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Abstract 
The consequence of the 5D projection theory [1] is extended beyond the Gell-Mann Standard Mod-
el for hadrons to cover astronomical objects and galaxies. The proof of Poincare conjecture by Pe-
relman’s differential geometrical techniques led us to the consequence that charged massless 
spinors reside in a 5D void of a galactic core, represented by either an open 5D core or a closed, 
time frozen, 3D × 1D space structure, embedded in massive structural stellar objects such as stars 
and planets. The open galactic core is obtained from Ricci Flow mapping. There exist in phase, in 
plane rotating massless spinors within these void cores, and are responsible for 1) the outward 
spiral motion of stars in the galaxy in the open core, and 2) self rotations of the massive stellar 
objects. It is noted that another set of eigen states pertaining to the massless charged spinor pairs 
rotating out of phase in 1D (out of the 5D manifold) also exist and will generate a relatively weak 
magnetic field out of the void core. For stars and planets, it forms the intrinsic dipole field. Due to 
the existence of a homogeneous 5D manifold from which we believe the universe evolves, the an-
gular momentum arising from the rotation of the in-phase spinor pairs is proposed to be coun-
ter-balanced by the rotation of the matter in the surrounding Lorentz domain, so as to conserve 
net zero angular momentum. Explicit expression for this total angular momentum in terms of a 
number of convergent series is derived for the totally enclosed void case/core, forming in general 
the structure of a star or a planet. It is shown that the variables/parameters in the Lorentz space- 
time domain for these stellar objects involve the object’s mass M, the object’s Radius R, period of 
rotation P, and the 5D void radius Ro, together with the Fermi energy Ef and temperature T of the 
massless charged spinors residing in the void. We discovered three laws governing the relation-
ships between Ro/R, T, Ef and the angular momentum Iω of such astronomical object of interest, 
from which we established two distinct regions, which we define as the First and Second Laws for 
the evolution of the stellar object. The Fermi energy Ef was found to be that of the electron mass, as 
it is the lightest massive elementary particle that could be created from pure energy in the core. In 
fact the mid-temperature of the transition region between the First and Second Law regions for 
this Ef value is 5.3 × 109 K, just about that of the Bethe fusion temperature. We then apply our 
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theory to analyse observed data of magnetars, pulsars, pre-main-sequence stars, the NGC 6819 
group, a number of low-to-mid mass main sequence stars, the M35 members, the NGC 2516 group, 
brown dwarfs, white dwarfs, magnetic white dwarfs, and members of the solar system. The ρ = 
(Ro/R) versus T, and ρ versus P relations for each representative object are analysed, with refer-
ence to the general process of stellar evolution. Our analysis leads us to the following age se-
quence of stellar evolution: pulsars, pre-main-sequence stars, matured stars, brown dwarfs, white 
dwarfs/magnetic white dwarfs, and finally neutron stars. For every group, we found that there is 
an increasing average mass density during their evolution. 

 
Keywords 
Origin of Mass and Self Rotation of Stellar Objects, Angular Momentum, Fermi-Dirac Distribution 

 
 

1. Introduction 
Two years ago, a 125 GeV p-p resonance was forwarded as the probable proof of the existence of the Higgs bo-
son condensed vacuum [2]. About that same time, in view of the proven Poincare Conjecture [3] [4] using dif-
ferential geometrical techniques (particularly the Ricci flow theorem) developed over the past decade [5]-[8], we 
proposed a grand unified field theory. From such research, it was found that the p-p 125 GeV state is directly 
deducible from that theory without requiring the existence of a condensed Higgs Boson vacuum. This grand uni-
fied theory is based on the dimensional projection actions of the 5D homogeneous space-time onto the 4D Lo-
rentz space-time [1] [9]. Before we apply the 5D projection theory, we first briefly review the essence of the 
theory below. The Poincare conjecture states that all 3D manifolds can be projected into a sphere. Starting from 
a 5D homogeneous space-time, Perelman showed that through Ricci Flow mapping (in differential geometry), 
one obtains a 4D Lorentz manifold. This Lorentz 4D covariant space-time is not 3D coordinate homogene-
ous—rather it has the geometric shape of a doughnut. It is noted that the center of the doughnut shaped Lorentz 
manifold is in 5D, and the top and bottom of this doughnut center can be closed into a line passing through the 
Lorentz domain. The projection process is then followed by a translation displacement of the lines to the inner 
surface of the 5D core domain, making it into a closed loop, and thus fixing the time to a fixed value, giving the 
core as a 3D × 1D time fixed manifold. The 3 coordinates in Lorentz space become homogeneous. Thus any 
matter within this representation is spherical in shape, satisfying the Poincare Conjecture. In the quantum pro-
jection theory [1] the Lorentz manifold can be obtained from two orthogonal projections. One is a space to time 
projection Po, which gives rise to the result of SU(2) × L manifold, and the other is a space to space conformal 
projection P1, which gives rise to the result of SU(3) × L manifold, via 5D to 4D mapping; L is the Lorentz 
space-time. Here × represents a direct product of the two groups. It is these 2 orthogonal manifolds that allow 
for the realization of massive leptons, and quarks. However, the formation of hadrons from gauge confinement 
of quarks requires the Gell-Mann quark standard model [10], which consists of 3 pairs of (−1/3)e, (2/3)e quarks, 
not just the SU(3) generators (i.e. (2/3)e, (2/3)e and (−1/3)e). The two (2/3)e charges belong to two different 
quarks that form part of the SU(3) generators. Such a difference implies that the symmetry of SU(3) is broken, 
hence allowing for the superposition of Po and P1. It is this realization that allows for the quantization represen-
tation of the Perelman-Poincare projection, which is employed in our stellar rotation model in this paper. 

Through several follow-up articles [11]-[13] it was further shown that hadron masses can be calculated accu-
rately based on the requirement of gauge invariance, of which the 125 GeV p-p state is realized. Analyzing the 
possible type of field solutions to the quantized homogeneous 5D metric equation that must exist in the homo-
geneous 5D domain, we found solutions representing (a) massless spinors with opposite charges, and (b) elec-
tromagnetic fields represented by Maxwell vector potentials. Since the product of (a) and (b) is also a (field) so-
lution of the metric operator, and following gauge transformation, the coupling constant is then designated as the 
electronic charge e which can take on positive and negative sign; such a coupling constant is then considered to 
be the origin of the unit charge e in the universe (see Chapter 4, and Chapter 7 of [1]). Furthermore, this coupl-
ing between the two field solutions is decoupled by a gauge transformation, through the establishment of the 
unit flux quantum (h/e). It was then shown mathematically that through dimensional projection, massive fields 
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will be created into the Lorentz manifold, leading to the emergence of the Lorentz Riemannian geometry. 
Therefore, the superposition of Po and P1, is required also for establishing the Riemannian 4D space-time 
needed for Einstein’s gravity equation. Through the derivation of the resultant SU(3) × L, the Gell-Mann stan-
dard model [10] of quarks was retrieved, leading also for the first time, to our ability to formulate the gluon po-
tentials generated by quark currents in the structures for mesons and for baryons [11] [12]. The success of the 
above for understanding the Standard Model, provides us some concrete support to the projection theory of 5D 
space-time. With the above brief background, the following statement can be considered as the basis of our 
model for analyzing the origin of mass and angular momentum of stellar objects in this paper. Taking P as the 
equivalence to Perelman’s mapping, it was then found that the Poincare conjecture of mapping the 4D 
Lorentz space-time can be transformed into a spherical 3D structure, except that there will exist a fully 
enclosed time frozen, 4D space void, represented by 3D × 1D, where the 3D is a spherical volume, with 
radius Ro. Hence we shall refer Ro as the radius of the 4D space void, with time fixed, such that massless spinor 
states are perpetual, unless thermal energy exchanges between the Lorentz boundary and the void core, inside 
the Lorentz space-time shell, is implemented.  

As we have a spherically shaped mass stellar object model enclosing a 3D × 1D void filled with charged 
massless spinors satisfying the Fermi distribution, we can connect the physical quantities of the thermal bath of 
the Fermions in the void and the physical quantities of the matter shell, leading to the discovery of the 1st and 
2nd Laws regions for these spinors states. This 4D Riemannian space-time obtained from the superposition of 
both SU(2) and SU(3), is hence given by [SU(2) + SU(3)] × L, as shown in [1]. 

Note that the projection from the 5D space-time onto a 4D Lorentz space-time using the Ricci Flow Theorem, 
produces a Lorentz 4D, without further mapping the 3D space volume in a doughnut shape, while the doughnut 
center void remains in the 5D manifold. However when the doughnut 3D volume is transformed by further 
mapping into a spherical shape, the original 5D void at the center is enclosed into a 4D space void, with time 
frozen, such that any massless charged spinor states within it must be perpetual. However the Maxwell vector 
potentials can exist in both 5 and 4 dimensions [1]. Thus there exists a mechanism through the diffusion of pho-
tons that the massless charged spinors within the 3D × 1D void can in fact exchange energy with its enclosing 
Lorentz space-time domain. Due to the homogeneity of the 5D space-time, each of the net charge and angular 
momentum must always be zero. Hence, within the 3D × 1D void, equal amount of + and –e massless spinors 
must exist. Therefore if through Po projection, some –e massive charges are created in L, then a net equal 
amount of + e charges must be also created simultaneously by P1. If the combined projection P gives rise to a 
spherical space volume shell (in Lorentz manifold), then it must contain mass. Since a time independent 4D 
center void (in 5D manifold) exists, the emergence of any angular momentum Lz in the void by in phase circula-
tion of the oppositely charged massless spinors, an opposite angular momentum—Lz must be generated in the 
Lorentz spherical mass shell, in order to preserve total zero angular momentum value. In the astronomical scale 
for stars, this Lz leads to a repulsive potential within such a void, leading to the elimination of the gravitational 
singularity, similar to the action of the gluon repulsive potential within hadrons [1]. Solutions to a differential 
equation are defined by the boundary conditions imposed on them. Thus the massless spinors and vector solu-
tions within the void are completely determined by the Lorentz boundary that encloses them. Therefore from the 
void spherical geometry, the massless charged spinors eigen states, the e-trino and anti-e-trino pairs are rotating 
along the latitudes and longitudes of the void, occupying a 4D dimension space (out of the 5D manifold, with 
time frozen) represented by 3D × 1D manifold. This structure gives us a model of the origin of angular momen-
tum, dipolar magnetic field and masses of the stellar objects observed in the Lorentz manifold. In this paper, we 
aim at obtaining information about the temperature and angular momentum of such spinor pairs by analyzing the 
observed /deduced angular momentum and other physical parameters of the massive shells of stellar objects, in-
cluding different types of stars and planets.  

After an introduction of the basic concept 5D to 4D projection above, we follow in Section 2 to present a de-
scription of the boundary condition at the 5D - 4D “inter-phase”, leading to a brief sketch of the creation of the 
universe in view of SU(2), SU(3), and 4D Lorentz group representation. Section 3 is devoted to the derivation of 
explicit formula (expressed as a number of convergent series of Ef/kT) for the angular momentum generated by 
the spinor pairs rotating in phase. As each type of the spinors is a Fermion system, and the lightest lepton mass 
energy created by the Po projection is electron, we take the Fermi energy of the spinor to be Ef = 0.5 MeV. The 
radius of the void Ro is expressed as an explicit function of the shell mass M, with period of rotation P, and ob-
served radius R together with the Fermi energy Ef and temperature T of the massless spinors inside the void core. 
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From this mathematical result, we discovered three laws consequential to the projection theory: 1) At very high 
temperature such that the angular momentum Lz of the object is mainly contributed by the massless spinors with 
energies much greater than Ef, the normalized void radius Ro/R is a linear function of 1/T, with a negative slope, 
which must represent the early stage of the stellar objects. We call this region the First Law region of angular 
momentum. 2) At relative low temperature kT  Ef, the ratio ρ = (Ro/R) of the object is a linear function of 1/Ef, 
and not a function T; thus the ρ versus T relation is a horizontal line. We refer this region as that of the Second Law. 
Hence, this region must describe the last stages of the stellar object. 3) The “mid-temperature” Tc in the transition 
region between the two laws is a universal constant, dependent only on Ef = 0.5 MeV (which is a universal con-
stant in our theory). We name this as the Third Law. These three stages represented by the three Laws are ac-
tually shown in this paper to be satisfied by many known stars classifications. Following, in Section 4, we ex-
plain why magnetars/pulsars are new-born stars with detailed numerical illustration of some pulsars examples. 
Combining with the stellar object’s mass density, we open up an analysis of the angular momentum of star 
groups according to different ranges of mass density of these stellar objects in Sections 5 and 6, and compare the 
calculated results with many numerical data examples to support the theory. In particular, we analyze numeri-
cally the Ro-T, and Ro-P relations with reference to the general different stages of evolution of these objects. 
Neutron stars are proposed to be the very oldest stars in Section 7, accompanied with detailed model numerical 
examples. From purely the view point of angular momentum, planets are similar to stars (see Section 8), but on-
ly with smaller values of ρ = Ro/R. A general discussion is presented in Section 9, including a summary of the 
theory presented focusing on some relevant physics concepts involved, giving a sketch of stellar evolution—from 
pulsars to neutron stars, and providing simple discussions on the Fermi energy, heat bath, degeneracy of an electron 
gas, as well as possible Bose-Einstein condensation involved in the final stage of stellar objects. The origin of the 
stellar magnetic field is only very briefly introduced, as we left that discussion to another paper. 

2. A Brief Sketch of Creation of the Galaxies According to the 5D Model—With  
Photons as the Medium of Energy Transport 

Based on the 5D projection theory and Gell-Mann standard model, we put forth the notion that the final major 
amount of hadron mass comes from Gluon, not from the quark bare masses. The hadrons can only form after 
grouping through quantum gauge confinement, which must happen sequentially after the existence of quarks on 
the boundary of the 5D manifold [14]. While hadrons form on the Lorentz 4D boundary, the energy within the 
5D domain is carried by the charged massless spinors (fermions) and the vector potentials, which are represented 
by the photons (bosons). The relation between this energy and temperature, according to quantum statistics, is 
described individually by the Fermi-Dirac (for the spinors) and Bose (for the photons) distributions respectively. 
Since the temperature in the void is normally much higher than that of 5D-4D boundary, thermal cooling in-
evitably takes place via heat diffusion; this rate of cooling progress follows the Navier-Stokes diffusion equation 
as well as known nuclear, atomic and chemical reactions in sequence: First by Bethe fusion—heavier and heavi-
er nucleons are formed, starting with protons and neutrons, then followed by alpha particles, etc. Second, further 
energy cooling occurs when the nuclei combine with leptons, mainly electrons, to form atoms. Lastly, as these 
new and heavier atoms on the boundary within the expanding Lorentz space-time boundary layer forms mole-
cules and then crystal compounds through chemical binding, the boundary surface builds up mass, while thick-
ening.  

From the view point of group symmetry, we would like to point out that the boundary of the finite 5D homo-
geneous manifold must be obtained from a dimension projection, just like the boundary of a 3D space volume is 
obtained from a 2D projected surface. Hence this 5D boundary is represented by [SU(3) + SU(2)] × L; here L is 
the 4D Lorentz space-time. It is this topological realization that dictates the special property that the boundary is 
being composed of net charge neutral masses, starting with quarks and leptons right at time 0, way before for-
mation of hadrons, etc. Such a property must be maintained as the Lorentz 4D domain and 5D both expand 
through the continuous rebalancing of energy between them. 

