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Stationary states and quantum quench dynamics of Bose-Einstein condensates in a
double-well potential
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2 Department of Physics and Center of Theoretical and Computational Physics,

The University of Hong Kong, Hong Kong, China
(Dated: November 16, 2015)

We consider the properties of stationary states and the dynamics of Bose-Einstein condensates
(BECs) in a double-well (DW) potential with pair tunneling by using a full quantum-mechanical
treatment. Furthermore, we study the quantum quench dynamics of the DW system subjected to
a sudden change of the Peierls phase. It is shown that strong pair tunneling evidently influences
the energy spectrum structure of the stationary states. For relatively weak repulsive interatomic
interactions, the dynamics of the DW system with a maximal initial population difference evolves
from Josephson oscillations to quantum self-trapping as one increases the pair tunneling strength,
while for large repulsion the strong pair tunneling inhibits the quantum self-trapping. In the case of
attractive interatomic interactions, strong pair tunneling tends to destroy the Josephson oscillations
and quantum self-trapping, and the system eventually enters a symmetric regime of zero population
difference. Finally, the effect of the Peierls phase on the quantum quench dynamics of the system
is analyzed and discussed. These new features are remarkably different from the usual dynamical

behaviors of a BEC in a DW potential.

PACS numbers: 05.30.Jp, 03.75.Lm, 67.85.Bc
I. INTRODUCTION

Stationary state properties and dynamics of ultracold
atoms in a double-well (DW) potential have attracted
considerable attention over the past few decades @, E]
As a powerful building block model, the double well
plays a key role in revealing numerous interesting phe-
nomena of quantum many-body and few-body systems
due to the experimental accessibility and precise con-
trollability. Actually, many intriguing properties have
been predicted theoretically and some observed experi-
mentally in Bose-Einstein condensates (BECs) or ultra-
cold fermionic atoms in a DW potential, ranging from
the Josephson effect and quantum self-trapping Em,
fragmentation of a BECNE, [16], entangled clusters [17]
and NOON:-like states [18] of condensed bosons, quan-
tum chaos ﬂE , hidden vortices @, and vortex su-
perpositions [22], and spin correlation to two-particle
analog of a charge-density-wave state |24], etc. Of par-
ticular interest is the quantum tunneling dynamics in a
DW BEC because it represents one of the most surpris-
ing and paradigmatic effects in quantum mechanics. Al-
though tunneling is a fundamental phenomenon in wave
dynamics (for instance, the dynamics of atomic mat-
ter waves and the classical dynamics of optical waves)
Hﬁ], the quantum tunneling of ultracold bosonic atoms
through a potential barrier between two wells provides
a direct manifestation of quantum phase coherence. Re-
cently, a correlated quantum tunneling was observed in
Ref. m] and a relevant theoretical analysis was pre-
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sented by means of two-body dynamics ﬂﬂ] Further
study demonstrates that correlated tunneling is princi-
pally resulted from pair tunneling, which involves the
superexchange interactions between particles on neigh-
boring wells ﬂﬁ] Most recently, spontaneous symme-
try breaking and effective ground state in a DW BEC
with pair tunneling are discussed in Ref. [2]. These
theoretical investigations | concerning to the pair
tunneling are confined to the regime of repulsive inter-
atomic interactions. In addition, the analyses in Refs.
ﬂﬂ, ] are illustrated with a two-atom or few-body sys-
tem. However, the usual realistic ultracold atomic gases
in experiments should be many-body systems. In fact,
strong many-body effect may basically alter the tunnel-
ing configuration of the DW system.

