only

closed contours are used, but this work presents fairly successful results using

non-closed contours derived form the contour localisation. Therefore the proposed
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method based on Fourier analysis and Diffusion maps was found to be adequate

to find clusters of shapes useful for the local shape analysis in an unsupervised

manner.

7.3 Limitations and Further Research

A limitation of the presented method is the need to re-sample the partitions to

have the same length in order to align and perform PCA. Unless the original

contour has many points, any small local part may not have enough to do simple

piece-wise-linear re-sampling. Here, a basis representation would help. In [16],

Legendre functions to both represent and align parts have been used. Similarly,

in [115] a strongly related work was presented. There, the CSS technique was used

in conjunction with Hermite curves for automatic fitting of digitised contours at

multiple scales. Additionally, in [168], a B-Spline curve representation is used to

model the shapes, and then smooth them by increasing the degree of the curve.

This is used to construct the CSS image with an explicit representation. More

recently Manousopoulos et al. [101] presented a method for fractal interpolation

that provides a way to describe data that have an irregular or self-similar structure.

Other curve representations might be useful as well, but the mentioned approaches

seem to be the most promising alternatives to extend the work developed in this

research.

7.3.1 From 2D to 3D

For quantitative morphologic assessment in medicine, volume is the most common

choice. Volume is a coarse measure that strives to capture shape differences that

can improve the diagnostic accuracy. Assessment of individual brain structures

is often based on volumetric measurements. Volume changes can be regarded as

intuitive features as they might explain atrophy or dilation due to illness. On the

other hand, structural changes at specific locations are not sufficiently reflected
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in volume measurements [153]. Because most existing methods use complex and

difficult to reproduce shape descriptors, the experts prefer more easily and ro-

bustly extractable area and volume measures in their diagnosis [167]. Even though

quantitative shape features such as volumetric measurements present problems in

modelling changes at specific locations, they have been widely used in statistical

shape analysis of diverse anatomical structures in previous years. In the particular

case of the training data for SSMs in the medical field, the most common choice

are segmented volumetric images. Then, depending on the chosen segmentation

method, the initial representation might be binary or fuzzy voxel data; or surface

meshes [68].

Hence, it might be natural to extend the proposed method to 3D in order to assess

structural changes at specific locations of volume measurements. Therefore, a

proposal for further research is to extend the method to surfaces to be properly

validated with clinical data. However, it is not clear at this time how the local

partitioning could be easily extended to surface patches. Presumably, the simplest

and most generic method used to represent shapes is a set of points distributed

across the surface, the aforementioned landmarks, but there are other possibilities

to represents shapes. A typical one is the use of medial models or skeletons

introduced by Blum [18] and used to represent objects by their centre lines an

the corresponding radii. Pizer et al. presented a medial model representation for

two dimensions in [125], and later extended to 3D in an approach termed M-rep

[124]. Another popular representation is the one proposed by [21] namely spherical

harmonics (SPHARMs) where a set of basis functions can be used to describe

closed surfaces of spherical topology. Alternatively, Davatzikos et al. presented a

shape description using wavelets [38]. In this approach, the statistical properties of

the wavelet transform of a deformable contour are analysed via PCA and used as

priors for contour deformation. Only some of the most popular 3D representations

have been introduced here, but for details on these and other proposed ones refer

to [68] and [184].

A possible solution can be envisaged using the CSS technique extended to surfaces.

In [113] a multi-scale smoothing of 3D surfaces is presented. Complete triangulated
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models of 3D objects are constructed and then described at multiple scales. This

is achieved by convolving local parameterisations of the surface with 2D Gaussian

filters iteratively. The smoothing gradually eliminates surface noise and small

details [114]. Based on the 2D idea, similarly here, something could be done to

find partitions on surfaces, that is to use extrema curvature points to obtain regions

of interest. Moreover, the latter can be combined with other approaches, such as

Fractal Dimension. In [79] an analysis of the cortex geometry is given, where the

fractal dimension is calculated in 3D maps of the cortical gray matter. Hence,

it seems possible to combine both approaches to produce a patch partitioning

method.

It is important to mention that even though methods can be generalised or ex-

tended to the 3D case, many methods have only been applied to 2D so far. This

is because even though such methods are very successful in 2D, they are not tech-

nically feasible in 3D [68].

Clearly, our approach has a number of applications in shape modelling of natural

shapes, such as in biology and medical imaging. Particularly, the development

of this model could provide a way to analyse brain images and perform brain

morphometrics. Moreover, it might contribute also as a useful method in the

construction of population-based brain atlases. These atlases have different ap-

plications such as image labelling or pathology detection either in individuals or

groups. Research might lean to recognition of specific patterns of anatomic alter-

ations due to diseases (Alzheimer’s) or dementias (schizophrenia, epilepsy, ADHD,

or autism). So the provided method could be adapted for clinical diagnosis soft-

ware for assessing changes in local shape variation of anatomical structures, such

as, white/gray matter. Similarly, the model might be adapted for the problem

of image database retrieval where the objective can be to discover images which

contain objects similar to query objects, in this case brain sections.
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CSS Interface

The following describes the usage of the graphical interfaces created to facilitate

obtaining results from the methodology described in Chapter 4. Different windows

were created corresponding to the three main steps of our methodology (Figure

4.5).