In field theory, energy can only be carried by quantum fields irrespective of the domains they belong. How-
ever, only photons, meaning vector potential fields can exist in both 5D and 4D manifolds. Thus it must be the 
photons that act as the medium of energy transport between matter fields in L, and charged massless spinors in 
5D. Such a diffusion process between energy exchange of 5D to L and vice-versa obeys entropy theorem and 
violates time reversal symmetry. However, as the unidirectional time and space expansion is built-in from the 
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homogeneous 5D metric, entropy would naturally be obeyed, leading therefore to the statistical thermodynamic 
theory of nature. In fact it is the application of this entropy law that provides ground of validity for the second 
step of the Perelman mapping in his proof of the Poincare Conjecture. 

For a stellar mass object, the 5D domain within the Perelman-Poincare void core is frozen in time at t = τ0, 
thus with or without energy transfer, the expansion in space-time domain occurs only in the L domain surround-
ing the void core. The opening of the L domain provides a model for the formation of a galaxy, that contains 
many masses (which we call stars and planets), created by the Ricci Flow of Perelman’s mapping. The galaxy 
expands in the form of a doughnut 3D space manifold. As the galactic center is in 5D, the galaxy is imbedded in 
the homogeneous 5D universe. Many galaxies can be created at the same time, on the finite surface area of the 
so called Creation instant of the 5D manifold. For an averaged galactic core dimension of 100 light years across, 
it is easy to estimate, based on the domain represented by the Lorentz 4D boundary to the 5D finite domain, that 
a million galaxies can be simultaneously created by packing the 5D galactic cores together as the entire 5D un-
iverse expanded according to the 5D metric from 0 to 1000 light years. Since the centers of the galaxies are 
connected in the 5D enclosing domain, light can be transmitted between these doughnut galaxies; hence an event 
at any one point in one Galaxy can be observed by observers in its own, as well as those in other galaxies. A 
1000 years is very short as compared to the estimated age of the Milky Way galaxy. Thus if all galaxies were 
created simultaneously by the Big Bang, then the universe’s age is close to the galaxies age as conjectured by 
some scientists. 

Note that the boundary of the entire 5D universe is represented in terms of the product of three groups: SU(2), 
SU(3), L, and thus must contain quarks and leptons, plus the 5D voids. Hence, as the universe expands, the den-
sity of these massive charges on the boundary of the universe must continue to reduce as the 5D expands, lead-
ing to a condition that allows us to treat the entire 5D universe encompassing interior fields of both massive ob-
jects and massless vector and spinors to be solutions of the 5D and Lorentz’s metrics operators with open boun-
dary condition. As the 5D space and time dimensions increases, due to the uncertainty principle, with the key 
parameter specified by the Planck’s constant h, the 5D domain becomes very large, and the fields in the 5D do-
main will become classical with continuous eigen spectrum energies. Hence astronomical objects obey classical 
laws, except for neutrinos. The observation of neutrino oscillations and its theoretical explanation is a clear illu-
stration of this boundary effect [9] [15]. 

Because of the increase in mass distribution throughout the Lorentz space-time of all created matters, the 
Riemannian curvature also continuously changes, leading to the increase in the gravitational contracting force 
acting on the massive shells of stars. Whereas stars with masses smaller than the Chandrasekhar limit will shrink 
to dwarfs of various colors, those with mass > 1.4M☉ undergoes gravitational collapse eventually to form neu-
tron stars; more details will be followed up in later sections. The initial formation of a matter shell occurs at ex-
tremely high temperatures (see Section 4), and the heat loss to the L thermal bath from the spinor void via diffu-
sion takes a long time. At the very initial formation of 5D space-time, the amount of starting energy is almost 
infinite, while all the cooling processes take a very long time as the domain expands indefinitely according to 
the homogeneous 5D metric. In fact, it is this ever expansion of the universe according to the metric, that induc-
es the establishment of statistically generated ensemble theory from which thermal dynamics is realized, with 
the 5D-4D boundary acting like the wall of a heat bath container.  

We may also look at the creation process in terms of the space-time and parity nature of the 5D metric, as if 
each star starts from a completely new 5D. Such a picture is possible, as 5D is finite with no absolute center 
point, and can be created from absolute NOTHING. Hence multiple 5D can be created at the Big Bang instant, 
but these domains must be merged into one eventually. The interesting aspect lies in their boundaries that dis-
tinguish them! Each boundary is in a 4D Lorentz domain, characterized by their different quarks and leptons 
mass values! Hence from Perelman’s mapping, these different Lorentz 4D domains (or one unconnected form of 
4D Lorentz boundary) are represented by the different galaxies, within each, via Perelman’s mapping, is further 
separated into stars and planets, having individual 5D void cores. Depending on the core sizes, and in view of 
the uncertainty principle, different amounts of energy are created within individual 5D cores. Such amounts of 
energy are represented in terms of the energies of the massless fields, namely the vector potentials and e-trino, 
anti-e-trino spinors. Through these massless fields, the Lz of the quarks is generated in the Lorentz 4D domain(s). 
In this sense, we may view the above process as the Big Bang creation of the Universe. However, the mass thus 
generated was not the final amount of mass in the universe. The total mass is actually changing, as the Gauge 
Constraint converts multiple quarks into hadrons, then into nuclei via Bethe fusion, and to atoms via Coulomb 
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potential, (including 2D Chern-Simons hydrogens), then via Van der Waal potential to molecules, to gases, and 
crystals. The above-mentioned series of process of formation is a continuous thermodynamic process, via the 
continuous application of the Law of Entropy, which is built in by the “non-time reversal” nature form of the 5D 
metric itself. In another word, the act of projection was automatic due to the very nature of the finiteness of the 
5D metric, requiring no further action from the creation process. All the amazing complexities of the Universe 
hence evolve by itself from the beginning based on the homogeneity of the 5D manifold. Each state—change 
obeys causality, giving raise to even complex life forms, that would also self evolve—with determination to its 
own future. In another word, the continuous thermal evolution, when applied to life forms, i.e. Darwin evolution, 
can be viewed also as part of the evolution of creation of matter in the Lorentz space-time. 

We will proceed to derive explicit representations of the angular momentum of the 5D structure inside the 
void over a wide temperature range, and apply the consequence to analyze different types of stellar objects in 
later sections. 

3. The Three Laws of Angular Momentum Generated by in Phase Massless Charged  
Spinor Pairs Rotating along the Latitudes of the 5D Void of the Galactic Core,  
and 4D Space Void in Stellar Objects 

Consider a system of particles in thermal equilibrium in the void. The density of quantum states within elemen-
tary momentum dp and elementary real space dr in the 3D spherical void is gs·g(p)dr·dp, where gs measures the 
spin degeneracy and g(p) is the number of states per unit momentum range. As the quantum unit in phase space  
(r, p) is h3, the total number of quantum states within the volume of interest is ( ) 3D gs g p h= ⋅ ⋅∫ dr dp .  

Since the void is a sphere with radius Ro, 2 24 & 4r dr p drπ π= =dr dp . 

( ) ( )02 3 2 2
0 0

16
R

D h gs g p r p drdpπ
∞

= ⋅∫ ∫                          (3.1) 

As the 5D metric (represented by (ct)2 = x2, where x is a four-vector) is homogeneous, when the projection 
action is taken at t = τ0, the 4D space volume (out of the 5D manifold) as represented by x2 is fixed, though the 
shape may take any “close” form. As the 4D space void is enclosed by the Lorentz space-time, which has only 3 
space coordinates, the 4D space void must be expressible as 3D × 1D, and all components of x are equal, with 
the void radius Ro being fixed. Note that a similar statement cannot be applied to the energy-momentum metric 
E2 = (cp)2, because action of projection is not taken at fixed E value. We would also remark again that when 
mass is created due to projection action, a Lorentz boundary is formed, enclosing the 3D × 1D void. Due to 3D 
spherical symmetry, all eigenstates of spinors within the void must be represented by spherical symmetric func-
tions, namely L' (quantum states pertaining to spinors rotating along the longitudes, not relevant to nonzero an-
gular momentum generation here), and Lz (angular momentum due to spinors rotating along the latitudes). It is 
the net Lz that will lead to the mass shell rotation, such that the total angular momentum in the whole universe 
(including 4D and 5D) remains zero at all time, as explained in the Section 1. The spinors are Fermions, but of 
opposite charge, and are strictly speaking, of different kinds of Fermions, which follow the relevant statistical 
distribution(s). The Fermi-Dirac L distribution, which is expressed generally as 

( )
( )

1,
exp 1f

F L T
L L sT

=
 − + 

                          (3.2a) 

where s is the normalization factor, and Lf is the “Fermi angular momentum”, satisfying the property that the 
probability is unity for angular momentum smaller than Lf, but is zero for L > Lf at temperature T = 0 K. Since L 
= (2hν/c)Ro = 2Eτ0 at time τ0 (here ν is the frequency), we define the Fermi angular momentum to be Lf = 2Efτ0. 
The normalized factor s is simply kτ0 so that Equation (3.2a) becomes  

( )
( )

1,
exp 1f

F E T
E E kT

=
 − + 

                         (3.2b) 

where k is the Boltzmann constant. 
The Fermi distribution in (3.2b) now describes a pair of spinors. For pairs of such spinors in the void rotating 

in-phase so that each pair has zero charge, the angular momentum generated along the spin axis z by spinor pairs 
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rotating along the latitudes of the void, weighted over the Fermi distribution (pair), is  

zppLz   ),( sin16),(.16 . 3
3

2
22,

3

2
, ϕθθππ ddrdpdTpFp

h
drdpTpFprsx

h
xD ∫∫ === 3rg rr

    (3.3a) 

where r' = r∙sinθ, and θ is the polar angle and ψ is the azimuthal angle so that all spinor pairs generating Lz 
within the void are counted. θ is integrated from 0 to π, and ψ is integrated from 0 to 2π (to avoid over-counting 
because there are orbits along the longitudes). After integrating over r, θ and ψ,  

                         (3.3b) 

where z is the unit orientation vector for Lz. Noting that p stands for the momentum of a pair, giving 
2Ep
c

= , 

2dEdp
c

= , and we arrive at 

                      (3.3c) 

It is shown in Appendix A that the above integral can be expressed as a sum of a number of series, so that we 
have simply 

)}({)](.128[ *4
43

4
03

fEkT
ch

Rgs ILz π=                         (3.4) 

where *
fE = Ef/kT  

              (3.5) 
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For very small *
fE   1, it is shown in Appendix B that  

,                     (3.6a) 

where , with gs = 4, and Lz is independent of *
fE . On the other hand, for large *

fE   1, we 

simply have (Appendix B),  

, and hence Lz is independent of T                    (3.7a) 

For intermediate values of *
fE , we need to calculate 

 (3.8) 

zLz   ),(].8[ 3
3

3
4
0 dpTpFp
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We name Equation (3.6a) as the First Law, Equation (3.7a) as the Second Law of Angular Momentum, re-
sulting from the 5D projection theory quantum statistics. Lz is to be equated to the mass shell angular momen-
tum Iω of the matter object, where I is the shell’s moment of inertia, and ω is its rate of rotation about the unit 
vector z, as measured or deduced from astronomical studies. Thus the First Law can be expressed as, 

                            (3.6b) 

where A = D−0.25{7π4/1920}−0.25 = 4.52 × 10−18 S.I. units. While according to the 5D projection mapping, the 
void is fixed at t = τ0, thus the void has a radius Ro = cτ0. Hence, the Second Law can be expressed as 

( ) ( ) ( )0.25 0.250.25/ 1 / 4 /o fR R D I E Rρ ω−−= =                        (3.7b) 

Dividing Equation (3.6b) by Equation (3.7b), we arrive at    

                               (3.9) 

For fixed Ef, the “mid/critical temperature” Tc of the “transition region” (that between the First and Second 
Laws) can be found using (3.9). For example, if we take Ef = 0.5 Mev, Tc = 5.3 × 109 K. We may consider (3.9) 
as the Third Law, which is universal according to the 5D model. As the First and Second Laws have simple li-
near relationships, *

fcE  is just the intersection of two straight lines. In other words, this particular point shows 
the location where the two linear lines would have met if each law has its ultimate linear form. However, ρ is 
dependent on Ef in the Second Law region and *

fcE  gives us information (with reference to Ef, T) about the 
temperature of the transition region for each Ef value. 

Hence we must determine the Ef value for application. From the 5D E, p metric, with the projection into SU(2) 
× SU(3) × L, the lowest mass value is that of the electron’s rest mass me. Thus we have the condition E2 > 2

em . 
In view of this minimum energy principle, the value of Ef is chosen as 0.5 Mev, indicating that the lightest lep-
ton is generated (see Sections 1 and 4 for more details). 

4. Formation of New Born Stars—Pulsars According to the Projection Theory  
The mapping of the 5D space-time into a 4D Lorentz space-time (represented by general projection P) using the 
Ricci Flow Theorem, produces a 3D space of a doughnut structure containing matter, but enclosing a void core 
(in 5D space-time). It has been noted that P can be represented by a combination of the space to time projection 
operator Po (or time shift operator) and the space to space conformal projection operator P1. From these projec-
tions we obtain the “key stable elementary particles” which build up matter in the 4D Lorentz space-time. These 
particles are electrons, protons, and neutrons. Keeping in mind that the protons and neutrons are built by quarks, 
which are fractionally charged. Using a 2D circular coordinate transformation as a simplified example, it has 
been explained in [12] that Po would lead to creation of leptons which satisfy the SU(2) symmetry and P1 would 
give rise to the existence of the quarks that satisfy the SU(3) symmetry. It has been inferred that Perelmann’s 
projection theory based on Ricci flow concept in differential geometry would lead to the same conclusion [1]. 
Since the Lorentz boundary domain must be charge neutral if the 5D is homogeneous, thus the void, open or en-
closed must be charge neutral, and if charged massless spinors exist in 5D, due to charge conservation, equal 
number of massless spinors with opposite charges would exist in the 5D manifold [chapter 6 of 1]. When mass 
is created, a boundary exists between the void and mass structure outside. As explained in Section 1, the in 
phase circulating pair states of spinors will produce a net angular momentum Lz, with the spinning axis z per-
pendicular to the doughnut/sphere plane (of the galaxy). Hence to conserve angular momentum, the matter in the 
sphere must move in such a way as to generate the same amount of total angular momentum, but rotating in the 
opposite sense (i.e. –Lz). 

