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Abstract

We study the ground state properties of spin-half bosons subjected to the Rashba spin-orbit coupling
in two dimensions. Due to the enhancement of the low energy density of states, it is expected that the
effect of interaction becomes more important. After reviewing several possible ideal condensed states,
we carry out an exact diagonalization calculation for a cluster of the bosons in the presence of strong
spin-orbit coupling on a two-dimensional disk and reveal strong correlations in its ground state. We
derive alow-energy effective Hamiltonian to understand how states with strong correlations become
energetically more favorable than the ideal condensed states.

1. Introduction

A paradigm of traditional bosonic quantum liquid is that of helium-4. At low temperature, helium-4 is an inert
element with no relevant internal degrees of freedom. At zero temperature, about 10% of the helium atoms
condense into the lowest energy state with zero momentum [1]. The effects of the inter-atomic interaction do
not destroy the basic phenomena of Bose condensation which was first predicted for noninteracting bosons,
even though significant depletion is resulted from inter-particle scattering [2, 3]. Another general feature of
helium-4 in bulk is that it obeys Galilean invariance, which plays a crucial role in Landau’s formulation of the
two fluid model for liquid helium-4 [4, 5].

In 1995, Bose—Einstein condensation was realized in cold atomic gases. The observed atomic condensates
are very close to an ‘ideal’ condensate for noninteracting bosons since the inter-atomic interactions are usually
very weak. With the advent of synthetic spin-orbit coupling in cold atomic gases, the study of bosonic quantum
liquids is greatly expanded in several aspects [6—11]. First of all, alkali elements like *”Rb usually have multiple
internal hyperfine states, and in an optical trap all of them can be active and this leads to multitude of quantum
phases in the so-called spinor condensate [12—16]. Secondly, the inclusion of spin-orbit coupling further
introduces the coupling between the spin and momentum degrees of freedom and significantly modifies the
single particle dispersion relation. In the experimentally realized case of spin-orbit coupling along one-
dimension [17-31], this coupling leads to the so-called stripe and plane wave condensate in homogeneous
systems and in harmonic traps [32—38] and the associated tricritical point [39]. Thirdly, for certain symmetric
spin-orbit coupling, of Rashba or Weyl form, the low energy density of states is significantly enhanced such that
the effects of interaction have drastic effects on the existence of Bose condensate and could in fact destroy its
existence [40, 41]. Lastly, the inclusion of spin-orbit coupling breaks the Galilean invariance which makes the
construction of two-fluid model much more involved [42—45].

In this paper, we consider spin-halfbosons subjected to the Rashba spin-orbit coupling in two-dimensions.
We will concentrate on the interplay between the enhanced single particle ground state degeneracy and the
effects of strong repulsive interactions. In an infinite system, the Rashba spin-orbit coupling gives rise to a ring of
infinitely degenerate single particle states. We show that in the truncated Hilbert space spanned by the single

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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particle states on the ring, trial wave-functions for two and four bosons with strong correlations built-in can
have alower interaction energy than various ideal condensed states. However, for strong inter-particle
interactions, itis also important to take into account the transverse excitations away from the degenerate ring.
We consider explicitly a disk of radius R and carry out exact diagonalization calculations for a cluster of bosons
in this finite disk. We find numerical evidences for the correlated nature of the ground state. We derive alow-
energy effective Hamiltonian in the strong spin-orbit coupling limit and use it to understand why the ground
state of the interacting bosons exhibit strong correlations, analogous to one-dimensional Mott insulators and
quantum Hall states [46, 47].

The paper is organized as follows. In section 2, we discuss the general feature of a spin-half boson subjected
to Rashba spin-orbit coupling in two-dimensional space and obtain its single particle eigen-spectrum and
density of states for later discussions. In section 3, we list a host of possible condensate states and calculate their
energies. In section 4.1, we discuss trial two-body wave-functions that totally avoid interactions. In section 4.2,
we discuss the possibilities of correlated ground states in the four-particle case and show that the proposed
correlated state is lower in energy than the best condensate states considered in section 3. All the above
discussions are based on trial wave functions constructed from the lowest degenerate ring. We then highlight the
inadequacy of constructing trial states only from the degenerate ground states on the ring without considering
transverse excitation (finite kinetic energy) when interactions become strong. In section 5, we take into account
the transverse excitation and performan exact diagonalization calculation of a cluster of bosons on a disk. To
understand the result obtained, we derive an effective many-body Hamiltonian in the limit of strong spin-orbit
coupling in section 5.2. Two appendices are given. In appendix A, we discuss the exact solution of single particle
states on a disk and in appendix B, we discuss the detailed construction of the low energy effective Hamiltonian.