On the other hand, the research on neutral atoms in
synthetic gauge fields has become an active new sub-
ject in the filed of cold atom physics @] The artificial
gauge potentials constitute novel tools for exploring the
properties of ultracold atoms, which usually occur in the
field of condensed matter physics. Recently, Spielman’s
group experimentally realized a Peierls substitution for
ultracold neutral atoms in an artificial lattice potential
ﬂﬁﬂ, where the Peierls phase can be controlled precisely.
The effective vector gauge potential is characterized by
a complex tunneling parameter J = |J| e, where 6 is
the so-called Peierls phase gained by an atom tunneling
from site j + 1 to j. In addition, the Peierls phase may
also be created in a shaken optical lattice ﬂﬁ, @] or a
spin-dependent optical lattice ﬂﬂ] In these studies, the
equilibrium states of the many-body system can be well
described. However, little is known about the quantum
quench dynamics of a system far from equilibrium, es-
pecially for the quantum quenches of the Hamiltonian
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caused by a sudden change of the Peierls phase. From a
fundamental viewpoint, the quantum quench dynamics of
cold atom systems far from equilibrium is very interesting
because it can reveal rich properties of the many-body
system beyond ground state. For instance, Zitterbewe-
gung oscillation and dynamical topological phases have
been observed most recently in a quenched spin-orbit-
coupled (SOC) BEC [35] and a quenched SOC degenerate
Fermi gas [36], respectively.

In this work we investigate the stationary state prop-
erties of a BEC in a DW potential with pair tunnel-
ing and the quantum dynamics of the DW system with
a maximal initial population difference as well as the
quench dynamics of the system by abruptly changing
the Peierls phase. Although the problems of bosons
in a DW potential can be solved under certain con-
ditions by several semi-classical analytical approxima-
tions, such as mean-field theory [3, 4, [7], variational
approach to many-body ground state [15], phase-space
analysis of many-body bosons [11, 19] and WKB ap-
proach 9], these semi-classical treatments are usually too
complicated and redundant in understanding the physi-
cal essence of the problems. In particular, the correlated
tunneling observed in Ref. |26] can not be described by
the standard Bose-Hubbard (BH) Hamiltonian [37] based
on the hard-core interaction under the semi-classical ap-
proximations. Here we adopt a tractable full quantum-
mechanical scheme to tackle the present problem. The
main features are summarized as follows. First, strong
pair tunneling can make the eigenstates of the system
evolves from delocalized states to Schrodinger cat-like
states and quantum self-trapping states and vice versa,
depending on the many-body interactions. Second, for
the case of relatively weak repulsive interactions strong
pair tunneling sustains a quantum self-trapping, but for
the case of large repulsive interactions the strong pair
tunneling tends to destroy the self-trapping. On the
other hand, for attractive interatomic interactions the
strong pair tunneling tends to eliminate the Josephson
oscillation and quantum self-trapping irrespective of the
interaction strength. Finally, once the DW system is
quenched, the population difference shows evident oscil-
lation behaviors for most cases. The maximum oscilla-
tion amplitude is directly relevant to the value of the
Peierls phase. These interesting features are markedly
different from the usual stationary state structures and
dynamical behaviors of a BEC in a DW potential, which
allows to be observed and tested under current experi-
mental technique conditions.

The paper is organized as follows. In Sec. II, the model
Hamiltonian is introduced. The general properties of the
stationary states of the system are described in Sec. III.
The dynamics of the system with a maximal initial popu-
lation difference is investigated in Sec. IV. The quantum
quench dynamics of the DW system is discussed in Sec.
V. Conclusions are outlined in Sec. VI.

II. MODEL

We consider a system of N ultracold bosonic atoms
in a DW potential. At low temperatures the second-
quantized Hamiltonian of the system beyond the onsite
approximation can be written as [2&, 29,131, 138, [39]

H = —[J—Us (i + iz — 1)] (e“’a{az + e*“’a;al)

+=0 (alalarar + afalasaz ) + (U1 + Ua) e

where n; = d;dj and a; (d}) is the bosonic annihilation
(creation) operator for well j. J is the hopping amplitude
of single-particle tunneling, Uy is the on-site two-body
interaction strength, U; is the inter-well particle inter-
action, U, describes the atom-pair tunneling (pair tun-
neling), and Us denotes the density-dependent tunneling
[28, 129, [39]. O represents a tunable Peierls phase [31],
and the tilt parameter pu denotes the difference of local
chemical potentials caused for instance by a mismatch
between the two wells. In general, U; ~ U, and the
coupling constants Uy, Usa, and Us are smaller compared
with Up. Throughout this paper we assume U; = U, for
the DW system and take Us = 2.5Us, which is consistent
with the choice of the corresponding parameters in Ref.
[26, 28]. When 6 = 0 and the terms involving Uy, Us,
and Us are neglected, equation (I]) becomes the standard
BH Hamiltonian for a DW potential |37, [39].