In view of SU(2) symmetry and energy consideration, for every lepton creation with a net charge e, a mass-
less and charge-neutral neutrino must also be created to conserve zero spin. It was argued in [1] that as an an-
ti-neutrino is chargeless, it cannot be coupled to the vector potential anywhere. A hypothetical anti-neutrino 
must obey the exact same boundary condition as the neutrino if a solution exists; however, such a solution is not 
different to that represented by the neutrino. Hence there is an asymmetry between neutrino and anti-neutrino in 
the SU(2) representation. The above statement essentially means that the SU(2) representation resulting from Po 
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projection breaks time reversal symmetry. Therefore there are only leptons with negative e charge with its neu-
trinos in the 4D space time, and thus the universe does not contain anti-matter symmetry. Incidentally the 
charged leptons are: the electron (e) and the highly unstable, but heavier versions of electron-muon (μ), the 
tauon (τ). While the neutral leptons are the (electron, muon, tau) neutrinos. Among those charged leptons, elec-
tron has the lightest rest mass of 0.5 MeV. Within the time frozen, 4D space void, the massless charged spinors 
appear in pairs, and the minimum “energy expenditure” of these spinor pairs in the Po projection to create matter 
with mass is therefore at least of 1 MeV; we can consider such a property as also due to gauge symmetry. Thus 
Po projection leads to the creation of 2 electrons running in opposite directions (plus neutrinos) as the most sta-
ble leptons in the star. Through Po projection, though other members of the leptons were also created, yet these 
are very unstable, and will not remain in the massive Lorentz boundary. Note that the metric of the totally en-
closed void, within a stellar object, is represented by a 3D × 1D space, with time frozen when the enclosing Lo-
rentz boundary is static (Poincare-Perelman projection/mapping). However, the general entropy theorem re-
quires that this boundary will exchange energy with the void core, hence changing the void representation to 3D 
× 1D × time, which in turn induces the grow of the Lorentz boundary shell (Einstein-Stokes relation, see [16]). 
At the same time charge neutrality must be maintained. Via Po, only negative charges are created, and an equal 
amount of positive hadrons must be created (via P1) within the Lorentz boundary domain. As quarks are gener-
ated via conformal projection P1 from 5D to the 4D space-time, and due to the gauge invariance property, posi-
tive hadrons can be formed. Thus the charge neutrality requirement can be considered as the reason why Po and 
P1 must be enacted simultaneously. Members of the quarks have either positive or negative fractional electric 
charges. When they obtained their masses by quantum confinement, positively charged protons will appear in 
the Lorentz space-time with number equal to that of the electrons, conserving overall charge parity in the 4D 
universe. The interaction of the gluon potentials (in Lorentz space) and the vector potential (in the 5D void) has 
been explained in Section 1. Hadrons can be separated into two sub-families: baryons (the most stable ones are 
protons and neutrons) which are built of three quarks. On the other hand, each of the mesons (such as pions) be-
longing to the second sub-family is built of one quark and one anti-quark. Therefore the combination projection 
P0 and P1 leads to the creation of all the elementary particles detected/perceived in the 4D manifold in which 
stars are observed to exist. These particles form a shell enclosing the void. As projection/creation goes on, the 
shell increases its mass and thickness. Since the temperature at this stage of a star is extremely high, at the be-
ginning, the individual quarks might exist, together with the gluon potential fields. It takes a long time before the 
right combination of the quark members to become confined by gauge and to form hadrons, at the same time 
emitting large amount of energy in a wide range of the electromagnetic spectrum; such radiations are observed 
from pulsars (see e.g. [17]). Note also that due to Chern-Simons gauge property [12] [18]-[20], the quark-current 
will rotate in a 2D manner on top of this early stage thin mass shell, generating huge magnetic field (with axis 
not necessarily along the Lz direction) of a new born star. Such huge electromagnetic fields are observed in pul-
sars and magnetars. Other models have also proposed the idea that enormous amount of electromagnetic energy 
is radiated from the outer-shell from a typical pulsar (see e.g. [21] [22]). In fact, models suggesting strong gam-
ma radiation near the centre of the galactic core have been proposed, as emitted by pulsars [23]. We propose that 
magnetars (stars with surface magnetic field ~1010 - 1011 Tesla; (see e.g. [24]) are the youngest new born stars, 
and pulsars are the “elder ones” of these young baby stars according to the model resulting from the 5D to 4D 
projection. The readers are referred to [25] for useful data of pulsars. Other theories have argued that the tem-
perature of pulsars is greater than 109 K, happens to be consistent with our Third Law [26] [27]. In this paper, 
we do not analyze the magnetohydrodynamics of the pulsar atmosphere as in [28] since the process is very in-
volved, and model-dependent. We would only study the plausible consequence of the projection theory based on 
fundamental physics laws. In passing, we point out that there is observation of large mass structure ~104 solar 
mass near the centre of a galaxy, and there are numerous young stars near the galactic centre also [29]. General-
ly, it has been believed that the strong magnetic field of pulsars/neutron stars originated from the collapse of the 
core of a supernova with the conservation of magnetic flux (see e.g. [30]). Here we have provided another poss-
ible explanation of the origin of the huge magnetic field based on the existence of surface quark currents of these 
stars. We would draw attention to the recent finding that even though pulsars have different magnetic field in-
tensity and a wide range of rotation rates, the γ-ray spectra of young pulsars are similar, fitting a hard power-law 
with a modified exponential cutoff [31]. 

We would like to remark also that at the birth of a star, there is relatively small amount of (massive) matter, 
and the electrons and quarks must spin very fast in order to counter-balance the angular momentum of the spinor 



P. C. W. Fung, K. W. Wong 
 

 
2312 

pairs within the 4D space void of the young star. To form a baryon, the right quark members must be combined 
in a gauge invariant way (with the “equilateral triangular formation”) described in a recent paper [13], and the 
chance of such formation is small while the quark members are moving with highly relativistic speeds. But 
when protons are formed, they are guided by Lorentz force, moving along the huge magnetic field lines, even-
tually hitting the magnetic poles of the star-producing Bremsstrahlung radiation with various frequencies (par-
ticularly in the X ray/γ ray range), causing the protons energy to decrease, thus allowing the capture of an elec-
tron, to form a 2D Chern-Simons relativistic hydrogen, which in turn will radiate photons of 0.5 MeV, when this 
2D hydrogen decays as it leaves the 2D environment. Such radiations happen regularly on the solar surface, 
producing solar storms. Note that relativistic proton charges guided along the magnetic field lines can also emit 
synchrotron radiation as they move towards the observer direction [32] [33]. The pulse radiation from the mag-
netic axis is a well-known phenomenon during pulsar detection. As more hadrons are formed, the star increases 
in mass and size, leading inevitably to the decrease in its spinning rate due to angular momentum conservation, 
also a well-established phenomenon of pulsars.   

The angular momentum of a spherical shell with external radius Rp, internal/void radius Ro is 

                             (4.1a) 

Here P is the period of rotation. “d” is the averaged mass density. The asymptotic value of angular momen-
tum Iωm for the pulsar model is thus 

                               (4.1b) 

Taking the Vela pulsar as an example, with Rp = 104 m, P = 0.089 s, Iωm = 0.403 × 1040 J-s. From simple 
mass, density consideration, 

( )3 3– 3 / 4 .p o pR R d Mπ=                                (4.1c) 

where d is the averaged density and Mp the mass of pulsar. Based on the above discussion on mass generation, 
we assume that the mass density is simply ~ nuclear mass density = 3 × 1017 kg/m3. This constraint, together 
with the condition that Ro > 0 in our model, there is an upper limit for the mass (called Mc) for each Rp meas-
ured/deduced: 

( ) 34 / 3 .p c pM M d Rπ< =                              (4.1d) 

Based on Equations (3.6a) and (4.1), we can calculate the temperature T, in terms of P, Rp, and Mp. 

                        (4.2a) 

or            (4.2b) 

where k is the Boltzmann constant. Equation (4.2b) may be called the Lemma of the First Law for spherical shell 
stellar objects with matter enclosing a 5D void core. The numerical values of the constant D, arising from quan-
tum states in counting the Fermi-Dirac distribution of the spinors, is 6.73726 × 1069 S.I. units whereas in (4.2b) I 
= 0.35514, resulting from the integration over angular momentum under the condition of kT  Ef (see Section 
(III) and the two Appendices). According to (4.2b), with P, Rp fixed, T is a function of Mp only. Whereas the ro-
tation period can be measured rather accurately due to the light-house effect, the Rp values for pulsars have been 
commonly assumed to be 1.0 × 104 m. The relevant parameters of some examples of pulsars are listed in Table 
1 [34] [35]. The mass of a pulsar has been assumed in many works to be ~1.4 solar mass. However, in view of 
the discussion at the beginning of this section, we take Mp (in units of solar mass) as a parameter and plot T- 
(Mp/M☉) graph in Figure 1 for three pulsars: PSR B1937 + 21 (P = 1.6 ms), PSR B0833-45(vela) (P = 0.089 s), 
RX J0806.4-4123 (P = 11.37 s), covering the shortest and longest P recorded so far. Note that the critical mass 
Mc (maximum possible mass) is the same for all pulsars with different rotation periods, but only dependent on Rp. 
With Rp = 104 m, all lines in Figure 1 extend vertically upwards to infinitely high temperature as a limit, at Mc/M☉ 
= 0.631477, which is entered into Table 1. This is the asymptotic state at which the pulsar is completely filled  
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Figure 1. According to the 5D model, the variation of temperature T with changing normalized mass Mp/M☉ for three pul-
sars: PSR B1937+21 with P = 0.0016 s, PSR B0833-45(vela) with P = 0.089 s, RX J0806.4-4123 with P = 11.37 s are plot-
ted above. Here Rp = 104 m and Mc/M☉ = 0.631477. The numbers associated with the three lines indicates the P values in 
seconds. All other curves corresponding to other pulsars listed in Table 1 lie between the three lines in this figure, and will 
not be plotted. Note that the evolution of a pulsar does not follow a line in Figure 1 in general, unless it loses mass as it cools 
down, but keeping the same P. Rather, depending on how fast the heat in the void core is transmitted to the Lorentz space 
structure, in general, a pulsar would spin down at specific rate at a specific stage of evolution. In the representation shown in 
Figure 1, during the evolution of a pulsar, a shift of line from one pertaining to a particular value of P to another line asso-
ciated with a larger P occurs, accompanying a decrease in T and change of Rp. A point on a line therefore means that at the 
particular mass of a pulsar specified by that point, it would rotate with the P value specified, and the T of the void core is 
fixed by that point in the graph. 

 
Table 1. Magnetars and pulsars. Data for the first three columns are taken from [34] [35]; here the B field refers to the ap-
proximated magnetic field at the pole. The radius is assumed to be 104 m, as accurate values have yet to be found in literature. 
Iωm is the asymptotic angular momentum calculated according to (4.1b).This is the value at which the pulsar is theoretically 
filled with matter, with the void volume tending to zero as a limit, so that T is approaching infinity. Note that the critical 
mass Mc (maximum possible mass) is the same for all pulsars with different rotation periods, but only dependent on Rp. The 
last column gives Mc if Rp is decreased to 5000 m. N indicates that the field is not yet certain. 

Pulsar name B field (T) P(s) Iωm (J-s) Mc/M☉(Rp = 104 m) Mc/M☉(Rp = 5000 m) 

PSR B1937+21 N 0.0016 1.9739 × 1041 0.631477 0.078935 

PSR B0833−45(vela) 6.8 × 108 0.089 3.5486 × 1039 0.631477 0.078935 

RX J0822−4300 6.5 × 106 0.112 2.8199 × 1039 0.631477 0.078935 

SR J1740+1000 3.7 × 109 0.154 2.0508 × 1039 0.631477 0.078935 

1E 1207.4−5209 2.0 × 107 0.424 7.4488 × 1038 0.631477 0.078935 

SR B2334+61 2.0 × 109 0.495 6.3804 × 1038 0.631477 0.078935 

RX J1605.3+3249 1.5 × 1010 3.39 9.3165 × 1037 0.631477 0.078935 

RX J0806.4−4123 5.1 × 109 11.37 2.7777 × 1037 0.631477 0.078935 

 
with matter, with the void volume tending to zero as a limit, so that T is approaching infinity. For any mass smaller 
than the critical mass Mc, Ro is finite and non-zero, with T also finite.  

Any point of a T-(Mp/M☉) graph for a fixed P tells that to acquire the situation where a shell mass of a certain 
value (take for example, Mp/M☉ = 0.4 in Figure 1) to be rotating with P = 11.37 s, the temperature of the void 
core must have a T value = 1011 K, so that the in phase spinors rotating would have a total angular momentum of 



P. C. W. Fung, K. W. Wong 
 

 
2314 

2.25624 × 1037 J-s (calculated using Equation (3.6a)) to balance the Iω of the matter shell according to the First 
Law. At that situation, the void radius is 7.1567 × 103 m (according to (4.1c)) whereas the radius of the star ob-
served is roughly 104 m. The asymptotic angular momentum calculated according to (4.1b) is entered in Table 
1. 

When a pulsar is newly born and evolves, the evolution path cannot be taken to follow a line in Figure 1, un-
less it is losing mass and yet keeping the same P in cooling down, which would be an unusual situation. As ex-
plained before, at some stage after the projection action, the shell is thin and the mass is small, but will grow. 
Therefore we need to analyze the situation where Mc/M☉ is smaller than ~0.6. Suppose the three pulsars just 
considered have a common radius of 5000 m instead, and we have the T- (Mp/M☉) graph in Figure 2, similar to 
Figure 1. In this case, the maximum mass each pulsar can have is only 0.07893 M☉ according to Equation 
(4.1d). In order to facilitate a qualitative description on the consequence of the 5D theory in some stage of pulsar 
evolution, let us consider point A in Figure 2 to represent the state of a pulsar rotating with P = 1.6 ms. This 
point is tentatively chosen to be the “beginning point” of a straight line section of the T- (Mp/M☉) graph for 
Mp/M☉ < 0.01, at point A. Hence this state is represented by the set of numbers (Mp/M☉ = 0.01, P = 0.0016 s, 
Rp = 5000 m, Ro = 4.77925 × 103 m, T = 4.0735 × 1011 K in the void, according to (4.2b)). The pulsar gains mass 
after a finite time interval according to this model; also it is observed in general that a pulsar spins down conti-
nuously (except for the glitch phenomenon). To obtain the next discrete step in evolution, we need to use anoth-
er line pertaining to a longer P, bigger Rp, and a bigger Mp/M☉ value. Now go back to Figure 1, point B. Sup-
pose at the second time point this pulsar is rotating at P = 0.089 s, and has mass Mp/M☉ = 0.1. According to 
Figure 1, the second state at point B is represented by the set of numbers (Mp/M☉ = 0.1, P = 0.089 s, Rp = 104 m, 
Ro = 9.441529 × 103 m, T = 1.893 × 1011 K at the void from (4.2b)). The transition from set one to set two of the 
above numbers is in line with the model of evolution discussed above. Such a hypothetical evolution step is only 
a schematic representation. Though the observed P and the rate of change of P of pulsars are well documented, 
yet accurate experimental results of Rp and Mp still await, before we can test the theory in details. We wish to 
point out here that many pulsars could have masses < 1.4 M☉, whereas some pulsars having larger masses, 
should have Rp > 104 m. In Figure 3, we show the Mc/M☉ versus Rp line in log scale. The circle indicates the 
maximum mass a pulsar can have, irrespective to its P value, if Rp is 104 m. The triangle represents that condi-
tion that if Mp = 1.4 M☉, Rp should be at least as large as 1.304 × 104 m. We would remark also that the notion 
of a pulsar’s mass being less than 1.4 M☉ is not new; in fact, based on X-ray observations of polar cap  

 

 
Figure 2. T-(Mp/M☉) graph for the same three pulsars as in Figure 1, but with Rp = 5000 m. With such reduction in Rp, Mc/M☉ 
= 0.07893. 
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Figure 3. Mc/M☉ versus Rp graph in log scale. The circle indicates the maximum mass a pulsar can have, irrespective to its P 
value, if Rp is 104 m. The triangle represents that condition that if a pulsar has a mass of 1.4 M☉, Rp should be at least as large 
as 1.304 × 104 m. 

 
characteristics, Pavlov et al. [1997], using PSR J0437-4715 as a model, obtained constraint of mass and radius; 
for details see [36]. 