2. General setup

In the presence of the Rashba spin-orbit coupling, the single-particle Hamiltonian in two dimensions (2D) is
given by

B+ 5 .
Hyin = T + /\(pry — aypx), (1)

where p ,is the momentum along x(y)-direction, 1. is the mass of the boson, Ais the strength of the spin-orbit

coupling and oy, is the x(y)-Pauli matrix acting on two internal states of a boson. There are two branches of
single-particle eigenstates

1 1 .
Xep () = ﬁ(iizp)e‘l’", ©))

whose eigenvalues are e, , = p?/211 + A|p|(see figures 1 (A) and (B)). Here § is the area of the two-dimensional
system, z, = e'% with ¢, being the polar angle of p, i.e., p, = p cos g, and p, = p sin . The minimum of the
lower Rashba band occurs at [p| = puA. Notethat L, + S, isa good quantum number with § = o /2. Using the
factthat exp(ip - r) = >, 1", (pr)exp (imf), where 6 is the angle between p and r, it is straightforward to show
that the alternative spinor wave-functions (not normalized)

[ € nen )
Xt p,m +eltmtDa ] (pr)

satisfy
pZ
H =|— =+ A , 4
X, pm (ZM IPI)Xi,p,m (4)

Lz + SNy = 1+ 1/2) X1y o )

where J,,,(x) is the mth order Bessel function, and ¢, is the polar angle of r with respect to p.

One consequence of the inclusion of the Rashba spin-orbit interaction is that the low energy density of states
is significantly enhanced; see figure1(C). The density of states D(E) can be conveniently computed by counting
the number of states with energy below E, namely N (E) = >, [0(E — e_x) + 0(E — €;x)], where 6 (x) is the
Heaveside step function, and D (E) = dN (E)/€2dE gives

2
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Figure 1. (A) Three-dimensional plot of single particle spectrum with Rashba spin-orbit coupling in two dimensions. The locus of
lowest energy states lies in the circle with |p| = p\ and its spin direction is indicated in (A). The two branches of the single particle
spectrum touch at k, = k, = 0 atE = 0. (B) A cut of the energy spectrum along one angular direction. It is shown that the lowest
energy is given by Eni, = —uX?/2at[p| = p. The curvature of the lower branch at the minimal energy is given by 1/ and the
dispersion becomes sharperas ;1 — 0. (C) The density of states D(E) resembles one-dimensional system with characteristic

~1 / VE 4+ pN/2 divergence for negative energy, and remains a constant for E > 0, the ususal density of states in two-dimensions.

LD 1 .
— ifE < 0
DE) =4 V27 JE+ ux/2 ©)
£, ifE > 0.
™

Namely, due to the spin-orbit coupling, the low energy (E — —uX?/2) density of states diverges as in the one-
dimensional case, while those for E > 0 retains the usual two-dimensional constant density of states.

In the following, we assume that the repulsive interactions between the bosons can be modeled by the
contact psuedopotential

Vi — 1) = U+ Uoy - 07)6(r — 1), 7

where o , are the Pauli matrices of the two particles, and U and U are positive interaction coupling constants. U
describes the spin-independent density—density interactions, while U, describes the spin-dependent spin
exchange interaction. Due to Bose statistics, the contact psuedopotential is nonzero only when two bosons are in
aspin triplet state; V (r) in equation (7) is equivalent to Us (r) with U=U-+ U;. We should emphasise here
that equation (7) is not the most general interaction between atoms and in fact, only approximate the real form
of the interaction between ®Rb. However, we expect that such a simplified choice of interaction would not affect
the nature of the correlated ground states which we discuss later, as their nature is rooted in the degeneracy
brought about by the spin-orbit coupling.

3. Mean field condensate states

Before we discuss the possibility of correlated ground states, let us first list a few candidate condensate states built
from the lowest single particle states [p| = pA. For an ideal condensate of N bosons, the trial wave-function can
be written as

(DN
Y

|Cond) = ~2—0), ®)

with qﬁg = 2lpl=pa Sp a; and a; the lower Rashba branch creation operators. The expectation value of the
interaction energy is given by (z, = exp (i<pp))
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Table 1. Interaction energy expectation values of different con-
densate trial wave-functions.

Case p (Cond|Hi,Cond)
1 NN-1) U 2
! Mo i -3)
I () Me-ne
111 Lis 55 _ N(Ngf l)é_lLlZ
7 0(gp) + 0 (p, — m)] FRT
v %ei"*’p, forn = 0, —1 N(NZ’ 1)%(6 - %)
(Cond|H;p|Cond)
1 by N
=N Z}‘z ) (py> PolVik, ki) (01(pp)Vaj af awai, (6)N]0)
© PpPyrKiLk
N(N -1 1
—TEE L S W U+ 20U - 3z + U+ U Ea0lge e
P]vkl
U+ U U+ U
10 : Z [6 + Zl;klzl’z + Zplzé]lcpllzlpzlz - TSZ|CPI|2|C7PI|2 . 9)
PP, P

We substitute different forms of c;,, and the corresponding interaction energy expectation values, following the
usual scaling ~UN 2/) expected for ideal condensates when Nis big, are listed in table 1. For the case of

cp = % [sin ce % + cos ce'®e %] with m = n, it can be shown that the energy is lowest when

o = 0, /2 whichis shownin table 1.