By introducing the notations H, = H/N.J, Uy =
NUy/2J, Uy = NU2/2J, Us = NU3/2J, and it = p/J,
we obtain the rescaled Hamiltonian in reduced units

A = - {% - 2N—[€*’ (g + iz — 1)] (ealas + e aban )
+% (@{a}@lal + agd;azaz)) + %ﬁmz
-1-% ( 20014l agay + e 219(1;&;&1&1)
+% (1 —n2), )

where the tilde is omitted for simplicity. The most gen-
eral N-body state vector is a linear superposition of Fock
states

N+1

W)y => cklk—1,N—k+1), (3)

k=1

with k£ — 1 being the occupation number corresponding

to the left well and
Jilh—1)0 (di)k_l (d;)N—k-l-l

VE=—DIN —k+1)!

k—1,N—-k+1)= lvac) .

(4)



The number of atoms in the jth well is N; = (] d;dj [¥),
N = N;j + N; is the total number of atoms, and the pop-
ulation difference is defined as z = (N; — N3) /N. The
generic properties of the stationary states of the system
can be obtained by solving the eigenvalue equation of the
Hamiltonian (2I).
The dynamics of the system is described by the time-
dependent Schrodinger equation
i 0
N Ot
where the time is measured in tunneling time units:
7 =1t/T with T = h/J. The time-dependent solution
of equation (B]) can be expanded in the Fock basis

0) = H, |¥), (5)

N+1
W(r)) = Cr(r)[k—1,N —k+1). (6)
k=1

Combining equations () and (@), we can obtain the cou-
pled equations for the time evolution of the coefficients
Cr

ey = [U(J(l— %)—u] a
R e
L2V =) 2]]\(](2]\[ — U 2oy, (7)
id DN =DV =2+ 4N 1)
N dr N2
+u <% — 1> Cy
+—2U3(NN_3 /1) — N,
LU - 1) ;VJQV] V=1,
DD o,
i d

——Cr = apCy + bk716i90k71 + bk+187i90k+1
N dr

2i0 —2i0
+di—2e”"" Cr—2 + diy2e” """ Chrpa,

(k=3,4,...,N—1), (9)
Pdg o TN DN =2+ 40N 1)
N dr N2
+p (1 - %) Cn
n [2U3(N —1) ;V]2V] 2(N — 1)61'90]\[71
—ZUS(NN;/? — N€7i90N+1

+U2\/6(N —1)(N -2)

N2 eszN_g, (10)

i d 1
N%ONJA = {Uo <1 - N) +M} Cnt1

Us/2N(N —1) .

+ 2 N(2 )82100N71
(N —1)— N
Te HCN, (11)

where ar, = (Up/N?)[(k —1)(k —2) + (N — k)(N — k +
D]+ (4U2/N?)(k = 1)(N —k+1) + (1/N) [2(k — 1) — N],
bt = [2Us(N — 1)/N? — 1/N]\/(k= D(N — kT 2),
ber1 = [2U3(N —1)/N? — 1/N]\/k(N —k +1), dp_2 =
(Uzs/N?)\/(k—1)(k —2)(N —k+2)(N —k+3), and
divo = (Us/N%)\/k(k+1)(N —k)(N —k+1). The
time-dependent population difference between the left
and right wells is given by

N+1 9
3 (2= N = 2)|Ci(r)
2(r) = - , (12)

N+1
where the coefficients are normalized as > |Ci(7)| = 1.
k=1
In the following we systematically investigate the gen-
eral properties of the stationary states of the DW sys-
tem with pair tunneling both for repulsive and attractive
interatomic interactions. Moreover, we discuss the dy-
namics of the system with a maximal initial population
imbalance. Finally, we analyze the quantum quench dy-
namics of the system by suddenly changing the value of
the Peierls phase at a certain moment.