5. Angular Momentum Study of Pre-Main-Sequence Stars of the Orion Nebula,  
Cluster NGC 6819, Low-to-Mid Main Sequence Stars, M35 Group and Cluster  
NGC 2516 

5.1. Angular Momentum Study of “Halo Stars” in the Orion Nebula of Our Milky Way, with  
Mass Density Varying from a Few to Around 540 kg/m3 

Stassun et al. [37] reported the rotational periods of 254 stars in an area centered on the Orion Nebula. We apply 
97 of these stars with measured mass and radii, and tabulate the relevant parameters in Table 2. We have calcu-
lated the mass density of each of these stars and have found that 9 stars have densities (in units of kg/m3) in the 
range 1) 3.4 - 15.0; 20 stars in the range, 2) 15.1 - 32.0; 47 stars in the range, 3) 32.1 - 90.0; 15 stars in the range, 
4) 90.1 - 270.0, and 4 stars in the range, 5) 270.1 - 540. We plot in Figure 4 the ρ-P(s) lines for groups: 1) The 
dotted line passing through crosses, 2) – dash-dot-dot line passing though triangles, 5) The dash-dot line passing 
through circles, and 6) solid line passing though squares (only 4). We observe that as the density increases, the 
line is shifted upwards with larger value of ρ for the same P value. The slopes are roughly within the range 
−0.23 to −0.25. The ρ-P plot for group 3) show stars lie, scattered, between the groups of the highest and lowest 
density lines in Figure 4, and will not be plotted here. In Table 2, Ro is the void radius, the angular momentum 
Iω is calculated assuming all the mass matter fill up the whole star volume as an approximation, since ρ = Ro/R 
is very small, being ~10−3. We also assume that the star has already cooled down to the region specified by the 
Second Law: ρ = Ro/R = D(−0.25)∙{1/4}−0.25}∙(Iω)0.25/(Ef·R) as given in (3.7b).  

5.2. Angular Momentum Study of the Low-Mass Stars in the Old Cluster NGC 6819, with  
Mass Density from 563 to 1610 kg/m3 

It is well established that accurate measurement of stellar spin rates gives useful information to determine their  
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Table 2. Data of the pre-main-sequence stars in the Orion Nebula in the Milky Way are taken from [37]. Here Ro is the void 
radius, Iω is calculated assuming all the mass matter fill up the whole star volume as an approximation, since ρ = Ro/R is 
very small, being ~10−3. We also assume that the star has already cooled down to the region specified by the Second Law: ρ 
= Ro/R = {D−0.25∙[1/4]−0.25}∙(Iω)0.25/(Ef∙R) as given in (3.7b). The dimensional unit of {Iω}0.25/R is kg0.25∙m−0.5∙s−0.25. R☉ is the 
solar radius, taken to be 6.955 × 108 m. We separate these stars into 5 groups taking density as a parameter (in units of 
kg/m3): (i) 3.4 - 15, with 9 stars in this group; (ii) 15.1 - 32.0, with 20 stars in this group range; (iii) 32.1 - 90.0, with 47 stars 
in this group; (iv) 90.1 - 270.0, with 15 stars in the group; (v) 270.1 - 540.0, with 4 stars.  

Star M/M☉ R/R☉ P (days) {Iω}0.25/R Ro/R (10−3) Density(kg/m3) 

1171 0.26 1.98 7.4 32.2 1.98 47.98 

1219 0.4 1.96 1.31 55.5 3.42 75.02 

1235 0.24 2.97 1.69 37.26 2.30 12.94 (i) 

1279 0.16 1.83 0.75 52.55 3.24 36.87 

1297 1.38 1.90 6.63 51.26 3.16 284.70 (v) 

1308 0.15 3.96 8.35 19.25 1.19 34.10 

1325 0.20 1.30 4.44 42.26 2.60 128.55 (iv) 

1354 0.23 1.67 0.80 59.27 3.65 69.73 

1357 0.30 2.56 1.37 44.77 2.76 25.25 (ii) 

1368 0.23 1.35 2.76 48.37 2.98 132.00 (iv) 

1396 0.28 2.03 1.92 45.36 2.80 47.27 

1428 0.17 1.31 1.16 56.54 3.48 106.78 (iv) 

1440 0.27 1.47 1.36 57.59 3.55 120.00 (iv) 

1453 0.23 1.66 1.36 52.06 3.21 71.00 

1465 0.27 1.85 1.28 52.11 3.21 60.00 

1474 0.23 2.30 6.03 30.48 1.88 26.70 (ii) 

1485 0.23 1.44 6.34 38.84 2.39 108.80 (iv) 

1500 0.24 1.90 8.82 30.82 1.90 49.40 

1501 0.29 1.74 8.73 33.85 2.09 77.70 

1511 0.38 1.89 1.54 53.62 3.30 79.48 

1522 0.35 2.09 7.29 33.86 2.09 54.14 

1545 0.25 1.79 5.32 36.40 2.24 61.55 

1566 0.23 1.57 7.00 35.54 2.19 83.93 

1568 0.25 2.14 5.06 33.71 2.08 36.00 

1618 0.24 2.80 4.44 30.14 1.86 15.44 (ii) 

1627 0.26 1.93 10.10 30.16 1.86 51.07 

1631 0.25 2.08 9.46 29.24 1.80 39.23 

1692 0.21 2.35 1.99 38.90 2.40 22.85 (ii) 

1694 0.22 1.89 3.09 39.30 2.42 46.02 

1753 0.16 3.23 4.20 25.63 1.58 65.82 

1760 0.20 1.57 6.13 35.48 2.19 72.98 

1805 0.30 2.03 5.32 35.60 2.19 50.64 

1841 0.39 2.35 7.33 32.77 2.02 42.44 

1922 0.13 1.87 11.30 25.05 1.54 28.07 (ii) 

1966 0.22 1.86 7.11 32.17 1.98 48.28 

1982 0.37 2.72 7.78 29.61 1.82 25.95 (ii) 

2036 0.21 3.89 2.26 29.29 1.81 5.04 (i) 

2037 0.21 1.73 2.14 44.50 2.74 57.27 
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2124 0.28 2.23 8.35 29.97 1.85 35.65 

2168 0.21 1.63 6.12 35.26 2.17 68.47 

2246 0.33 1.63 9.46 35.4 2.18 107.60 (iv) 

2301 0.15 1.42 0.85 56.89 3.51 73.98 

2425 0.13 1.44 1.71 45.77 2.82 61.48 

2428 1.29 4.92 6.83 31.09 1.92 15.00 (i) 

2470 0.23 1.55 2.81 44.93 2.77 87.22 

2479 0.36 2.38 6.12 33.39 2.06 37.70 

2583 0.27 2.39 1.07 47.95 2.96 27.93(ii) 

2698 0.06 2.61 2.13 26.52 1.63 4.77 (i) 

2739 0.49 2.59 7.63 27.55 1.70 39.83 

2744 0.43 1.79 6.53 39.60 2.44 105.87 (iv) 

2784 0.22 1.26 3.96 45.24 2.79 155.30 (iv) 

2816 0.16 2.58 6.29 26.00 1.60 13.16 (i) 

2843 0.14 1.92 6.86 28.53 1.76 27.93 (ii) 

2847 0.27 2.45 7.66 28.68 1.77 25.92 (ii) 

2913 0.21 1.65 5.21 36.50 2.25 66.01 

2918 0.28 2.55 3.32 26.48 1.63 23.85 (ii) 

2919 0.35 2.51 7.70 30.48 1.88 31.26 (ii) 

2973 0.15 2.75 2.49 31.25 1.93 10.19 (i) 

3007 0.16 2.43 1.71 37.11 2.29 15.53 (ii) 

3014 1.13 1.74 7.82 48.88 3.01 302.88 (v) 

3026 0.30 2.26 7.74 30.87 1.90 36.25 

3028 0.17 2.34 4.76 29.72 1.83 18.74 (ii) 

3032 0.20 1.97 3.21 37.23 2.29 36.94 

3082 0.31 2.51 2.84 37.95 2.34 27.68 (ii) 

3087 0.22 2.04 6.43 31.49 1.94 36.59 

3088 0.31 2.84 4.62 31.59 1.95 19.11 (ii) 

3097 0.28 2.18 3.60 37.41 2.31 38.16 

3115 0.27 1.91 6.73 33.86 2.09 54.72 

3122 0.15 2.25 1.14 42.00 2.59 18.60 (ii) 

3142 0.23 1.62 8.64 33.20 2.04 76.39 

3158 0.34 2.21 8.69 31.29 1.93 44.49 

3161 0.27 1.89 0.84 57.29 3.53 56.47 

3178 0.20 1.98 5.03 33.20 2.05 36.38 

3189 0.30 1.54 7.00 38.35 2.36 115.99 (iv) 

3197 0.20 2.13 6.30 30.25 1.86 29.22 (ii) 

3217 0.23 1.35 3.74 44.83 2.76 132.00 (iv) 

3240 0.14 2.56 5.51 26.10 1.61 11.78 (i) 

3314 0.20 1.42 5.26 38.76 2.39 98.64 (iv) 

3341 1.12 1.80 1.65 70.78 4.36 271.19(v) 

3384 0.39 2.42 5.59 34.56 2.20 38.66 
3406 0.54 2.03 2.79 48.69 3.00 91.15 (iv) 
3438 0.14 1.55 2.55 44.04 2.71 53.09 
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3447 0.16 3.87 1.16 32.40 2.00 3.90 (i) 

3560 0.62 3.04 1.03 52.84 3.26 31.16 

3613 0.22 1.87 1.13 50.81 3.13 47.5 

3662 0.26 2.24 8.18 29.50 1.82 32.67 

3666 0.23 2.19 4.91 32.84 2.02 30.92 (ii) 

3668 0.66 1.20 8.18 50.89 3.14 539.35 (v) 

3672 0.30 1.27 7.48 41.54 2.56 206.80 (iv) 

3678 0.36 1.61 6.53 39.94 2.46 121.81 (iv) 

3710 0.30 2.24 9.27 30.81 2.00 37.69 

3756 0.60 1.76 4.91 46.61 2.87 155.41 (iv) 

3885 0.16 1.84 2.99 37.08 2.29 36.27 

3918 0.12 1.70 1.18 45.30 2.79 34.49 

4021 0.18 2.10 0.81 49.55 3.05 27.45 (ii) 

4047 0.21 2.27 2.07 39.18 2.41 25.35 (ii) 

4090 0.16 2.69 7.59 24.30 1.50 11.60 (i) 

 

 
Figure 4. ρ = Ro/R versus the period of rotation P(s) for the pre-main sequence stars in the Orion. According to Table 2, we 
separate these stars into 5 groups taking density as a parameter (in units of kg/m3): (i) 3.4 - 15, with 9 stars in this group; (ii) 
15.1 - 32.0, with 20 stars in this group range; (iii) 32.1 - 90.0, with 47 stars in this group; (iv) 90.1 - 270.0, with 15 stars in 
the group; (v) 270.1 - 540., with 4 stars. We plot in this figure the ρ-P(s) lines for groups (i)—The dotted line passing 
through crosses, (ii)—dash-dot-dot line passing though triangles, (iv)—The dash-dot line passing through 15 circles, and (v) 
solid line passing though 4 squares. The group symbols (i), (ii), (iv) and (v) are entered into the last column of Table 2; the 
rest of the stars belong to group (iii). The division of groups is arbitrary; we want to show that as the density increases, the 
line is shifted upwards with larger value of ρ for the same P value. The slopes are roughly within the range −0.23 to −0.25. 
The data points of the ρ-P plot for the large group (iii) lie, scattered, between the group of the highest and lowest density, and 
will not be plotted here. For pre-main-sequence stars, the data are more scattered. When stars age, the ρ-P plot for a group is 
well defined, as will be shown in other graphs following. 
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ages. Very recently, using the methodology of gyrochronology [38], the period Ps of 30 old, low mass stars in 
the NGC 6819 cluster have just been published, together with the colour (B-V)o and other parameters. The mass 
is read approximately from the data point of the P - (B-V)o/M graph of [38]. The radius is deduced according to 
equation: R = 1.06 × (M/M☉)0.945, for main sequence star M < 1.66 M☉, as in reference [39]. We list these rele-
vant parameters, together with the calculated quantities (Iω)0.25/R, mass density, and ρ = Ro/R according to the 
Second Law, where the temperature T  Tc = 5.3 × 109 K, in Table 3. Note that in these stars, the ρ values turn 
out to be  0.1, and we do not need to use a shell model to study their moment of inertia. The Fermi energy of  

 
Table 3. Some parameters of stars in NGC 6819. Parameters mass M in units of solar mass M☉, radius R (in units of solar ra-
dius R☉), period of rotation P (s) of 30 stars in NGC 6819 according to [38] and the deduced ratio of the void to star radii ρ = 
Ro/R governed by the Second Law ( T  Tc). The Fermi energy of the spinor pairs is taken to be Ef = 0.5 MeV. The masses 
are read approximately from the data points of the P-(B-V)o graph of [38]. The radius is deduced according to the following 
equation: R = 1.06 × (M/M☉)0.945, for M < 1.66 M☉, as in reference [39]. The dimensional unit of (Iω)0.25/R below is 
kg0.25∙m−0.5∙s−0.25.  

Star no. (B-V)o M/M☉ R/R☉ P (s) (Iω)0.25/R ρ [×10−3] Den (kg/m3) 

5,111,207 0.41 1.405 1.46170 4.56829 × 105 61.73 3.8000 6.19 × 102 

5,023,899 0.42 1.370 1.42727 4.15584 × 105 63.96 3.9400 6.52 × 102 

5,023,760 0.43 1.355 1.41250 4.12992 × 105 64.21 3.9600 6.79 × 102 

5,024,227 0.43 1.355 1.41250 4.37184 × 105 63.31 3.9000 6.79 × 102 

5,024,122 0.45 1.300 1.35826 5.49500 × 105 60.34 3.7190 7.33 × 102 

5,112,499 0.46 1.280 1.338503 3.83600 × 105 66.24 4.0823 7.54 × 102 

5,113,601 0.36 1.280 1.338503 6.056640 × 105 59.10 3.6418 7.54 × 102 

5,026,583 0.49 1.228 1.287059 4.233600 × 105 65.23 4.0198 8.13 × 102 

4,938,993 0.50 1.210 1.269223 1.025570 × 106 52.46 3.2330 8.36 × 102 

5,111,834 0.57 1.101 1.160900 1.200000 × 106 51.51 3.1740 9.94 × 102 

5,111,908 0.58 1.090 1.149940 1.504220 × 106 48.79 3.0066 1.01 × 103 

5,024,856 0.62 1.037 1.097025 1.571600 × 106 48.79 3.0070 1.11 × 103 

5,024,280 0.63 1.026 1.086026 1.499900 × 106 49.34 3.0410 1.13 × 103 

5,112,507 0.63 1.026 1.086026 1.571600 × 106 48.77 3.0055 1.13 × 103 

5,023,796 0.64 1.012 1.072016 1.581120 × 106 48.85 3.0101 1.16 × 103 

5,024,008 0.65 1.000 1.060000 1.589760 × 106 49.05 3.0229 1.19 × 103 

5,023,724 0.66 0.990 1.049980 1.555200 × 106 49.43 3.0462 1.21 × 103 

5,023,875 0.67 0.978 1.037949 1.583712 × 106 49.34 3.0406 1.24 × 103 

5,112,268 0.68 0.972 1.031931 1.615680 × 106 49.16 3.0296 1.25 × 103 

4,937,169 0.70 0.952 1.011854 1.695168 × 106 48.80 3.0073 1.30 × 103 

5,025,271 0.70 0.952 1.011854 1.839456 × 106 47.81 2.9465 1.30 × 103 

5,111,939 0.70 0.952 1.011854 1.879200 × 106 47.56 2.9310 1.30 × 103 

5,112,871 0.71 0.946 1.005826 1.836000 × 106 47.90 2.9520 1.31 × 103 

5,023,666 0.73 0.930 0.989743 1.861056 × 106 47.92 2.9533 1.35 × 103 

5,024,182 0.75 0.916 0.975657 1.839456 × 106 48.23 2.9720 1.39 × 103 

5,023,926 0.77 0.903 0.962567 1.798848 × 106 48.65 2.9981 1.43 × 103 

4,937,149 0.80 0.883 0.942407 1.873152 × 106 48.40 2.9826 1.49 × 103 

4,936,891 0.85 0.862 0.921213 1.899070 × 106 48.49 2.9884 1.56 × 103 

4,937,119 0.87 0.852 0.911111 2.011392 × 106 47.93 2.9534 1.59 × 103 

4,937,356 0.89 0.847 0.906057 1.834300 × 106 49.11 3.0263 1.61 × 103 

HD154708 N 1.500 1.554930 4.636700 × 105 60.99 3.7584 0.5634 × 103 
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the spinor pairs is assumed to be Ef = 0.5 MeV, as before. We observe that the mass density varies from 619 
kg/m3 to 1610 kg/m3 in this cluster so far found. The log ρ - log P graph is shown in Figure 5. Since many data 
points are crowded together, we have not drawn the line of best fit. Clearly the log ρ – log P plot is linear for a 
relatively wide range of P; ρ is about constant for a range of larger P, which might mean the stars are settling 
down to the end stage with fixed ρ while the stars are spinning down. We have now the mass and period of rota-
tion for the star HD 154708, which has an extra-strong surface magnetic field of 2.6 - 2.88 Tesla. The mass den-
sity is calculated to be only 563.4 kg/m3, and we group it within the NGC 6819 group [40] [41]. 