4. Few-body trial wave-functions

To demonstrate how the bosons can take advantage of the degeneracy of the lower Rashba branch at |p| = pAto
lower their interaction energy than an ideal condensate, we construct explicit trial wave-functions with
correlations built in for two and four bosons.

4.1. Two-body
We write down the following two-body wave-function

1 1 . 1 1 .
Yo= Y A {[ ] ® [ ] e—ip(n—1) [ ] ® [ ] elp~(r1rz)}, (10)
oY P izp ' izp|, izp | izp |,

where A, is the amplitude of the wave-function to be determined by minimizing the interaction energy. Since
we have constrained |p| = pA, the kinetic energy is already at its minimum. It turns out that by choosing
appropriate Ap ~ ei2"% with n = 0, 1, one can show that ¢, (r; = 1,) = 0. Due to the contact nature of the
interaction potential, this means that equation (10) is an exact eigenstate of two interacting bosons. The wave-
function (10) is the same as the one found in [41]. Previously [34] and [48] have also shown that two-body
scattering states in the lower Rashba branch can have zero interaction energy once the bare interactions are
properly renormalised.

The fact that there exists a great many choice of n such that exact two-body states without interaction can be
constructed raises the interesting possibility of many-body correlated states, which, while still consists of states
with [p| = pA, avoids the interaction energy by correlating bosons in the manner as embodied in the two-body
wave-function, equation (10). Unfortunately, this straightforward generalization from two-body to many-body
could not be consistently carried out, since equation (10) correlates two bosons on the opposite side of the
degenerate circle, and for a many-body system, it is impossible to achieve for any arbitrary pair. This difficulty
can be most easily seen in the four bosons case to be discussed below.

4.2. Four-body
If we try to build explicitly the two-body correlation in the four boson case, an trial wave-function can be
constructed

|Corr) = > Apaja’,Braja’}]0), 1D
[Pl [k|=pA
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with A, = Ae?"% and By = Be!>™x_Itis clear that we are simply building into the four particle wave-function
the correlations that we have identified in the two-body case. If m = 1, equation (11) can be viewed as a
condensate of boson pairs, which is the same as the one used in [56] to study the condensation of paired bosons.
The normalization is {Corr|Corr) = [(1 + §,,)7* + 2] A?B2. Direct evaluation yields

(Corr|Hip|Corr) = %(1 + S T2AZB2, (12)

Thus the expectation value of the interaction energy for the correlated wave-function is

(Corr|Hjy|Corr) _ 12U 1+ 6
(Corr|Corr) Q 1+ S+ 2/7

(13)

which is approximately 7.33 x U/Qform = nand 9.1 x U/Qform = n, compared with the lowest
interaction energy of an ideal condensate of equation (8) given in table 1 Case [V with N = 4,

9 —-3/7) (7/(2 ~ 8.04 x (7/(2 Thus for four bosons, equation (11) with m = n has lower interaction energy
than the ideal trial condensed states. A super-fragmented trial state was proposed in [41], whose interaction
energy, if evaluated with our assumed interaction potential for N = 4, would be 3.44U /2, even lower. This
comparison indicates that different ways to correlate the bosons can suppress the interaction energy to different
degrees.

Despite the effort to build in two-body correlation, the condensate states and the trial correlated wave
functions for four bosons have at least two common features. Firstly, they are all built from the lowest energy
states on the degenerate ring and secondly their energies are all proportional to 1 /2 and coupling constant U.
When U = 0, all bosons will condense in the lowest single particle state. As one increases U from zero butstill
keeps it small compared to the single particle excitation energy, it is expected that the system falls in the mean
field regime, as discussed above. However, as U increases further, the weakly dispersing lowest Rashba band
becomes very important. One way to see this is that if one starts with a finite system with area {2, the single
particle states in the lower Rashba branch with momentum p — A < 1/+/Q differ only by energy of order of
1/£2 with the states in the degenerate ring. On the other hand, the apparent scale of the interaction energy is also
1/ (cf. equation (13)). This indicates that, at least in the strong interaction regime, it is important to consider
the transverse excitations, and their effects have to be taken into account in the construction of effective
Hamiltonian (see section 5.2). The above considerations prompt us to study the bosons in a disk of finite size 2
in the next section, where we are able to treat both the kinetic and interaction energies on the same footing.