III. PROPERTIES OF THE STATIONARY
STATES OF THE DW SYSTEM WITH PAIR
TUNNELING

We first consider the stationary state properties of the
DW system. The eigenstates can be obtained through
the exact diagonalization [11] of the Hamiltonian (2) in
the (N +41)-dimensional space spanned by the Fock basis:
{|0,N),|]1,N —1),...,|N —1,1),|N,0)}. In figure 1, we
show the density profiles |cZ|2 of the eigenvector of the
Hamiltonian (2) for various parameters, where N = 50,
0 =0,and s =1,2,..., N 4+ 1 denotes the ordinal number
of the eigenvector ordered by increasing eigenvalue. For
the case of Uy = 0, U2 = 0, and p = 0 (i.e., there is no in-
teratomic interaction and the double well is symmetric),
the density profile of each eigenstate displays excellent
left-right symmetry [figure 1(al)], where the eigenstates
are non-degenerate. With the increasing of the inter-
atomic interaction, the high-lying excited states gradu-
ally form degenerate pairs according to the up-down or-
der. The degeneracy of each pair in the excited states
can be eliminated by artificially introducing a small tilt
of the double well. We show that for a repulsive inter-
atomic interaction Uy above a critical value the left-right
symmetry of the high-lying states is broken such that



the density profile develops an evident population imbal-
ance and occupies mainly one region of the Fock space.
Consequently, the highest excited state spontaneously ac-
quires a large population imbalance, which means the
highest-lying state evolves from a delocalized state to a
Schrodinger cat-like state and eventually to a quantum
self-trapping state due to the symmetry breaking. The
above analysis can explain why there is a large dropwell
of the density profiles in figure 1(a2). When the repulsive
interaction Uy is sufficiently strong, the density profiles
become almost two cross line segments [figure 1(a3)]. In
this situation, most energy eigenstates are pair quasi-
degenerate and non-extended (cat-like or highly local-
ized). Physically, this point can be understood because
the sufficiently strong repulsive interaction is equivalent
to a very high central barrier of the DW potential, where
the particle tunneling between the two wells is highly sup-
pressed and the coherence between the two sites is lost.
For the case of ground state, a well-known paradigm is
the Mott insulator phase w1th a commensurating filling
in a optical lattice ﬂ% . Note that the case of attrac-
tive interactions is sumlar to that of the repulsive inter-
actions, but the role played by the highest-lying excited
state is now replaced by the ground state of the Hamil-
tonian (2] and the low-lying eigenstates exhibit two-fold
degeneracy [see figure 3(b)].

In the meantime, we find that the density profiles of
the stationary states are significantly influenced by the
pair tunneling and the tilt parameter of the DW poten-
tial. For weak repulsive interaction as well as weak pair
tunneling, the density distributions are similar to those
in figure 1(al) except for a further broading in the up-
per region [figure 1(bl)]. However, for large repulsive
interaction, pair tunneling exhibits distinct effect on the
density profiles, as shown in figures 1(b2) and 1(b3). Es-
sentially, the single-particle Josephson tunneling is sup-
pressed for strong repulsion and the pair tunneling grad-
ually becomes dominant with continuously increasing in-
teractions. As mentioned above, the coupling constant
Us = 2.5U; is in direct proportion to the pair tunnel-
ing. In the case of Uy = 10 and Uy = 0.02U), the term of
2U3 (71 + g — 1) /N? in equation () actually suppresses
the interwell hoping. Thus the pair tunneling tends to
make the eigenstates more localized in comparison with
the case of Uy = 10 and Us = 0, which can be seen
in figure 1(b2). In addition, the effective single-atom
Josephson tunneling constant (1/N — 2Us (N — 1) /N?)
can become a negative value for sufficiently large Us
(i.e., for sufficiently large pair tunneling Us according
to the relation Us = 2.5Uz). Consequently, for the case
of superstrong interaction Uy = 500, the pair tunneling
U, = 0.02U) does not make the eigenstates further local-
ized but more extended instead [see figure 1(b3)]. The
effect of the bias of the double well on the density profiles
is shown in figures 1(c1)-1(c3). When g > 0 and U > 0,
the density profiles of the low-lying states display a shift
towards the left side and those of the high-lying states
keep only the right branch [figure 1(c1)] due to the sym-
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FIG. 1: (color online) Density profiles |c{|’, where k =
1,2,..., N + 1, and the ordinal number of the energy eigen-
state s = 1,2,..., N+ 1. (al) Uy = 0,U> = 0, = 0, (a2)
Uo =10,Uz = 0, = 0, (a3) Up = 500,U2 = 0, = 0, (bl)
U() = 0.5, Us = 0.0QU(),,LL = 0, (b2) U() = 10, Uy = 0.02U(), M=
07 (b3) Up = 5007 U = O‘OQU(),M = 0, (Cl) Uy = 10, U =
0.02Uo, p = 5, (¢2) Up = 10,U2 = 0.02Up, u = —5, and (c3)
Up = —10,Uz = 0.02Up, 4 = 5. Here 6 = 0 and N = 50.
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FIG. 2: (color online) Density profiles |¢j|* for typical degen-
erate eigenstate pairs in figure 1(a2). (a) The 46th eigenstate
(solid blue line) and the 47th eigenstate (dashed red line), and
(b) the 50th eigenstate (solid blue line) and the 51st eigen-
state (dashed red line). The distributions of these high-lying
states are strongly localized in the Fock space.