5.3. Angular Momentum of 14 “Low-to-Mid Mass” Main Sequence Stars, Members of the  
M35 Group and Stars of the NGC 2516 Group with Mass Density Varying from 5.6 ×  
103 to 9.8 × 104 kg/m3 among These Three Groups 

We list in Table 4 the mass M/M☉, radius R/R☉, period of rotation P(s) of 5 stars in M35 according to [42]. The 
mass is obtained from the mass-(B-V)o relation of [38]. The radius is deduced according to equation: R = 1.06 × 
(M/M☉)0.945, for M < 1.66 M☉, as in reference [39]. The deduced ratio of the void to star radii ρ = Ro/R as go-
verned by the Second Law (small T  Tc) as well as the mean mass density for each star are listed in Table 4. 
The ρ-P relation is shown in Figure 6 (squares), with no line drawn because they rotate with a narrow range of 
periods—we show them to indicate that in different groups of stars, for the same P value, the ρ value increases 
with the mass density in general. In Table 5, we list the parameters mass M (ranging from ~0.45 to 1.5 solar 
masses), effective temperature Teff, period of rotation P, radius R as deduced from luminosity-M-R relation, and 
the calculated value of ρ = Ro/R governed by the Second Law (small T  Tc) for 14 members of the main se-
quence as shown. The quantity (Iω)0.25/R, which has the units of kg0.25∙m−0.5∙s−0.25 is also listed for convenience 
of calculating ρ. We observe that the values of ρ fall into a very narrow range, decreasing for increasing P in 

 

 
Figure 5. ρ = Ro/R versus the period of rotation P as governed by the Second Law (small T  Tc) for 30 stars in the NGC 
6819 group (see Table 3). The Fermi energy of the spinor pairs is taken to be 0.5 MeV. The masses are read approximately 
from the data points of the P-(B-V)o graph of [38]. The radius is deduced according to the following equation: R = 1.06 × 
(M/M☉)0.945, for M < 1.66 M☉, as in reference [39]. Units of (Iω)0.25/R are kg0.25∙m−0.5∙s−0.25. 
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Table 4. Some parameters of stars in the Field of M35. The following table lists the mass M/M☉, radius R/R☉, period of rota-
tion P (s) of 5 stars in M35 according to [42]. The mass is obtained from the mass—(B-V)o relation of [38]. The Fermi 
energy of the spinor pairs to be Ef = 0.5 MeV (see Section 3). The radius is deduced according to equation: R = 1.06 × 
(M/M☉)0.945, for M < 1.66 M☉, in reference [39]. The deduced ratio of the void to star radii ρ = Ro/R as governed by the 
Second Law (small T  Tc) and the density are listed in the last two columns. The dimensional unit of (Iω)0.25/R below is 
kg0.25∙m−0.5∙s−0.25.  

Star no. (B-V)o M/M☉ R/R☉ P(s) (Iω)0.25/R ρ[×10−2] Den (kg/m3) 

1 0.42 1.385 1.442035 7.60324 × 103 173.485 1.06900 6.522 × 102 

2 0.47 1.260 1.318730 8.29440 × 103 173.358 1.06832 7.758 × 102 

3 0.45 1.300 1.358258 9.24480 × 103 167.550 1.03250 7.326 × 102 

4 0.45 1.300 1.358258 9.67680 × 103 165.648 1.02080 7.326 × 102 

5 0.73 0.930 0.989743 1.08864 × 104 173.286 1.06787 1.355 × 103 

 

 
Figure 6. Data for the 5 stars (squares) in M35 taken from Table 4 above [42] and the ρ-P relation is calculated according to 
the Second Law (Section 3). The mass is obtained from the mass-(B-V)o relation of [38]. The Fermi energy of the spinor 
pairs to be 0.5 MeV for all the three groups. The radius is deduced according to equation: R = 1.06 × (M/M☉)0.945, for M < 
1.66 M☉, in reference [39]. Data of part of the low-to-mid mass main sequence stars are obtained from [43] [44]. Similarly, 
referring to Table 6, data of the NGC 2516 group [45], the ρ-P relation is calculated according to the Second Law and plot-
ted as crosses with the dotted line passing through. 

 
general, as expected. These stars have densities ranging from 563 to 5140 kg/m3. The ρ-P plot is indicated in 
Figure 6 together with the M35 group. Among these, some data of stars are obtained from [43] and some others 
are taken from [44]. Including the sun, a straight line of the ρ-P relation can be drawn between these data points. 
Irwin et al. reported all the M, R, P values of 5 representative stars in the NGC 2516 group of 254 stars [45]. 
These 5 stars (represented by crosses) have densities ranging from ~ 5.6 × 103 kg/m3 to 9.8 × 104 kg/m3; a dotted 
line of best fit can be drawn between them. Note that this dotted line (representing stars with higher mass densi-
ties) is “above” the solid line. We also include the data of a pre-stellar star named Ap J0323 + 4853 in alpha 
Persei [46] with measured period of P = 7.6 hr, mass = 0.09 M☉ in Table 6 within this NGC 2516 group and 
plot the ρ-P point in Figure 6. The mean density of this star is estimated to be 9.8 × 104 kg/m3, greater than 
those in the NGC 2516 set, and is anticipated to be above the line of best fit associated with this group. 

Note also that the data for many stars in the main sequence have not been used, as there are lots of uncertain-
ties about the periods of rotation P, though the masses can be deduced quite accurately from luminosity-mass 
relationship. Also, there are different paths of evolution for stars with high masses. 
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Table 5. Low-to-mid mass main sequence stars. Parameters mass M/M☉, effective temperature Teff, period of rotation P, ra-
dius R, and the calculated ratio of the void to star radii ρ = Ro/R as governed by the Second Law (T  Tc) and density are 
listed below, taking the Fermi energy of the spinor pairs to be Ef = 0.5 MeV. The dimensional unit of (Iω)0.25/R is 
kg0.25∙m∙−0.5∙s−0.25. Part of the data obtained from [43] and part from [44], with radius deduced using the equation in [39] as in 
Table 4. The numerical value of ρ can be calculated simply using ρ = 3.66423 × 10−5 × (Iω)0.25/R, where quantities are ex-
pressed in S.I. units. N represents uncertain in effective surface T.  

Star M/M☉ Teff (×103 K) R (108 m) P(s) (Iω)0.25/R ρ[10−3] Den (103 kg/m3) 

Sun 1.0000 5.800 6.9550 2.16000 × 106 46.79 2.8760 1.3880 

KIC892376 0.4699 3.810 3.6112 1.32365 × 105 108.0 6.6400 4.7400 

1026474 0.5914 4.120 4.48777 1.3556 × 105 102.0 6.2700 3.1090 

1026146 0.6472 4.260 4.8869 1.2866 × 106 56.97 3.5030 2.6344 

1162635 0.4497 3.760 3.4643 1.3546 × 106 60.988 3.7500 5.1385 

1164102 0.5606 4.050 4.2226 2.7210 × 106 54.13 3.3300 3.5400 

1027110 0.6046 4.160 4.58237 1.4697 × 105 99.214. 6.1140 2.9850 

1160684 0.5239 3.950 4.002144 3.6200 × 104 145.797 8.9840 3.8826 

1027277 0.6735. 4.330 5.07437 5.1960 × 106 39.833 2.4547 2.4488. 

HD154708 1.5000 N 10.81457 4.6367 × 105 60.99 3.7583 0.5634 

IM VirB 0.6644 N 4.7363 1.1320 × 105 106.95 6.5695 2.9710 

GU BooA 0.6101 N 4.3608 4.2336 × 104 139.524 8.5700 3.4950 

UV PscB 0.7644 N 5.8074 6.9120 × 104 113.16 6.9730 0.9310 

YY GemA 0.5992 N 4.3079 7.5168 × 104 120.8 7.4457 3.5600 

 
Table 6. Low mass stars in NGC 2516. M/M☉, R, P values are all taken from [45] and ρ = Ro/R is calculated according the 
Second Law. The calculated mass density is also listed. Units of (Iω)0.25/R are kg0.25∙m−0.5∙s−0.25. 

Star M/M☉ R/R☉ P(s) (Iω)0.25/R ρ[10−3] Den (103 kg/m3) 

N2516-1-1-784 0.20 0.24 5.6070 × 104 159.0 9.800 2.430 × 104 

N2516-1-1-351 0.44 0.41 2.0028 × 105 107.82 6.644 9.020 × 103 

N2516-1-1-958 0.49 0.45 5.4354 × 105 82.37 5.076 7.593 × 103 

N2516-1-1-881 0.55 0.51 6.6330 × 105 75.76 4.669 5.855 × 103 

N2516-1-1-1470 0.56 0.52 7.6058 × 105 72.84 4.489 5.624 × 103 

ApJ0323+4853 0.09 0.1089 2.7360 × 104 231.4 14.26 9.800 × 104 

6. Brown Dwarfs, Magnetic White Dwarfs, and White Dwarfs as Old Stars 
6.1. Brown Dwarfs are Found to Have Mass Densities from ~1.5 × 104 to 1.2 × 105 kg/m3,  

and P from 3 to 40 Hours 
Rotation periods for some very low mass stars, anticipated to be brown dwarfs, have been measured and de-
duced in the Pleiades [47]. We list in Table 7 the relevant parameters of these stars. We consider that they are 
certainly stable stars and be falling within the range of temperature specified by the Second Law. Note that each 
representative datum point published is the average of slightly over 150 members. Treating these stars in the 
Pleiades as dwarfs, the values of R/R☉, ρ, Ro, and mass density (found to be varying from 1.5 × 104 to 1.22 × 105 
kg/m3) are calculated and are entered into Table 7. This density value is smaller than that of the white dwarfs to 
be discussed later (with density of the order of 109 kg/m3), as expected, because brown dwarfs are slightly 
“younger” than the old white dwarf stars. The representative star BPL 138 with mass 0.25 M☉ seems to be out 
of the line. As the values of ρ are still in the range 10−2, we can simply take the star model as one with mass fill-
ing matter almost to the centre, with a small void radius. The ρ-P plots for the ten brown dwarfs are indicated in 
Figure 7, using squares to represent the calculated values, with a solid line of best fit drawn.  
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Table 7. Brown dwarfs in the Pleiades [46] [47]. Each representative datum point published is the average of slightly over 
150 members. The meanings of the symbols are the same as in other Tables, and the stars are specified by the Second Law. 

Star M/M☉ R/R☉ P(s) (Iω)0.25/R Ρ = Ro/R[×10−2] Den (104 kg/m3) 
BPL 102 0.25 0.26981 7.7040 × 104 142.3 0.877 1.50 
BPL 106 0.08 0.09744 1.4688 × 104 277.5 1.710 12.20 
BPL 115 0.10 0.12031 1.0476 × 104 287.4 1.771 8.10 
BPL 125 0.15 0.17649 6.9660 × 104 163.25 1.006 3.85 
BPL 129 0.13 0.15416 3.4700 × 104 200.93 1.238 5.00 
BPL 138 0.25 0.28600 9.2916 × 104 135.8 0.837 5.97 
BPL 150 0.18 0.20967 6.6456 × 104 158.87 0.979 2.76 
BPL 164 0.13 0.15416 7.2576 × 104 166.6 1.023 5.00 
BPL 190 0.15 0.17649 1.4497 × 105 135.14 0.839 3.85 
BPL 102 0.25 0.26981 7.7040 × 105 142.3 0.877 1.50 

 

 
Figure 7. ρ-P (s) graph using data from Table 7 for ten brown dwarfs with mass ≤ 0.25 M☉(squares). The calculated data 
pair (ρ, P) for the MWD are indicated by triangles, with the solid line of best fit drawn though. We have taken the period of 
WD1829+547 to be 100 years, the minimum value estimated via measurement as reported in [51] (see also [49]). It is rather 
surprising that though a huge gap is missing in the range of P (106 s - 109 s), the measured/deduced data point from other 
groups over the years follow a straight line. The slope is about −0.24 for the MWD. The mass of the “non- magnetic” WD, as 
published in 2003 [48] have masses within a narrow range of ~0.5 to 0.6 M☉, and magnetic data is not available. A straight 
dash-dot line of best fit can drawn between those 12 points (circles) representing WD with basic data obtains from [48] [51] 
and ρ- P relation calculated using our model. The slope is about −0.24. Since the mean mass density, being around 3 to 5 × 
108 kg/m3, is lower than that of the MWD, the dash-dot line is “below” the solid line representing the MWD data, as ex-
plained before for other groups of stars. Note that whereas the P value covers a wide range from 103 to 107 s, the mass den-
sity falls within a very narrow range of around 107 kg/m3 for WD. We have already analyzed the data for other groups of 
stars in the previous sections. Here without showing the data points, we just take the line of best fit using all the stars in Ta-
ble 2 (see also Figure 4) representing the pre-main-sequence stars of the Orion Nebula (dotted line). The lines of best fit for 
the NGC 2819 group, the M35 group, examples of low-to-mid mass main sequence stars, and members of the NGC 2516 
group (seer Figure 6) are also indicated as solid lines in Figure 7 for comparison. 
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6.2. White Dwarfs (WD) and Magnetic White Dwarfs (MWD) with Mass Densities Varying  
from 3.1 × 108 to 1.9 × 109 kg/m3, P from 0.3 - 100 Years, & M Ranging from 0.52 to 
0.94 M☉ 

When the mass of a matured star is large enough, reaching the critical gravity value, it collapses into a white 
dwarf (WD) [48]-[50]. WD are approaching the end stage of stellar evolution, in our opinion. The ratio ρ = Ro/R 
is taken to be that specified by the Second Law, which represents the stable state where ρ stays constant when 
the temperature in the void is Tc = 5.3 × 109 K. The mass of the “non- magnetic” WD as published in 2003 
have masses within a narrow range of ~0.5 to 0.6 M☉, and magnetic data is not available for a number of mem-
bers considered. We list a number of isolated white dwarfs in Table 8. There we enter the effective temperature 
reported in literature, and other relevant parameters for discussion [48]-[50], together with the calculated ρ, den-
sity, and void radius Ro. Notice that whereas the P value covers a relative wide range from ~103 to 105 s, the 
mass density falls within a very narrow range of several times of 108 kg/m3 for WD. Remark also that as the star 
slows down in rotation, the void radius Ro shrinks accordingly. The values of R are deduced from the Hama-
da-Salpeter relation for dwarfs [51]. The ρ-T data points of WD are represented by circles in Figure 7. A 
straight dash-dot line of best fit can be drawn between those 12 points (circles) with basic data obtained from 
[48]-[50] and ρ calculated using our model. The slope is about −0.24. Since the mean mass density, being 
around 3 to 5 × 108 kg/m3, is higher than that of brown dwarfs (BD), this line is “above” that of the one marked 
BD.  