5. Small clusters in a disk

Correlated ground states for a homogeneous interacting Bose gas with the Rashba spin-orbit coupling [40, 41]
have been explored by means of fermionization [49] and by vortex attachement [50]. Numerical calculations
have also revealed the correlated nature of the system in a harmonic trap [51].

To understand how strong spin-orbit coupling can help the bosons to suppress interaction energy, we study
a cluster of bosons with the Rashba spin-orbit coupling in a two-dimensional disk of radius R with a hard
wall boundary condition, while earlier works has focused on two-dimensional harmonic trap confinement
[40, 52-55]. In this case, the single particle eigen-wave-functions with eigenenergies E,,,,, have the generic form

Frm ()€ )

(I)nm(r> 90) = [ (14)

é“nm+1(r)ei(m+l)'»9

where m + 1/2 isthe eigenvalue of S, + L, and n is the radial quantum number determined when
D, (R, ¢) = 0isimposed on the wave-function in the radial direction. The detailed expressions of f,,,,,(r) and
&, 1 () in terms of Bessel functions are given in appendix A. In the following, we use x = /212 NR? to
quantify the spin-orbit coupling strength.

Figure 2 shows the energy spectrum E,,,,, and the associated ground state wave-functions f,, () and
&om1 (1) (n = 0) for both small (a-c) and large (d-f) spin-orbit coupling strengths x. We take 1,/2 ;1R? as energy
units throughout. In figure 2(a), the energy spectrum for small spin-orbit coupling (x = 0.1) is strongly
dispersive. The small spin-orbit coupling can be regarded as a perturbation to the usual quadratic kinetic energy.
However, when the spin-orbit coupling strength is large enough such as x = 100 as shown in figure 2(d), the
energy spectrum segregates into distinct energy bands and the lower energy bands corresponding to smaller n
are more flat. For x = 100, the band bottom of the lowest energy band is found numerically to be at energy
about 2.47 x 1/2 uR* — /2. Asan example, the energies for n = 0 are essentially non-dispersive for the
states with m € [—40, 40]. In this limit, the quadratic kinetic energy can be viewed as a perturbation to the spin-
orbit coupling. Figures 2(b) and (c) show the wave functions f,, (r)and &, , , (r) versus r for the lowest energy

5
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Figure 2. (a) Energy spectrum E,,,,, for single-particle states at small spin-orbit coupling strength (x = 0.1) with radial quantum
number n = 0 — 5 (we take 1 /21R? as energy units); (b), (c) wave-function f;,, () and &y, , () of single-particle states in the

n = 0 manifold at x = 0.1 change with r; (d) energy spectrum E,,,,, for single-particle states at large spin-orbit coupling strength

(x = 100) with radial quantum number n = 0 — 5; (e), (f) wave-function f;, (r)and &, ,(r) of single-particle statesin then = 0
manifold atx = 100 change with r. In (b), (c), (¢) and (f) solid line is for m = 0, dash-dotted line is for m = 5, dashed line is for

m = 10and dotted line is for m = 15.

bandn = 0. For alarger spin-orbit coupling strength (x = 100), the wave-functions exhibit increased
oscillations compared those with a small spin-orbit coupling strength. With increasing ||, the weight of the
wave-functions moves towards r = R. Here we would like to contrast the behavior of f;,, (r)and &, , , (r) with
that in the quantum Hall problem, where the lowest Landau level wave-functions in the symmetric gauge are
localized within distance ¢ at a set of concentric ring with radius 2 m¢ , where £ is the magnetic length. In
contrast, the wave-functions f,,, (r) and &, . | (r) are more spread out and with considerable oscillations for
large spin-orbit coupling.

When the spin-orbit coupling strength x is large (figure 2(d)), the n = 0 energy band is nearly flat and does
not overlap with the higher bands for a large range of m (see figure 2(d)), we can project the Hilbert space into the
lowestband #n = 0. As a result, we shall omit the radial quantum index #. The low energy physics can be
described by the Hamiltonian H = H, + Hiy with Hig, = E,, a;,am, where a;g is the creation operator for
states with wave-function ®y,, (r). The interaction Hamiltonian is given by

.
Hyy = Z \4 (ml) "y, M3, m4)a;1-11 Ay, Ay Amy 6m1+m27m37m4: (15)
My, 112,113,114

where the matrix elements V (1, m,, ms, my) are given by

~ (R
V (my, my, m3, my) = WU](; drr[f,:l(r)fm(”)
+ f:;lﬂ(r)fmﬁl(r)][f,::z(r)fm}(r) + f:;,zﬂ(r)fmﬁl(r)]- (16)

Itis worth to mention that the lowest band approximation we take here breaks down whenever the average
energy of aboson (while the interaction energy may be small, the kinetic energy and thus the total energy can be
still quite large) is comparable to the band gap such that higher bands are substantially populated.