The first window (Figure B.1) is where the new contour to be analysed is displayed

smoothed, and a slider is provided to establish the smoothness coefficient. Six

action buttons are included in this window. The Smooth Contour button performs

the smoothness over the input contour once a coefficient is provided. Then the

smoothness is performed and the contour is adjusted to its new shape, so the zero-

crossing points are displayed in red over it. The second button, Select Points, is

used to select the points from which a section of the contour is going to be analysed,

called here the reference partition. It is only possible to use the red points on the

contour since those represent meaningful information about the geometry of the

smoothed contour. The Search button performs a search of the partition with less

MSE in each contour of the input set. The next two options are similar in the

way they perform the analysis, but they differ in the size of the shape set they

work on. The option of Slice Analysis opens a new window that displays all the

available shapes of the set, the user selects one, a ranking of partitions is created

for it and then one or more partitions can be selected to be analysed. The option

of All Slice Analysis uses all the shapes on the set to create a rank and then select

165
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Figure B.1: Initial window where the user can smooth the contour and choose
other analysis options using the interface buttons

only a partition to be analysed. Both will be explained later on the section with

more detail. Finally, the Exit button closes the application.

The Slice Analysis (Figure B.2) window where the available slices are displayed

to be selected, a slider is provided to navigate the set. Once a shape is selected,

in this case a brain slice, the ranking plot is created and presented, and on the

left hand of this plot there is a slider provided to set an error threshold, useful

to select a number of partitions that are shown in the adjacent plot window.

Here the reference partition is shown in gray, and the rest of the partitions are

drawn in multiple colours. Two smaller plot boxes are given, where the selected

partitions displayed on the second plot window are shown in its original position

over the original contour and on the smoothed version for a better visual control.

In addition, we provide the user with the option to select a specific partition from

the ranked set, and if selected, it will be displayed in red only with the reference
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one. As before, such a partition will be plotted in its original contour position and

in the smoothed version.

Figure B.2: Slice analysis window

The option of All Slice Analysis (Figure B.3) displays a window where the main

feature is that of the ranking plot is created by using all the partitions of all

the available contours. Here the objective is select one of the partitions to be

analysed, so this is displayed on the adjacent plot window in red and as well the

reference partition is plotted in gray. Likewise the current partition is displayed in

its original context, first in the original contour and then in the smoothed version

in the smaller boxes provided. Once a partition is select the statistical analysis

can be carried out.

The third part of the system is the Statistical Analysis windows. When the user has

selected to use only a slice (Figure B.4) or a all of them (Figure B.5), depending on

the selection of the second step, then is possible to perform the statistical analysis.

The purpose here is to display an interactive reconstruction of the shapes after a

PCA. A slider is provided to select the number of modes for the reconstruction or as

well, a single mode can be selected to analyse its contribution to the reconstruction.
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Figure B.3: All slice analysis window

A couple of plot windows are provided to give a graphical representation of the

eigenvalues derived from the covariance matrix.

Figure B.4: PCA window for the case when only one slice is selected.
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An important feature of this analysis and of this work is the way the reconstruc-

tions are presented. Here the idea is to produce a new way of visualise results by

presenting the reconstructed partitions blended back into the smoothed version

of the contour they belong to. The blending is achieved by using squared cosine

window functions as detailed in section 2.7.

Figure B.5: PCA window for the case when only one slice is selected.



Bibliography

[1] S. Abbasi, F. Mokhtarian, and J. V. Kittler. Enhancing CSS-based shape

retrieval for objects with shallow concavities. Image and Vision Computing,

18(3):199–211, Feb 2000.

[2] D. C. Adams, F. J. Rohlf, and D. E. Slice. Geometric morphometrics:

Ten years of progress following the ‘revolution’. Italian Journal of Zool-

ogy, 71(1):5–16, 2004.

[3] A. A. Afifi. Computer-aided multivariate analysis. Chapman and Hall, Lon-

don, 2004.

[4] Mark S. Aldenderfer and Roger K. Blashfield. Cluster Analysis. Sage Pub-

licatons, 1984.

[5] S. G. Alves, M. L. Martins, P. A. Fernandes, and J. E. H. Pittella. Fractal

patterns for dendrites and axon terminals. Physica A: Statistical Mechanics

and its Applications, 232(1-2):51–60, 1996.

[6] T. W. Anderson. Harold Hotelling’s Research in Statistics. The American

Statistician, 14(3):17–21, 1960.

[7] Haruo Asada and Michael Brady. Curvature Primal Sketch. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 8(1):2–14, 1986.

[8] J. Ashburner, J. G. Csernansky, C. Davatzikos, N. C. Fox, G. B. Frisoni,

and P. M. Thompson. Computer-assisted imaging to assess brain structure

in healthy and diseased brains. Lancet Neurology, 2:79–88, 2003.

170



Bibliography 171

[9] J. Ashburner, C. Hutton, R. Frackowiak, I. Johnsrude, C. Price, and K. Fris-

ton. Identifying global anatomical differences: Deformation-based morphom-

etry. Human Brain Mapping, 6:348–357, 1998.

[10] B. Aubert-Broche, M. Griffin, G. B. Pike, A. C. Evans, and D. L. Collins.

Twenty new digital brain phantoms for creation of validation image data

bases. IEEE Transactions on Medical Imaging, 25:1410–14163, 2006.

[11] D. Avnir, O. Biham, D. Lidar, and O. Malcai. Is the geometry of nature

fractal? Science, 279(5347):39–40, 1998.

[12] Orit Baruch and Murray H. Loew. Segmentation of two-dimensional bound-

aries using the chain code. Pattern Recognition, 21(6):581–589, 1988.

[13] Mikhail Belkin and Partha Niyogi. Laplacian Eigenmaps for Dimensionality

Reduction and Data Representation. Neural Computation, 15(6):1373–1396,

2003.

[14] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape Matching and

Object Recognition Using Shape Contexts. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 24(4):509–522, 2002.

[15] Abhir Bhalerao and Roland Wilson. Local Shape Modelling Using Warplets.
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