Similarly, we shall analyze some data of some isolated magnetic white dwarfs (MWD) [50] [52]. We list the 
surface magnetic induction field reported instead of effective surface T in Table 9 for MWD, together with other 
parameters similar to that for the WD case. The MWD are found to have higher masses M falling in the range 
0.6M☉ < M < 1M☉, and the surface magnetic field varies from 0.07 Tesla to even 1000 Tesla = 107 Gauss, whe-
reas the period of rotation varies from ~103 to longer than one hundred years! The last three columns gives the 
values calculated for ρ, the mean mass density and the radius of the void core. For the MWD members, the cal-
culated data pair (ρ, P) are indicated by triangles in Figure 7, with the solid line of best fit drawn though the tri-
angles. We have taken the period of WD1829 + 547 to be 100 years, the minimum value estimated via mea-
surement as reported in [52]. It is rather surprising that though a huge gap is missing in the range of P (106 - 109 
s), the measured/deduced data point from other groups over the years follow a straight line according to our 
model. The slope is about −0.24 for the MWD. It was noted in the key reference [52] that there are no correla-
tions among the crucial physical parameter M, P, Bs (surface magnetic induction field) in this group of stars. 
The ρ values in Table 9 only gives the upper limits of the consequences of our model for MWD. This is a “log-
ical deduction” as ρ cannot be greater than 1, or even close to 1 in this case. Since for a fixed P value, the densi-
ty of MWD is in general higher than that of WD, this solid line is above that of the dash-dot line representing 
WD. It appears that the strength of the magnetic field does affect the value of ρ, which is obviously a strong 
function of (Iω)0.25. The Ro value of MWD also decreases with increasing P. 

We propose that (WD) and magnetic white dwarfs (MWD) form two sub-groups of stars [49] [50]. We ven-
ture to suggest that those WDs having more protons and electrons than neutrons, near their surfaces become 
magnetic white dwarf (MWD). These electrons and protons form Chern-Simons hydrogens [18]-[20] which are 
pushed out quickly to the atmosphere above the surface, generating huge magnetic fields (as compared to WD).  

The relative fast rotation rate ~103 s of MWD & WD (as compared to P = 2.16 × 106 s for the Sun) suggests 
that they have evolved from very fast rotating stars, such as pulsars. Therefore it is tempting to consider the iso-
lated MWDs (as well as WDs) to be members of the later stage of pulsars. We hypothesize that in the future, pe-
riods of rotation > 109 s will be found for MWD/WD with advancement of measurement methodology and more 
space-flight experimentation. We have already analyzed the data for other groups of stars in the previous sec-
tions. Here without showing the data points, we just take the lines of best fit using all the stars in Tables 2-6 (see 
also Figures 4-6) to represent the ρ-P relations of the pre-main-sequence stars of the Orion Nebula (dotted line), 
the NGC 2819 group, the M35 group, examples of low-to-mid mass main sequence stars, and members of the 
NGC 2516 group in Figure 7 for comparison. 

To have some feeling about the transition from the First Law to the Second Law, we indicate in Figure 8 the 
ρ -T relation for three members of the MWD. Note that we take this as an example to illustrate the general cha-
racteristics of the First and Second Laws, and we neglect the size of the void core, so that the massive matter is 
approximately occupying the whole spherical volume. For ρ ~ up to 10%; this is a good approximation. The 
three ρ-T curves marked M1, M2, M3 represent respectively results of the following three MWD: WD0533+053, 
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Table 8. White dwarfs. [48]-[50] This table lists Mass M/M☉, radius R/R☉, effective temperature at the surface, period of ro-
tation P(s) of some white dwarfs with low mass (M < 0.6 M☉) for calculation of the ratio of the void to star radii ρ = Ro/R in 
the region governed by the Second Law (small T  Tc). Here, the radius is assumed to follow the Hamada-Salpeter model 
[51] for dwarfs. The Fermi energy of the spinors is taken to be 0.5 MeV (see Sections 1-3). 

Star (WD) M/M☉ R/R☉ Teff (K) P (s) ρ = Ro/R Den (109 kg/m3) Ro (×106 m) 

GD140 0.52 1.32 2.30 × 104 1.037 × 103 1.439 × 10−1 0.3192 1.3210 

Grw+73 8031 0.52 1.32 1.54 × 104 1.296 × 103 1.361 × 10−1 0.3192 1.2497 

WD1337+70 0.52 1.32 2.10 × 104 1.728 × 103 1.267 × 10−1 0.3192 1.1630 

LB253 0.52 1.32 1.92 × 104 2.592 × 103 1.145 × 10−1 0.3192 1.0509 

W1346 0.52 1.32 2.15 × 104 5.184 × 103 0.963 × 10−1 0.3192 0.8837 

G1423-B2B 0.52 1.32 1.40 × 104 6.998 × 103 0.893 × 10−1 0.3192 0.8198 

PG2131+066 0.62 1.19 8.00 × 104 1.814 × 104 0.775 × 10−1 0.5195 0.6410 

L19-2 0.60 1.22 1.22 × 104 9.504 × 104 0.501 × 10−1 0.4665 0.4255 

NGC 1501 0.55 1.28 8.10 × 104 1.011 × 105 0.472 × 10−1 0.3703 0.4199 

 
Table 9. Magnetic white dwarfs. Values of mass, magnetic induction field B at the surface, period of rotation P (s) are taken 
from [52]. Here, the star’s radius is assumed to follow the Hamada and Salpeter’s relation [51] for dwarfs. As before, the 
Fermi energy of the spinors is taken to be 0.5 MeV. The effective temperature of MWD is considered to be of the order of 
104 K. The ratio of the void to star radius ρ = Ro/R in the region governed by the Second Law, density and Ro are calculated 
and entered in the last three columns. 100 Tesla = MG. Notice that as P increases, Ro decreases accordingly. 

Star M/M☉ R/R⊙(×0.01) B (100T ) P (s) ρ = Ro/R(×0.1) Den (109 kg/m3) Ro (×106 m) 

WD0533+053 0.71 1.10 20 3.600 × 103 1.2486 0.7532 1.13690 

WD1031+234 0.93 0.88 500 - 1000 1.224 × 104 1.0998 1.9270 0.67312 

WD0548-001 0.69 1.13 10-20 1.482 × 104 0.8587 0.6752 0.67485 

WD0009+501 0.74 1.07 0.2 2.160 × 104 0.8173 0.8530 0.60822 

WD0011-134 0.71 1.10 16.7 4.680 × 104 0.6576 0.7530 0.50307 

WD1533-057 0.94 0.86 31.0 8.640 × 104 0.6844 2.0870 0.40934 

WD0912+536 0.75 1.05 100.0 1.149 × 105 0.5451 0.9150 0.39806 

WD1953-011 0.74 1.07 0.07 1.246 × 105 0.5274 0.8530 0.39249 

WD1829+547 0.90 0.90 1700 - 1800 ≥100 0.0584 1.7433 0.03657 

 
WD1031+234, WD0912+536. The same graph for the sun is indicated by the dash-dot curve. The linear portion 
of each line represents the region specified by the First Law, at higher temperatures. Physically, as T decreases, 
there are more spinors with energies <Ef, and the star enters into the transition region. In the ρ-T representation, 
the straight line curves up to become a horizontal line. The star is then becoming stable, with fusion taking place 
to burn up what- ever fuels are available, while the heat energy from the void diffuses to the stellar surface and 
radiates as luminescent heat. The star cools down and become an old star, while the ratio ρ = Ro/R tends to an 
asymptotic constant. 

Mathematically, we wish to point out again the “mid-transition point” indicated by the particular temperature 
Tc =5.3 × 109 K is the intersection of the straight line representing asymptotically the First Law (with finite neg-
ative slope) and the horizontal line representing asymptotically the Second Law. The Tc value for each stable 
stellar object is the same, and is therefore universal, for a fixed Ef, with reason discussed in earlier sections al-
ready. 

The ρ -T curve for the Sun is also shown in the same Figure as a dot-dash line for comparison. 

7. Neutron Stars Are the Very Old Stars 
There are only up to 1000 pulsars found so far, but it is estimated that there are around 109 neutron stars in our 
galaxy [53], and the concept that old neutron stars are different from pulsars have been recognised long ago [54] 
[55]. It is interesting to note that using Monte Carlo simulation to follow the evolution of neutron stars under the  
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Figure 8. The ρ-T relation for three members of the MWD, using data in Table 9. M1, M2, M3 represent respectively results 
of the following MWD: WD0533+053, WD1031+234, WD0912+536. The same graph for the sun is indicated by the 
dash-dot curve. The linear portion of each line at high T represents the region specified by the First Law. As T decreases, the 
line passes through a transition region, with “mid-point” indicated by the particular temperature Tc = 5.3 × 109 K. This point 
is the intersection of the straight line representing asymptotically the First Law (with finite negative slope) and the horizontal 
line representing asymptotically the Second Law. The Tc value for each stable stellar object is the same, and is therefore uni-
versal (called the Third Law), for a fixed Ef, which is taken to be the rest mass of the lightest lepton (0.5 MeV) as explained 
in Sections 1 and 3. 

 
influence of the Paczynski galactic gravitational potential, it has been shown in [56] that the distribution of the 
old neutron stars (age ~109 to 1010 years, similar to that of the galaxy) follow a torus-like shape above the galac-
tic plane. Such a picture is consistent to our model that pulsars are new-born stars, but are aging to become old 
neutron stars, with age about that of our galaxy. 

We distinguish pulsars from the very old neutron stars though both have the same nuclear mass density of ~3 
× 1017 kg/m3, satisfying  
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The variation of the void radius Ro on changing radius Rn of the neutron star is presented in Figure 9, with the 
stellar mass in units of solar mass as a parameter as marked in the figure. The constraint is that the density of the 
star matter is given by d = 3 × 1017 kg/m3. For a given mass, the radius of the neutron star must be greater than 
the “critical radius” Rnc so that the density would not be greater than the nuclear density. Such a property is in-
dicated by the Mn/M☉ − Rnc plot in Figure 10. 

The angular momentum of a neutron star is also given by the spherical shell model as in the case of pulsar:  

                            (7.1b) 

In the context of our model, this angular momentum is balanced by that of the spinor pairs in the void; as the 
neutron star is assumed to be in the final stage of development, its angular momentum is governed by the 
Second Law (whereas the First Law is applied to study pulsars), and from Equations (3.27a) and (4.2), we have 
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Figure 9. Void radius Ro against radius of neutron star model as specified by relation (7.1a) for various masses in units of 
solar mass M☉ as marked. 

 

 
Figure 10. Rnc is the critical radius of the neutron star model with mass density about the nuclear density. For a given mass, 
the radius of the neutron star must be greater than this critical radius Rnc so that the density would not be greater than the 
nuclear density. 

 

                               (7.2b) 
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We are interested in the final state where P is large. Therefore we assume that on the left hand side of (7.2c), 

term (i) =  is much larger than term (ii) = . Equation (7.2c) then approximately becomes 
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                                   (7.3a) 

                                  (7.3b) 

13 51 0.251.2484 10 .{1.875117 10 . }nR
P

−= × × ,                          (7.3c) 

where we recall that Ef = 0.5 MeV and . 

Solving (7.1) and (7.3c), we obtain the ρ-P relation. Let us take a numerical example to demonstrate how we 
can deduce the period of rotation P from radius of a neutron star. Consider Mn = 1.4 M☉. From (7.2c) if we arbi-
trarily take Rn = 1.4 × 104 m, we find Ro = 0.8077 × 104 m, leading to ρ = 0.577. Substitute the relevant values 
into Equation (7.3c), we can solve for P:  

52 4 51 4 60.57710 .( ) 1.875117 10 .1.4 10 / , giving 5.753 10 .
1.2484

P P s− −= × × = ×  322.67096 10zL = × J-s. With Lz = 

2.67096 × 1032 J-s, we then test whether the approximation is valid by comparing the terms (i) and (ii); we have 
found that (i)  (ii).  

As another example, if Rn = 1.5 × 104, Ro =1.05 × 104 m, ρ = 0.7, leading to 10−52 × (0.7/1.2484)4 = 1.875117 
× 10−51 × (1.5 × 104/P), or 9.885 × 10−54 =1.875117 × 10−51 × (1.5 × 104/P), giving P = 2.8454 × 106 s. For this 
value of P, (i) = 1.35 × 1017 S.I. Units; (ii) = 3.1583 × 1018 Ro/P = 1.1655 × 1016 S.I. Units; this approximation 
just mentioned is still barely valid. In this case, Lz = 7.01292 × 1032 z J-s. 

As a third example, with Rn = 1.35 × 104 m, Ro = 0.63 × 104 m, ρ = 0.466666; P =1.2964 × 107s. The angular 
momentum of the star is Lz = 1.068225 × 1032 z J-s, which is 8 orders of magnitude lower than that of the Vela 
pulsar. Apart from the Lz value (effectively the rotation rate), pulsars and neutrons could “appear very similar” 
to a distant observer. 

We can now plot the ρ- P relation for neutron stars with mass = 1.4 solar mass back in Figure 7, represented 
by the solid line marked “Model Neutron star”. The starting point of the ρ-P line is where the condition (i)  (ii) 
begins to be satisfied, else numerical evaluation using the more complicated equation in (7.3c) has to be used for 
smaller P values. For each mass of the neutron star model, we have another parallel straight line. We would re-
mark that a neutron star even having the specified mass (Mn = 1.4M☉ in this example) does not necessarily fol-
low this line in its evolution. Even if Mn remains constant, the star evolves according to the Second law. The 
temperature cools as the star ages. Since T does not appear explicitly in Equation (3.7a), and we assume Ef to be 
constant, a point on the ρ-P line means that at a certain time, if the rotational period P is measured to be a certain 
value, the void radius is fixed by the value of ρ on the line. Such a value of ρ (or Ro) tells that the angular mo-
mentum of the spinor pairs rotating at a certain (yet unknown temperature) T < Tc, so that the angular momen-
tum of the spinor pairs have the same magnitude to balance the angular momentum of the matter shell. The nu-
merical example just above already demonstrates the methodology of calculating the angular momentum. In the 
last numerical example, the spinor pairs follow the Fermi-Dirac equation, and they arrange themselves to such a 
temperature that gives rise to angular momentum ~1032 J-s. Since the spinor pairs are in a heat bath insdie the 
void, their energy is exchanged between that of the matter star. During evolution, energy is lost eventually 
through radiation from the star’s surface, and the star cools down. More data measured (e.g. Rn, Mn) plus nu-
merical analysis like that illustrated in Section 4 might lead us to find the T of the hypothetical neutron star at a 
certain stage later in the future. 