5.1. Exact diagonalization
We use the above Hamiltonian H = Hyy, + Hjy projected to the lowest band to solve the states of N bosons in
the strong Rashba spin-orbit coupling limit by exact diagonalization. In the lowest band, we truncate the single
particle states up to the azimuthal angular momentum |m| = L by which numerical convergence can be
reached. Being specific, we calculate for N = 2, 3, 4 withx = 100, U=4 /pand L = 40.

Figure 3 shows the total energy Ej; and the expectation value of the interaction Hamiltonian Vy; = (Hy,) in
the eigenstate of a cluster of bosons with total azimuthal angular momentum is M. There are two degenerate
ground statesat M = 10and —12 for N = 2 (figure 3(a)),at M = —1land —2 for N = 3 (figure 3(b)), and at

6
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Figure 3. (a)-(c) Lowest Energies E, (in units of 1 /2uR?) of different total azimuthal angular momentum M for different N = 2, 3, 4,
respectively. The inset is the enlarged view around the ground state. (d)-(f) Vi;/N (in units of 1/21.R?) for each state of M for
N = 2, 3, 4 from (d) to (f), respectively. Here, we take x = 100, U= 4/u, and L = 40.

M = 28 and —32 for N = 4 (figure 3(c)). The double degeneracy of the ground states can be understood in the
following way. Without interaction, if &, of L, + S, = m + 1/2 isasingle particle eigenfunction with energy
E,, of equation (1), so is e'2% & (r). By using J,,(x) = (—1)"]_,, (x), we find that e'>% &% (r) has
L, + S, = —m — 3/2;both the single particle states of angular momentum symmetric about
L, + S, = —1/2 are degenerate. The interaction Hamiltonian is time-reversal invariant with the time-reversal
operator defined as 7 = e~2% K with the complex conjugation operator K. Thus in the case of a cluster of N
bosons, the energy spectrum should be symmetric with respect to M = — N /2, which agrees with figure 3.
Figure 3 also shows that there is a large range of M for which the low lying E, is rather flat. In the flat region,
the energy per particle for the relevant U we consider is about from 0.1 x 1/ 2uR?t0 0.3 X 1/2 uR? measured
with respect to the band bottom of the lower Rashba band. This is much smaller than the energy difference
between the lowest two bands n = 0 and 1 atm = 0, approximately 10/2 pR?, and justifies our lowest band
approximation. Whenever the energy per particle (with respect the lowest band bottom whose value is
2.47 x 1/2 uR?> — pu)/2)becomes comparable to 10/2.R?, our lowest band approximation breaks down.
On the other hand, figure 3 shows that the interaction energy per particle of the ground state |s) is orders of
magnitude smaller than its energy per particle. This magnitude difference suggests that the bosons are taking
advantage of the nearly flat lowest band to correlate in a way such that the interaction energy, usually of order
In(uAR)/2 uR? (see equation (18) below), which for x = 100isabout 4.3 x 1/2 pR?, is greatly suppressed.
Figures 4 (a) and (b) show that when U increases, bosons are prompted to the single particle states of larger || in
the lowest band, thus increasing the kinetic energy. Correspondingly, figures 4 (c) and (d) shows that the density
distribution is pushed away from the center due to occupation of higher angular momentum states m. Here N,,,
is the occupancy of single particle state with angular momentum m. With the spreading of N,,,, it is possible for
bosons to explore a larger set of nearly-degenerate lowest band single particle states to suppress interactions.
This difference also indicates that the kinetic energy of the cluster, which arises from the weakly dispersing band
(whose width isabout 0.6 x 1/(2 uR?) for L = 40 andx = 100), comprises the majority of the energy of the
system. For example, the dispersion of the single particle lowest band for x = 100 (see figure 2(d)) can be well
fitted by the formula (E,, + uX/2)/(1/2 uR*) = 5.11 x 10~*(m + 1/2)* + 2.47. Given that the boson
occupation number N,,, is noticeable up to m = 20 (see figures 4(a) and (b)), the kinetic energy of each boson is
estimated to be about 0.2 x 1/2 R?> when measured from the band bottom, agreeing with our numerical
calculations. Thus it is necessary to start with an effective Hamiltonian for which the transverse excitations away
from the degenerate ring are included.




10P Publishing

New J. Phys. 18 (2016) 025002

ZXuetal

0.2
(b)
4
[ R+
,1.; \é
01 [ # ,;' el
g o\ %
i 'l: \3&
) _‘5:’ L)
0
-40  -20 0 20 40
m
6
(d) — =1
S
41 A
—emem U=12
2 £
: 1 0 |
° (r)/; 0 0.5 1
r/'R

Figure 4. (a), (b) The ground state occupation number N,,, of the lowest band single particle states for different U. (c), (d) Density
distribution n(r) of the ground state in real space for different U. The left and right columns are correspondingto N = 3 and 4,
respectively.