metry breaking of the left-right wells, while the case is
reversed when p < 0 and Uy > 0 [figure 1(c2)]. Further-
more, the combining effect of attractive interaction and
pair tunneling as well as the bias of the DW potential is
demonstrated in figure 1(c3).

Figure 2 shows the density profiles |ci|2 for the 46th,
47th, 50th, and 51st eigenstates in figure 1(a2), where the
former two states and the latter ones are two-fold degen-
erate, respectively. Obviously, these high-lying excited



states are strongly localized in the Fock space. In the
absence of pair tunneling, a dynamical quantum phase
transition from the Josephson regime to the self-trapped
regime in a DW BEC has been discussed recently in Ref.
[11].

In figure 3, we present the lowest nine (ten) eigen-
values of the DW system for repulsive (attractive) in-
teratomic interaction as a function of the ratio r =
Us/[N —2Us(N —1)] between the pair tunneling strength
and the single-particle tunneling strength, where N = 50,
w=0,and # = 0. It is shown that for strong repulsive
interaction Uy = 100 and zero pair tunneling the lowest
seven eigenstates are non-degenerate and pair degener-
acy occurs from the eighth eigenstate [figure 3(a)]. With
the increasing of r (i.e., with the increasing of pair tun-
neling) below a critical value r. = 0.2 the energy gap
between two nearest-neighbor non-degenerate eigenstates
decreases remarkably. However, with the further increase
of r the energy levels almost keep constant and exhibit a
characteristic of degeneracy or quasi-degeneracy. By con-
trast, for attractive interaction the lowest ten eigenstates
are pair degeneracy (or quasi-degeneracy) irrespective of
the pair tunneling strength, where the relations between
E and r are similar to those in figure 3(a). Physically, the
degeneracy or quasi-degeneracy of the energy levels are
resulted from the interatomic interactions (including the
on-site two-body interaction, the inter-well particle inter-
action, and the pair tunneling). According to the defini-
tion of the tunneling ratio r, the pair tunneling strength
can be expressed by Us = N/[1/r + 5(N — 1)] because of
Us = 2.5U,. When r > r., the pair tunneling strength
Us approaches an asymptotic value N/5(N — 1). There-
fore with the further increase of r the eigenenergies of
the system tend to keep constant, which can be seen in
the reduced Hamiltonian of equation (2]). The present re-
sults indicate that the stability of the ground state (both
for repulsive and attractive interactions) is not affected
basically by the tunneling ratio r as long as it is not less
than a critical value.

Here we find that the Peierls phase 6 does not influence
the stationary energy spectrums and the density profiles
of the eigenvectors of the DW system. This can be under-
stood in terms of the expressions of the Hamiltonian (IJ)
and the Fock states [ ]). If we make a gauge transforma-
tion eiedi — ELJ{, equation () reduces to the Hamiltonian
of the DW system without terms of Peierls phase.