To have more feeling about the decrease in angular momentum of our neutron star model, we indicate in Fig-
ure 11 the angular momentum Iω of two neutron star models versus their radii Rn for mass equal to (a) 1.4 and 
(b) 2.0 solar mass as marked, with critical radii Rnc = 1.304 × 104 m and 1.46855 × 104 m respectively. When 
both have the same radius of 1.5 × 104 m, (a) rotates with P = 32.93 days, whereas (b) rotates with P = 325.10 days. 
Consider the situation where their masses stay constant while cooling down, with associated decreases in angu-
lar moment and radius. When the radius of (a) becomes 1.3045 × 104 m, its angular momentum becomes 2.86 × 
1029 J-s, and P becomes 132.29 years. When model (b) contracts to a radius of 1.469 × 104 m, its angular mo- 
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Figure 11. Angular momentum Iω of two neutron star models versus their radii Rn for mass equal to (a) 1.4 and (b) 2.0 solar 
mass as marked, with critical radii Rnc = 1.304 × 104 m and 1.46855 × 104 m respectively. When both have the same radius 
of 1.5 × 104 m, (a) rotates with P = 32.93 days, whereas (b) rotates with 325.10 days. Consider the situation where their 
masses stay constant, while cooling down, with associated decreases in angular moment and radius. When the radius of (a) 
becomes 1.3045 × 104 m, its angular momentum becomes 2.86 × 1029 J-s, and P becomes 132.29 years. When model (b) 
contracts to a radius of 1.469 × 104 m, its angular momentum becomes 2.84 × 1029 J-s (about the same as that of model (a)), 
but the period of rotation becomes 240.99 years. Note that Rnc is the minimum/limiting value of the radius. The angular mo-
mentum of our neutron star model at its “very old age” is ~11 orders of magnitude lower than that of the Vela pulsar. Note 
that few magnetic white dwarfs have been deduced to have P values greater than 100 years also (Section 5). 

 
mentum becomes 2.84 × 1029 J-s (about the same as that of model (a)), but the period of rotation becomes 
240.99 years. Note that Rnc is the minimum/limiting value of the radius. 

8. Angular Momentum of Members of the Solar System 
In our model, every member of the solar system was created by projection. When matter is created to the shell of 
a star, the distribution of quarks & elementary particles are in general certainly not even. A young star contains a 
lot of energy and rotates at a very fast spin as explained in Section 4. With the inhomogeneity of mass distribu-
tion, it is therefore likely that a stellar mass structure can be split into two smaller stars, with 5D void in each. 
We propose this to be the reason of observing so many binary pulsar systems in this universe. [57] In the solar 
system, however, every member of the solar system was created by projection. We therefore analyze the ρ-T re-
lation for each planet like any other star. We now list the mass M, radius R, period of rotation P and the subse-
quent magnitude of ρ and (Iω)0.25/R for members of the solar system in Table 10 [58] [59]. Based on the Second 
Law, we interpret ρ as the normalized void size at a T low enough so that the angular momentum of the void is 
mainly contributed by spinors with energies much smaller than Ef. We observe that [(Iω)0.25/R] varies from 11.23 
kg−0.25∙m−0.5∙s−0.5 [for Venus] to 73.7 kg−0.25∙m−0.5∙s−0.5 [for Jupiter] in the solar system. Our model leads to the 
result that ρ varies only within a narrow range in the solar system, even though other parameters vary signifi-
cantly. In Figure 12, we plot the ρ-T relationships using the general Equation (3.5) from T = 1012 K to T = 108 K 
for Jupiter (marked J), Earth (marked E), Mars (marked Ma), and Venus (marked V), taking Ef = 0.5 MeV. The 
ρ, density values for members of the solar system are listed in the last two columns of Table 10. Here we also  
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Table 10. The solar system. Parameters include mass M, radius R, period of rotation P, density and the deduced ratio of the 
void to star radius ρ = Ro/R as governed by the Second Law (T  Tc) taking the Fermi energy of the spinor pairs to be 0.5 
MeV [58] [59]. 

Planets Mass (kg) Radius (m) P(s) Iω(J-s) ρ = Ro/R den(103 kg/m3) 
Sun 1.99 × 1030 6.955 × 108 2.16 × 106 1.100 × 1042 2.876 × 10−3 1.410 

Mercury 3.3 × 1023 2.44 × 106 5.067 × 106 9.745 × 1029 7.917 × 10−4 5.427 
Venus 4.867 × 1024 6.05 × 106 2.0995 × 107 2.133 × 1031 6.904 × 10−4 5.204 
Earth 5.972 × 1024 6.37 × 106 8.64 × 104 6.800 × 1033 2.755 × 10−3 5.510 
Mars 6.417 × 1023 3.3895 × 106 8.864 × 104 2.087 × 1032 2.179 × 10−3 3.940 

Jupiter 1.8983 × 1027 6.991 × 107 3.573 × 104 6.780 × 1038 4.445 × 10−3 1.330 
Saturn 5.684 × 1026 5.8232 × 107 3.836 × 104 1.374 × 1038 3.539 × 10−3 0.687 
Uranus 8.682 × 1025 2.54 × 107 6.12 × 104 2.300 × 1036 2.972 × 10−3 1.270 

Neptune 1.024 × 1026 2.46 × 107 5.80 × 104 2.400 × 1036 3.197 × 10−3 1.638 
Pluto 1.471 × 1022 1.184 × 106 5.52 × 105 9.380 × 1028 9.113 × 10−4 1.880 

 

 
Figure 12. ρ-T relationships using the general Equation (3.5) from T = 1012 K to T = 108 K for Jupiter (marked J), Earth 
(marked E), Mars (marked Ma), and Venus (marked V), taking the Fermi energy = 0.5 MeV. The ρ, density values for 
members of the solar system are listed in the last two columns of Table 10. Here we also show the First two laws by two 
dotted straight lines (taking J as an example) and the Third Law is represented by the point of intersection of the two dotted 
lines, giving us Tc = 5.3 × 109 K. 

 
show the First two laws by two dotted straight lines (taking J as an example) and the Third Law by the intersec-
tion point marked Tc = 5.3× 109 K. Note that a model with similar consequential result based on matter in Lo-
rentz space-time alone has been proposed, emphasizing on the orbital architecture of the giant planets of the So-
lar System [60]. Pluto forms part of a binary system. Excluding this planet, we show in Figure 13 the variation 
of ρ (in the Second Law region) with respect to changing period of rotation P. The negative slope has the value 
about −0.27. The mean density of members of the solar system varies because some planets contain mainly ga-
seous, rather than solid material. Taking the average density to be of the order of 103 kg/m3, the ρ-P line falls 
into the “right place” among groups of stars so far studied. 

9. General Discussion 
9.1. Summary of the Theory on Angular Momentum Generation and Some Relevant Basics  

in Physics 
Perelmann’s proof of the Poincare Conjecture suggests that spherical stellar objects are formed via 5D-4D pro- 
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Figure 13. ρ against the period of rotation P(s) within the Second Law region for planets excluding Pluto (Table 10). 

 
jection, with 5D voids in the centre of each object. On the other hand, in view of charge conservation, the spi-
nors are only produced in pairs. Those pairs which are rotating in phase along the latitudes of the spherical void 
(Section 1 and 2) generate a net angular momentum, which is balanced by the angular momentum of the spin-
ning object in Lorentz manifold. Such a notion provides an explanation on the origin of angular momenta of 
stars plus various objects in our universe. Since the spinor pairs in the void are Fermion pairs, we assume they 
satisfy the Fermi-Dirac statistics F(Ef, T) in the way explained in Section 3. The limits of integration in the ex-
pression of Lz are essentially 0 and infinity. Separating this integral into one with limits 0-Ef and the other one 
with Ef-infinity, and expanding the function F(Ef, T) as a power series, the total angular is then expressible as a 
number of series which can summed in closed form. The separation of the integration limits has important bear-
ing in physical meaning. It is easy to recognise that such an explicit representation has two asymptotic forms 
specified by the conditions 1) *

fE  = Ef/kT  1, and 2) *
fE   1. The first asymptotic equation leads to the 

First law, the physical meaning behind can simply be stated as: the total angular momentum of the in phase spi-
nor pairs is mainly contributed by those with energies  Ef. The integral with limits 0 - *

fE  stated above is 
very close to zero and a number of series are also equal to zero in the small *

fE  limit. The non-zero contribu-
tion comes from the second integral with limits *

fE -infinity which is a definite integral and has the numerical 
value of the order of unity. Therefore Equation (3.9) takes on a very simple form of Ro∙kT = A∙Iω, with A being a 
constant. There are data from stellar objects allowing us to calculate the angular momentum Iω observed in the 
Lorentz space-time. Hence, the radius of the 5D void, Ro, is inversely proportional to T (in the 5D void) for an 
object with well defined angular momentum. In carrying out the above analysis, we discover three laws govern-
ing the relationships between Ro, T, Ef and angular momentum Iω of the astronomical object of interest. The 
features of these three laws are closely related to the limits of integration mentioned above, and the physics of a 
Fermion pair system in Section (III). Of importance is that the shape of the ρ- T curve of every stellar object is 
identical because the function I ( *

fE ) in Equation (3.4) represents the perpetual state, or macroscopic static state 
of the spinors in the 5D void. In Figure 8 and Figure 12, we present examples how ρ changes from the First 
Law region to the Second Law region, with the “turning point” specified by E*

fc at Tc = 5.3 × 109 K (called the 
Third Law) for Ef =0.5 MeV, the rest mass of the lightest lepton generated. Note that Tc is just greater than Bethe 
range of fusion.  

As stellar objects have different stages of fusion reactions inside the star, the materials formed depend on 
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many parameters such as the dynamics of the plasma surrounding the void, the mass density distribution of the 
star, the temperature T (in the Lorentz space-time) etc. The 5D void of each star is therefore subjected to differ-
ent mechanical pressures at different stages of evolution. At present, we do not have enough information on the 
parameters which would allow us to calculate (with sufficient accuracy to deduce useful physical conclusion) 
the pressure acting on the void in this model. In order to begin somewhere with this new theory, we employ the 
normalized void radius Ro/R as an independent variable to investigate certain characteristics of the angular mo-
mentum as T changes. Certainly ρ = Ro/R > 1 is absurdity and this is a condition to check the validity of this 
theory. While matter is created and each stellar object spins to conserve angular momentum, heat exchange 
takes place between the 5D - 4D boundary. In general, the temperature of the void containing spinors in each 
object is much higher than that of the matter space, so that heat energy diffuses via temperature gradient to the 
Lorentz space, eventually reaching the surface of the object, and there is always a thermal radiation component 
even in the quiescent state of neutron star, as observed in [61]. 

9.2. A General Sketch of Stellar Evolution—From Pulsars to Neutron Stars 
We have explained in Section (1, 2) that the combination projection Po and P1 leads to the creation of all the 
elementary particles detected/perceived in the 4D manifold in which stars are observed to exist. At the beginning, 
these particles form a shell enclosing the void. As projection/creation goes on, the shell increases its thickness. 
Since the temperature at this stage of a star is extremely high (>1012 K), the individual quarks can exist, together 
with the gluon potential fields which can exist in the Lorentz space time structure. It takes a long time before the 
right combination of the quark members to collide and form hadrons, while emitting large amount of energy in a 
wide range of the electromagnetic spectrum. Chern-Simons gauge confinement requires that the quark-current 
rotates in a 2D manner, generating huge magnetic field (with axis not necessarily along the Lz direction) of a 
new born star, as observed in pulsars. We would like to remark also that at the birth of a star, there is relatively 
small amount of (massive) matter, and the electrons and quarks are spinning very fast to counter-balance the 
angular momentum of the spinor pairs in the 5D void. Up to the present time, a pulsar named PSR 1937+21 with 
rotation period of even down to 1.6 ms has been detected [62]. To form a hadron, the right quark members must 
be combined in a gauge invariant way (with the “equilateral triangular formation”) described in a recent paper 
[13], and the chance of such formation is very small while these members moving with highly relativistic speeds. 
When the quarks do form hadrons (a statistical process), while emitting large amount of energy in a wide range 
of the electromagnetic spectrum as discussed earlier. When protons are formed, they are guided by Lorentz force 
with centers of mass gyrating along huge magnetic field lines (due to 2D Chern-Simons gauge confinement) to 
emit synchrotron radiation and may also hit the magnetic poles (if the pitch angle is small enough) to emit 
Bremsstrahlung radiation with various frequencies (particularly in the X ray/γ ray range), while energies of the 
protons are decreased. The pulse radiation from the magnetic axis is a well known phenomenon during pulsar 
detection. As more hadrons are formed, the star has increased in mass and size (meaning Ro is expanding), lead-
ing inevitably to decrease in spinning rate due to angular momentum conservation, and also leading to decrease 
in temperature because (heat) energy is lost continuously. Note also that the increase of mass of a stellar object 
can occur by gaining matter from nearby objects, or due to some unknown reason. Whereas astronomical explo-
sion like the supernova explosion can lead to the formation of lumps of matter which might develop into stars 
due to gravity, projection theory provides an explanation of the phenomenon “mass generation”. Thus, accord-
ing to this new model, there are pulsars with a very wide range of masses; they spin down and can form different 
stages of stars while expanding. It is assumed in the model of pulsar described in (IV) that the mass density of 
the shell is ~ nuclear density based on the assumption that quarks plus hadrons formed at this stage have such 
magnitude of density. If other smaller magnitudes of density are considered, the general picture is the same, with 
different constraints on the radii of these objects. 

We propose here that those stars with M > 1.4 M☉, could suffer from gravitational collapse, and eventually 
become the “real neutron stars” with mass density ~ nuclear density, as explained in Section (VII). Detailed 
study of stellar evolution is outside the scope here. We leave out the formation of giants and super-giants, but 
concentrate on analyzing different groups with respect to their variation of mass densities, void radius Ro, and 
period of rotation P as the stars age. In Sections 5-7, we calculate the ρ = Ro/R and density values for the 
pre-main-sequence stars in the Orion (Table 2), the NGC 6819 stars (Table 3), the M35 group (Table 4), the 
low-to-mid mass main sequence stars (Table 5), the NGC 2516 group (Table 6), the brown dwarfs (Table 7), 
the white dwarfs (Table 8), the magnetic white dwarfs (Table 9), and eventually to the our model of the very 
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old stars—neutron stars. Figure 7 summarizes the ρ-P graphs for these groups. The ρ-P line for each group 
(such as MWD or WD) is a straight line with a well defined slope. Up to now, we need more data points to de-
termine accurately the values of these solpes, the result of which would lead to physical laws describing certain 
behavior of the stellar objects. We have indirectly demonstrated in Figure 7 that in general while average den-
sity of a group increases, the average ρ value increases also. 