1.2

0 0.1 0.2 0.3 0.4 0.5
/R
Figure 5. Correlation function g, (0, r) of the ground state versus /R for different U.The probability for two bosons to stay close to

each other is suppressed and the suppression is larger as the increase of the interaction strength. Here, we show the case of N = 3. The
asymptotic value is about 2/3 ~ 0.67, differing from 1 because of the finite number (N = 3) of particles considered.

The correlation of the ground state |s) is manifested in the density-density function

(:n(r)n(0):) (17)

0, == 5
&0 = o ()

where 7 (r) is the density operator of the bosons, the symbol :: means normal ordering and (...) is averaging with
respect to |sg). Since |s) is an eigenstate of total L, + S, g, (0, r)is a function of r. Figure 5 indicates that the
probability for two bosons to stay close to each other is greatly suppressed at large interaction U,andas U
increases, such suppression becomes stronger. In figure 5, g, (0, r) shows a maximum atabout /R = 0.25,
which can be understood from the following semi-classical picture. From figure 4(a) for N = 3, the most
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Figure 6. (a), (b) Energy E, and the interaction energy Vo = (so|Hine|so) of the ground state |s,) as functions of the interaction strength
U in the strongly correlated regime, respectively; (c), (d) Eo and V; versus U in the weakly correlated regime, respectively. Here, we
take N = 3,L = 40,x = 100 and use 1/2 ;R?as energy units and 1/ as units for U.

probable relative angular momentum between two bosons is about Am = 40. Due to the strong spin-orbit
coupling, the typical linear momentum of a boson is about 12\ and the typical relative linear momentum
between two bosons is about 2 pA. Thus the most probable distance Ar between two bosons is about

Ar/R = Am/2 uAR = Am/~/2x ~ 0.28. Beyond the maximum, & (0, r) converges to a constant. The
constant is noticeably smaller than unity due to the boson number N being comparable to unity. Note that the
numerator of g, (0, r) normalises as f d*r(:n(@)n(0):) = (N — 1){(n(0)), which we have checked numerically,
while the denominator of g, (0, ) normalises as f d’r(n(r)) (n(0)) = N (n(0)). This means thatfor N = 3, the
asymptotic value of g, (0, r)isabout 2/3 ~ 0.67, consistent with numerical findings.

The underlying correlation between the bosons also gives rise to an intriguing behavior of the interaction
energy V,, of the ground state |so) with respect to the interaction strength U. Figure 6 shows the variation of the
ground state energy E, and the interaction energy V, of the ground state |sp) for N = 3 with U both in the
strongly and weakly correlated regimes. By the Hellmann-Feynman theorem, E, must be a strictly increasing
function of U, agreeing with figures 6(a) and (c). What is surprising is that, however, figure 6(b) shows that the
interaction energy Vj is a decreasing function of U inthe range ,uIAJJ € [0.5, 0.9], contrary to what one would
expect for an ideal condensed state (see table 1), including mean field vortex states. It is also opposite to the
ff—dependence of the constructed wave-function |Corr) (equation (11)) and the super-fragmented state
proposed in [41]. In the weakly correlated limit where the interaction energy is much smaller than the energy
difference between neighbouring states which is found to be of order 10 for x = 100, figure 6(d) shows that
interaction energy V; increases linearly with U. So does Eyin figure 6(c). Thus as U increases, the ground state
shall evolve from a weakly interacting regime where the usual mean field treatment is applicable to a strongly
correlated regime where crucial interaction effects can not be captured by mean field.

5.2. Effective low-energy Hamiltonian

To understand why in the presence of strong spin-orbit coupling it is favorable for a cluster of bosons to correlate
in a way to suppress the interaction energy, we extract the leading order of the interaction Hamiltonian

equation (15). In thelimit x — 00, we can simplify the matrix elements V (my, m,, ms, m,), and as shown in
appendix B, the final form of the interaction Hamiltonian takes a particularly simple form, to leading order in
In(1AR),
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, AU ; :
Hiy = WIH(MAR) > (AfAI + BBy, (18)
1

where A; =3, ﬁl, mﬁm amai—mand By =Y, (— l)mﬁle,mﬁm a,, 41— . The dimensionless normalization
factor N, is given in appendix B. It is worth to emphasise that equation (18) is derived within the lowest band
approximation, which as we argue above holds for our numerical calculation with x = 100, cutoff L = 40 and
up to N = 4. Obviously, for any states |1)), (1 |Hy,1) > 0. The strength of Hj,, is logarithmically divergent in
the large spin-orbit coupling limit. If we now neglect the weak dispersion of the lowest band which is of order of
1/(X°R*) as compared with In(AR)/R?, the ground state will be the one which minimises Hj,,. For a state |s),
(s|H}|s) = 0onlyif Ajs) = Bj|s) = 0foranyL The existence of such nontrivial correlated states can be
considered in the following way. We assume that the spin-orbit coupling is so large that the lowest band can be
considered flat for the states of m € [—L, L]. For Nbosons, the dimension of the Hilbert space is