IV. QUANTUM DYNAMICS OF THE DW
SYSTEM WITH A MAXIMAL INITIAL
POPULATION DIFFERENCE

Next, we analyze the quantum dynamics of the DW
system with a maximal initial population difference
2(0) = 1 and |¥(0)) = |N,0). We numerically solve the
coupled equations (7)-(II]) using the fourth-order Runge-
Kutta method. The most important physical quantity
characterizing the tunneling dynamics and quantum fluc-
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FIG. 3: (color online) (a) The lowest nine energy levels (1—

9) as a function of the ratio r between the pair tunneling

strength and the single-particle tunneling strength, where the

relevant parameters are Up = 100, N = 50, . = 0, and 6 = 0.

(b) The lowest ten energy levels (1-10) as a function of the

ratio r. The parameters are Uy = —10, N = 50, . = 0, and
0=0.

tuations of the DW system is the population difference.
For the case of non-interacting limit and symmetric DW
potential, the system consists of IV independent particles
and thus the evolution of the population difference yields
an obvious Rabi oscillation [3, 4, [7, [11], which can be
seen in figure 4(al). In the presence of the bias of the
double well, the population difference exhibits a damped
oscillation and finally approaches a large steady value
due to the incommensurate tunneling between the two
wells [figure 4(a2)]. In the typical Josephson regime (for
instance, Uy = 1.2, Uy = 0, u = 0), the evolution of the
population difference always shows damping oscillations
followed by complex revivals as shown in figure 4(a3).
When the repulsive interatomic interaction, e.g., Uy = 4,
is larger than a critical value, the population difference
undergoes a damped oscillation and then keeps a positive
constant, which indicates that the system is in a quan-
tum self-trapping state [see figure 4(a4)]. For the case of
repulsive interactions, the quantum self-trapping effect
is directly related to the properties of the highest-lying
state of the system Hamiltonian (2). As a matter of fact,
when the initial quantum state is prepared with strong
repulsion Uy above a critical value and with large pop-
ulation difference, the system will remain trapped due
to the large overlap of the initial state with the highest
excited state of the system.

Not only does the pair tunneling influence remark-
ably the structure of the stationary states but also the
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FIG. 4: (color online) Time evolution of the population dif-
ference for a quantum state of the DW system initially pre-
pared with |[¥(0)) = |N,0) and z(0) = 1. (al) Up = 0,
Us=0,u=0,(a2) Us=0,Uz =0, p =5, (a3) Up = 1.2,
U2:0,M:0, (a4) []0:4:7 U2:0,M:07 (bl) []021.27
Us = 0.02[]07 n = 0, (b2) Uy = 1.27 Us = 0.2[]07 n = 0, (b3)
Uo = 4, Uz = 0.02Up, . = 0, and (b4) Uy = 4, Uz = 0.2U0,
1 = 0. The Peierls phase is § = 0. Here the horizontal ordi-
nate 7 is in units of i/J.

quantum dynamics of the DW system. In the case of
Up = 1.2, Uy = 0.02Up and p = 0, the revival-collapse-
revival evolution in the Josephson regime becomes a mod-
ulated S-like oscillation as shown in figures 4(b1) and
4(a3), which leads to a significant modification of the
dynamics. When the pair tunneling strength increases
to Uz = 0.2Uy (strong pair tunneling), the population
difference oscillates anharmonically around an increasing
time averaged value of (z(7)) # 0. During the long-time
evolution of z(7), the oscillation amplitude gradually de-
creases and finally the population difference tends to keep
a positive constant value [figure 4(b2)]. Here the in-
triguing self-trapping phenomenon is essentially resulted
from the strong pair tunneling. For larger interatomic
interaction Uy = 4, the medium strength pair tunneling
Us; = 0.02U; makes the oscillating population difference
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FIG. 5: (color online) Time evolution of the population dif-
ference for a quantum state of the DW system initially pre-
pared with W(0) = |N,0) and 2(0) = 1. (al) Uy = —1.2,
U2 = O‘OQU(), (32) U() = —1‘2, U2 = 0.2[]07 (bl) Uo = —4,
Us = 0.02Uy, and (b2) Uy = —4, U = 0.2Uy. The other pa-
rameters are 4 = 0 and § = 0. Here the horizontal ordinate
7 is in units of i/J.

decay to a higher constant value, which implies that weak
and medium pair tunnelings will significantly enhance
the quantum self-trapping effect in a DW system [figure
4(b3)]. By contrast, the strong pair tunneling Us = 0.2U,
does not strengthen the quantum self-trapping in the case
of large repulsion, but it destroys fully the self-trapping
effect instead because of the final zero population differ-
ence [figure 4(b4)]. From the foregoing analysis, we can
conclude that for the case of weak repulsion the strong
pair tunneling sustains a quantum self-trapping while for
the case of large repulsion the strong pair tunneling tends
to destroy the quantum self-trapping effect.