To demonstrate what we have said about the ρ-density connection, we indicate in Figure 14 graphs with ρ 
versus density, but with groups rather than individual star. Each vertical wall of a box there represents the range 
of ρ values calculated according to the Second Law for the group of stars studied, and the horizontal wall size 
indicates the range of density calculated in each group. For small ρ values, each object is represented by a 
spherical mass with a negligible void size, as compared to the stellar volume. We observe an interesting general 
trend stated: average ρ is increasing with the increase of mean density. It is also interesting to remark that in our 
model, a new-born star—pulsar has mass density ~ nuclear density, but could acquire various masses; those with 
masses greater than the Chandrasekhar limit collapse into neutron stars with density having the same order of 
magnitude. 

Many stars with low-to-mid mass have densities from several hundred to ~5 × 103 kg/m3. The NGC 2516 and 
brown dwarfs are denser—up to 105 kg/m3. We have not included larger stars because there are different path-
ways as they evolve, and the data on radii are scattered. With increasing data to be obtained later, we can fill in 
the gap between the range of 105 kg/m3 to ~108 kg/m3, as well as the “final range” of 1010 to 1017 kg/m3. The 
WDs and MWDs have density up to a few times 109 kg/m3. We observe in Figure 14 that the block for MWD is 
elongated, with extended values of ρ. Referring back to Figure 7, MWD can have P value over 100 years, and 
the ρ value is very small, as the star rotates very slowly. Such a long block is expected intuitively. Finally, if a 
star ages to become a neutron star, the density is ~ 3 × 1017 kg/m3. If we just take the “limiting model” with 
mass = 1.4 M☉, and radius Rn = 1.4 × 104 m, ρ is 0.577 (Section 7). We represent this particular neutron star by 
the little circle in Figure 14. There are many main sequence stars with mass even up to 50 M☉, and we antic- 

 

 
Figure 14. Graphs with ρ versus density, but with groups rather than individual star. Each vertical wall of a box there 
represents the range of ρ values calculated according to the Second Law for the group of stars studied, and the horizontal 
wall size indicates the range of density calculated in each group. For small ρ values, each object is represented by a spherical 
mass with a negligible void size, as compared to the stellar volume. We observe an interesting general trend stated: average ρ 
is increasing with the increase of mean density of group of stars. It is also interesting to remark that in our model, a new-born 
star-pulsar has mass density ~ nuclear density, but could acquire various masses; those with masses greater than the Chan-
drasekhar limit collapse into neutron stars with density having the same order of magnitude. 
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ipate that many neutron stars have masses larger than 1.4 M☉. Such a very old star group is therefore represented 
by vertical line passing through the little circle in Figure 14. 

Planets are certainly less energetic than the sun and are in the relative “final stage” of development. We con-
jecture that all members of the solar system could well be within the stable Second law region, with T < Tc = 5.3 
× 109 K. Note that the Bethe fusion temperature is about 2 × 109 K, confirming that the thermal bath surrounding 
the void must be that described by Bethe fusion. 

The ρ values for planets range from ~10−3 to 10−4. The ρ-T and ρ-P graphs for eight planets excluding the bi-
nary Pluto are shown respectively in Figure 12 and Figure 13. 

A detailed study of stellar evolution has been attempted by many astronomers (see e.g. [63]) and is outside the 
scope of this paper. In passing, we just note that when hydrogen fusion ends in dwarfs, they expand to become 
red giants in which helium fuses to become carbon and oxygen in their cores via the triple-alpha process. This 
paper provides only a simplified analysis of stellar evolution, focusing on aspects relating to angular momentum. 
However, our analysis suggests that pulsars are new-born stars, but neutron stars are at the very old age of their 
stellar life. 

9.3. Brief Discussion on Fermi Energy, Heat Bath and Bose-Einstein Condensation in  
Stellar Objects 

We will now discuss the Fermi energy of degenerate electrons in white dwarfs, which are in the final stage of 
stellar evolution for stars whose masses are smaller than the Chandresekhar limit of 1.4 M☉, so that they will not 
become neutron stars. For every star, the nuclear fusion leads to a temperature greater than around 107 K. At 
such temperature, a plasma is formed with a huge electron gas. In young stars, there is a large amount of hydro-
gen nucleus as fusion fuel so that the degenerate electron gas can withstand the gravitational collapse. The size 
of the star remains for a period of time during which the matter core fuel is being used. Fusion stops when the 
fuel at this stage ends. However, loss of gravitational energy could result in an increase of kinetic energy of the 
electrons and ions, offsetting partly the cooling process. In white dwarf, the electron gas pressure prevents the 
gravitational collapse after a certain stage is reached. Taking the white dwarf WD1829+547 as an example and 
using parameters specified in Table 8, we deduce the Fermi energy below. The volume V of the star = 6.4865 × 
1020 m3. M = 1.791 × 1030 kg. As the period of rotation is estimated to be 100 years, we assume all the hydrogen 
has fused to become helium. The number of nucleons (protons or neutrons) is Nu = M/mass of proton = 1.791 × 
1030 kg/[1.66 × 10−27] = 1.0789 × 1057. There are two electrons in a helium four atom, thus the total number of 
electrons in the Fermi gas is N = Nu/2 = 5.3945 × 1056. Treating the electrons (mass me) as members of the free 
Fermi gas, the Fermi energy is simply [64] [65] Ef = h2/(2me).[3N/(8πV)](2/3) = 5.167 × 10−14 J = 0.3225 MeV. 

The Fermi temperature Tf = Ef/k = 3.74 × 109 K. The Fermi gas pressure under the condition T  Tf is Pr = 
(2/5) × (N/V) × Ef =0.4 × {5.3945 × 1056/[6.4865 × 1020]}. 5.167 × 10−14 Pa = 1.72 × 1022 Pa. As 1 atmospheric 
pressure ~ 105 Pascal, Pr ~1017 atm pressure. Using the notation of this paper, *

fE  = 5.167 × 10−14 J/[1.38 × 
10−23 (J/K) × 107 K] = 374.4, for T ~107 K. So the star is in the Second Law region. 

If we take parameters for the white dwarf Sirius B reported (M ~2.09 × 1030 kg, R ~ 5.6 × 106 m [66], we ob-
tain Ef = 5.3 × 10−14 J = 0.33 MeV, Tf = 3.84 × 109 K, Pr = 1.81 × 1022 Pa. Since Ef of the degenerate electrons is 
only a weak function of the star’s mass, it is easy to see that Ef ~ 0.2 - 0.3 MeV among most of the white dwarfs 
so far discovered. In fact, Ef of the degenerate electrons in the matter core for WD1748+708, WD0533+053, 
GD165, GD140 are respectively found, using the above calculation method, to be 0.30, 0.275, 0.246, 0.224 
MeV. This is an interesting result, as the Fermi energy of the degenerate electrons in the 4D Lorentz space-time 
is of the same order of magnitude (in fact very close) to the Ef value (=0.5 MeV) we deduce for each member of 
the spinor pairs in the void! Degenerate Fermions resist strongly further compression because the particles can-
not move to lower energy levels which are already filled due to the Pauli Exclusion Principle. As a result, it is 
difficult to extract thermal energy from these Fermions at this stage. Therefore, at the end stage of a star, there is 
thermal equilibrium between the void and the matter shell. In other words, the spinors in the void of white 
dwarfs maintain a certain size and at a fixed T at the end stage of the stellar evolution, and the size of a white 
dwarf is observed to be constant for a long time. In view of the above analysis, we conjecture that a typical 
white dwarf has a pressure > 1017 atmospheric pressure, a void radius of Ro ~ 10−1 to 10−3 of 6.37 × 106 m. While 
the Ro value remains constant, the temperature is cooled down very slowly, as described by the Second Law. 
From the angle of thermodynamics, we would also emphasize that the Lorentz boundary domain being an en-
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semble of energetic massive particles which obey thermodynamics, and thus form a thermal bath enclosing the 
void. The massless spinors within the void, must then also obey a thermal statistical distribution, processing its 
own T value. Any T gradient between the boundary domain and the void will leads to energy flow. A thermal 
gradient implies not just heat flow but also a pressure gradient, as thermal systems are P, V, T mutually depen-
dent. Note also that only vector and spinor solutions exist mathematically in the void. Vector potentials must be 
generated by current of charges. The solutions to the homogeneous Maxwellian equation (in the 5D void) are 
plane wave solutions; these solutions represent wave states that would propagate and be dissipated, leaving only 
macroscopic static states (thermal equilibrium microscopic states) in the void. 

As the void contains equal number of e and −e massless spinor pairs moving with c, with Ro fixed (Section 
(II), their quantum states can be divided into (i) in phase orbitals and (ii) opposite phase orbitals. The states of (i) 
lead to nonzero Lz, but magnetic field B = 0, whereas the states of (ii) give Lz = 0, but non-zero Bz’, where the 
axis z’ is in general not aligned with z. Furthermore, the numbers of the two types of pairs may not be equal. In 
our model, we have chosen these numbers to be in the ratio 3D to 1D, minimizing vector potential energy within 
the void. Note that we do not count the Lz states, as the void is being represented by a 3D × 1D manifold. 

The origin of magnetic field according to the projection theory will be left to another paper. 
When the kinetic energies of degenerate electrons in the matter shell are high, the rate of collision among 

them is low. They can travel at speeds approaching c to long distances. The spinors in the void have some phys-
ical similarity with the degenerate electrons in the 4D matter core: they are charged with positive or negative 
electronic charge, are degenerate, and have similar values of Fermi energy, even across the 5D - 4D boundary. 

Finally, consider the final end stage of a star, namely neutron star. Since the mass is larger, but the radius is 
much smaller than a WD, gravitational collapse causes the star to contract further. At high pressure, the degene-
rate electrons bind to the protons, forming more neutrons, with result of fast cooling. Note that the bound elec-
tron-proton state is Bosonic, resulting in a Bose-Einstein condensation. Both bosons and neutrons become de-
generate gas states, generating a huge outward pressure (due to again the Exclusion Principle) to balance the 
gravitational force. At the end stage of such heavy stars, the number of neutrons can be much greater than that of 
protons, as in heavy elements—observers would consider them as “neutron stars”. In fact, there is recent evi-
dence that isolated neutron stars show clear thermal emission in quiescence [60].  

Due to its high mass density, the gravitation gradient of the star is a very steep function of r. Thus all the way 
to the star surface, the electron orbits are quite 2D! Furthermore, being of very high energy, the electron orbit is 
likely to be satisfying the Chern-Simons relativistic gauge symmetry. Consider the lightest 2D atomic hydrogen 
as that near the star surface. This state has a total energy (T.E.) = Mp + me/γ − me; here Mp, me are respectively 
the rest masses of proton and electron and γ is the relativistic factor.  

Remark that the reduced mass m* is equal to me, and the Coulomb potential is equal to −m* in the semion limit. 
Furthermore, the relativistic factor γ is equal to 0.18 [14]. Thus this neutral composite particle has an equiva-

lent mass equal to Mp + me (0.82/0.18) = 938.3 + 2.3 = 940.6 MeV which is greater than the neutron rest mass. 
In fact this object will radiate gamma rays of order of a couple of MeVs or more, with occasional electron jets, 
whereas a pure neutron surface will not radiate. The same processes happen on regular stars, such as the sun [67]. 
Finally, we would point out that the projection theory is correlated in details to the formation of hadrons, 
through SU(3) symmetry breaking involving the gluon potentials in 4D manifold. We can therefore revise the 
formation of the Riemannian geometry in General Relativity into a quantum model, while removing Einstein’s 
compacting of the 4th space dimension, justifying the existence of the Wheeler worm hole [68]. These details 
will be presented in another paper of our series. 

10. Conclusion 
Based on the 5D projection theory, we provide an explanation as to how mass and angular momentum can be 
generated in the universe. We derive explicit expressions relating some relevant quantities in the 5D and 4D 
manifolds, so that stellar evolution can be analyzed with the model presented in this paper. Using data from 
quite a number of stellar groups, we have found that the experimental observed data fall into the logic of expla-
nation of our theory. 
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First we would remark that the Fermi distribution function  is bounded, and for a wide range of 
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After summing the series involved, we arrive at a relatively neat form for : 
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Appendix B 
For   1, from (3.5), we have the approximate results of , and  
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We can also start with the integral expression directly. Under the First Law, (A.1) gives 
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From definite integral table,  

               (B.5) 

(B.3) and (B.5) are identical. 
Now turn to the Second Law. Result of the series expansion gives 
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Starting from integral under the condition , 
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The denominator of the integrand is approximately equal to 1, except at very small values of close to ; 
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gives , as a good approximation. 

21 III += }1/{ )(2*

0

3* **
+−∞

∫ fEEedEE

}1/{
16
1 *

0

3* +∫
∞

zedzz

3nfor  ,
1920
7]

)1(
1! ]

2
11[}1/{

4

1

*

0

3* ==
+

−=+ ∑∫
∞

=

∞ π

q
qn

z

n
nedzz

4/4*
1 fEFI ==

1* >>fE

}1/{ )(2*

0

3*
1

**
*

+≅= −∑ f
f

EE
E

edEEII

*E
*
fE

2/3*
fE *

fE 3*
fE

4/4*
fE


	On the Origin of Mass and Angular Momentum of Stellar Objects
	Abstract
	Keywords
	1. Introduction
	2. A Brief Sketch of Creation of the Galaxies According to the 5D Model—With Photons as the Medium of Energy Transport
	3. The Three Laws of Angular Momentum Generated by in Phase Massless Charged Spinor Pairs Rotating along the Latitudes of the 5D Void of the Galactic Core, and 4D Space Void in Stellar Objects
	4. Formation of New Born Stars—Pulsars According to the Projection Theory 
	5. Angular Momentum Study of Pre-Main-Sequence Stars of the Orion Nebula, Cluster NGC 6819, Low-to-Mid Main Sequence Stars, M35 Group and Cluster NGC 2516
	5.1. Angular Momentum Study of “Halo Stars” in the Orion Nebula of Our Milky Way, with Mass Density Varying from a Few to Around 540 kg/m3
	5.2. Angular Momentum Study of the Low-Mass Stars in the Old Cluster NGC 6819, with Mass Density from 563 to 1610 kg/m3
	5.3. Angular Momentum of 14 “Low-to-Mid Mass” Main Sequence Stars, Members of the M35 Group and Stars of the NGC 2516 Group with Mass Density Varying from 5.6 × 103 to 9.8 × 104 kg/m3 among These Three Groups

	6. Brown Dwarfs, Magnetic White Dwarfs, and White Dwarfs as Old Stars
	6.1. Brown Dwarfs are Found to Have Mass Densities from ~1.5 × 104 to 1.2 × 105 kg/m3, and P from 3 to 40 Hours
	6.2. White Dwarfs (WD) and Magnetic White Dwarfs (MWD) with Mass Densities Varying from 3.1 × 108 to 1.9 × 109 kg/m3, P from 0.3 - 100 Years, & M Ranging from 0.52 to 0.94 M☉

	7. Neutron Stars Are the Very Old Stars
	8. Angular Momentum of Members of the Solar System
	9. General Discussion
	9.1. Summary of the Theory on Angular Momentum Generation and Some Relevant Basics in Physics
	9.2. A General Sketch of Stellar Evolution—From Pulsars to Neutron Stars
	9.3. Brief Discussion on Fermi Energy, Heat Bath and Bose-Einstein Condensation in Stellar Objects

	10. Conclusion
	Acknowledgements
	References
	Appendix A
	Appendix B