(2L + N)!/(2L)!N\. The requirement that Aj|s) = Bj|s) = 0for! € [2L, —2L]imposes

2(4L + 1)(2L + N — 2)!/(2L)! (N — 2)! constraints. For fixed N, the constraints can be simultaneously
satisfied if L is large enough; in other words, when the spin-orbit coupling is large enough. On the other hand, an
ideal condensate of the form equation (8) can not avoid the interaction of the form Hj,, since a condensate wave-
function is determined by assigning 2L + 1 superposition coefficients. Thus in this limit, the ground state |sy) of
a cluster of bosons is expected to have the correlation such that (s[> (AZTAI + BZJr B))|so) < 1, whichis
compatible as shown in figure 6(b) where the interaction energy V; is much smaller than 1/2 R2. Itis worth
mentioning that Hy,, is formally similar to a Hamiltonian whose ground state can be correlated Mott insulators,
corresponding to fractional quantum hall states [46, 47]. The nonlocal nature of N, (see appendix B), however,
precludes constructing exact ground states of H,, in our case. It is important to note the difference between
equation (18) and other effective interactions derived in [34] and [41] for infinite systems; the renormalised
effective interaction derived in [34] is applicable to the lower branch states while the one in [41] is meant for
states on the degenerate ring. In all, the above considerations based on equation (18) made it clear why other
than an ideal condensed state, the bosons would prefer to be in a ground state with strong correlations, whose
properties we have revealed in details by the previous numerical calculation.

6. Conclusion

In this work, we describe how the enhanced low-energy density of states changes the properties of a spin-half
boson subjected to the Rashba spin-orbit coupling. We carry out an exact diagonalisation calculation for a
cluster of bosons with strong spin-orbit coupling and reveal the correlated nature of its ground state. We derive
the corresponding effective Hamiltonian (equation (18)), which is particular simple in form and suggests a
correlated ground state that is analogous to correlated Mott insulator and quantum Hall states, suggested earlier
in the literature.

However, standing alone, the argument based on the effective Hamiltonian (18) is deficient at least in two
aspects. Firstly, the weak dispersion of the lowest band and sub-leading terms of the interaction Hamiltonian
need to be considered in order to uniquely determine the true ground state. Secondly, the comparison with ideal
condensed states is less relevant if bosons can lower their energy substantially by strong depleting from
condensates. The later problem requires one to investigate possible variational ground states of a condensed
boson system with strong depletion, which we do not attempt here; see however, the relevant discussion of [57].

More extensive numerical calculations (e.g., variational Monte Carlo) are necessary to provide more
evidences to the correlated nature of the ground state.
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Appendix A. Single particle states on a disk

To obtain the explicit form of the function f,,,,,(r) and §,,,,, . , (), we note that without the hard wall boundary
condition, the single particle wave-function can be written as, since m = S, + L, is a good quantum number
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ael™?],, (kr)
ne)=|_. ) Al
Xl 9) (ﬁe‘(m“wm 2 1kn) (A
with aand [ is the coefficients to be determined later. Requiring that
Hign X,y (K) = En X,y (K), (A2)

where E,,, is the eigenvalue with magnetic quantum number . For a specific value of E,,, there are two values of
k that can be found, by requiring that

7%k?
24
Mk

— E, Ak

det =0. (A3)

7%k2
2p

_Em

Asaresult, we find that ¢2) = E,, + pu) £ \2uNE,, + 12X with €2 = %% 5% /241, Let us denote the
corresponding wave-functions as an(r, ). The coefficients are given by

@ A’ g A4
Qi *W m (A4)

At the moment, there is no requirement on the overall normalization. Note that ') are functions of E,,,. Now
we need to impose the boundary conditions on the single particle wave-function such that it vanishes atr = R.
This can be done by forming a superposition of xi(r, ) (both of energy E,,,), with coefficients a,,, by,

agj)eimc;]m (kr(;r)r) ] ) [ ai;)eimga]m (kr(n*)r) ]

. m . (A5)
B0, (ki) B e D (ki)

q)m(r’ 50) = am(

Requiring ®,,(R, ¢) = 0 leads to the equation for the coefficients a,, and b,,, and the condition for them to have
non-zero solution is that the corresponding determinant is zero. Namely, we require

aSPTukSPR) al) T (kSR
et =
B i1 kSOR) B T (kSR

From this condition, we determine the allowed set of eigen-energy E,,,,, which we label by the radial quantum

number 1. Once we know E,,,,,, we can find the corresponding k) and coefficients o'2), 33) a,. and b,,, fora

specific radial quantum number #. The explicit form of f,,,,(r) and £, | ; (r) can then be written as
Fon (1) = @ @ T (kG 7) + Bl T (i) 1), (A7)
Eum1 (1) = BB Tt (ki) 1)+ B B i1 (i) 7). (A8)

The full spinor wave-function ®,,,,(r, ) can now be chosen orthonormal with
f dp f rdr(li,zm (ry @) Py (s ©) = 61t Oy~ For the numerical calculation shown below, we use 1/(2 p1R?) as

the units for energy and define x = /21>)*R? to quantify the strength of spin-orbit coupling.

(A6)

Appendix B. Analyzing effective Hamiltonian in limits

Consider insider a two dimensional cylinder of radius R. The single particle wave-function of equation (1) in the
main text is

&7 (kr)
. . B
(—ememe(kr)] ®y

The wave-function are required to vanish at r = R; the single particle wave-function on the lowest band in the
limit AR — oo and under the open boundary condition is described by

fmp (-) imp
Dy (1, (P) = Ny l]m(kR)( ]m(k+r)e . ) — ]m(k(+)R)( ]m(k r)e ¥ ]]

_Im+1(k(+)r)el(m+l)w ]m+1(k(*)r)e1(m+1)s«7

N [g fu(nes ] .

il (1’) el(m+ D

where N,, is normalization factor. To the lowest order k* ~ \ £ /A where A = E — E;, ~ 1/R%and set
the mass of the particle y = 1.
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To determine the normalization factor N,,, and likewise in the following evaluation for the interaction matrix
elements, we expand

fu ) = =Un (KR (k1) = T (k"R T (kT1)], (B3)
Emi1 (1) = Tk R 1 (k1) = J (KR Ty 1 (kFr), (B4)
to the lowest order of A /) and find
fu (1) = =2JA U}, AR (AR — Ju(AR) ], ()71, (B5)
(1) = 2V A U (AR s 1 ADR — Jy AR T (AP (B6)

Thus the normalization condition is

N%i = ZWJ;R drr[f2(r) + &, (D]

32

3

where in the second line we use the asymptotic approximation of Bessel function of the first

kind J, (z) ~ \/gcos(z - % — g)-

To calculate the leading order of the interaction, we need to take into account only
fu@) = =2VATLOR (AR, (B8)
Enin(1) = 2B} AR 1 (AN R. (B9)

Let’s define lr\\fm =2JA N,.J.,(AR)/R?/ X which is of order one when x — o0. The interaction matrix element
is

RZA[2 — (=1)™sin(2AR)], B7)

277 (A4

2N U ~

le:mZam3:m4 = R2 H Nmi 6m1+m2,m3+m4
i=1

R
j; drr Uml(/\r)]nu (Ar) + ]m1+1(>\r)]m4+1(/\r)] []rnz(/\r)]mg (Ar) + ]m2+1(>\r)]m3+1()‘r)]

i 4
~ ﬂ(H ﬁm,.)[1 + cos(’”‘ AL Rl el w)]ln(AR),

mR? il 2
(B10)
where
R 1
j; drr]m1]m2]m3]rn4 ~ W
[1 + cos[m1 + ; M~ m37r] + cos(m1 + s ; M m47r)]ln()\R). (B11)
The symmetrized matrix element is
[a¥) 1
le,mz,m3,m4 = Z(le,mz,ﬂ’I§,m4 + sz,ml,M3,Wl4 + le,mz,m4,m3 + sz,ml,m4,m3)- (Blz)
Thus
~ i\f 4 ~/
Vi kknix = ?[H Nmi)[4 + 2cos(k’ — k)ym + 2cos(l — k — kK)m]In(\R). (B13)
TR\ i=1
At this stage, if /is odd
~ aU (& ~
Viekkk -k = —2(1_[ Nm,-] In(AR). (B14)
TR\
Iflis even,
~ 41U (& ~ ,
Vickkk -k = — H N,.. [[1 + cos(k’ — k)7 ]In(AR). (B15)
Ry > 7‘(‘R2 121 1
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Thus the leading order of the interaction Hamiltonian is

40 ~ ~ ~ o~
Hi/“tzﬁln(/\R) oD NN o) || YN Nvayar
Tk %

+ Z ZIf\\T;_kf\\f;{eik”alku; er\\];_k/lr\\fk’e_ik’”ak/al_kr . (B16)
I=even\ k K
The nice form of H;,, suggests we define
A =>YN_vNyaya,y, (B17)
k/
B = Z(—l)k Nyi_wNyayas iy, (B18)
k/

and have Hjy, = U In(AR)Y,(A] A, + B B).
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