Figure 5 displays the evolution of population difference
for a DW system with attractive interatomic interactions
and pair tunneling, where 4 = 0, § = 0, and the initial
state of the system is |¥(0)) = |N,0) and z(0) = 1. In
the case of Uy = —1.2 and Uy = 0.02U, (weak attrac-
tive interaction and medium strength pair tunneling), the
population difference shows modulated Josephson oscilla-
tions [figure 5(al)], which is, to a certain extent, similar
to those in figures 4(a3) and 4(bl). For Uy = —4 and
Us; = 0.02Up, the system exhibits obvious self-trapping
behavior as shown in figure 5(bl). In particular, we
find that strong pair tunneling thoroughly eliminates the
self-trapping phenomenon in the DW system for both
weak and strong attractive interactions, where the ul-
timate population difference remains zero [figures 5(a2)
and 5(b2)]. Note that the shade region in figure 5(a2)
represents rapid oscillations of the population difference.



V. QUANTUM QUENCH DYNAMICS OF THE
DW SYSTEM IN THE PRESENCE OF PAIR
TUNNELING

Now we discuss the quantum quench dynamics of the
DW system so that we can explore the effect of the Peierls
phase on the dynamic properties of the system. We say
that the system is quenched if the Peierls phase 6 is
changed suddenly at a certain moment from one value
to another. For simplicity, suppose that at the initial
time 7 = 0 the DW system is quenched by changing the
value of 6 from zero to a nonzero constant value and the
initial state |¥(0)) is the ground state of the DW sys-
tem with # = 0. In order to ensure the accuracy and
reliability, we test in advance the dynamical evolution
of the ground state of the DW system before computing
the quench dynamics of the system for each given set of
parameters. The reasonable time-dependent population
difference concerning the dynamics of the ground state
of the system should be a perfect straight line, which has
been verified in our simulations.

Figure 6 shows the quench dynamics of the DW sys-
tem for repulsive interatomic interactions, where N = 50,
w =0, and Us/Uy = 0.002. For 0 < 6§ < m, the larger
the value of 0 is, the larger the maximum amplitude of
the oscillation becomes, and at the same time the shorter
the quasi-period of collapse and revival gets. The case is
reversed for m < 6 < 27 (not shown here). In addition,
for the same Peierls phase 6, the stronger the repulsive
interaction is, the lower the maximum amplitude of the
oscillation is. This feature can be understood because
the large interatomic interaction is equivalent to a high
potential barrier which weakens the particle tunneling
and tends to make the atoms localized. We show that
for repulsive interactions and 6 = 7 there exists no oscil-
lation behavior during the dynamic evolution of the DW
system and the population difference keeps unchanged,
i.e., z(1) = 0. The main reason is that the ground state
of the system with § = 0 (i.e, the initial state) in the
case of repulsive interatomic interactions is always sym-
metric and thus a 7 Peierls phase does not influence the
single-particle tunneling and the pair tunneling as shown
in equations ([Il) and (2.

In the case of attractive interatomic interactions, the
quantum quench dynamics of the system becomes more
complicated. For weak attractive interaction Uy = —2
(Josephson oscillation regime), the oscillation is some-
what erratic as shown in figures 7(al) and 7(a2). Physi-
cally, particle number fluctuations can automatically ad-
mix the excited states of the system due to the many-
body interactions. Thus the quench caused by the sudden
change of the Peierls phase generates various elementary
excitations with different frequencies. The similar fea-
ture is also found in the case of few-bosons dynamics in
a double well [27]. With the time evolution, the popula-
tion difference finally restores to its initial value z = 0.
From figures 7(al) and 7(a2), one can see that when the
Peierls phase 6 (0 < 6 < m) get larger the maximum
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FIG. 6: (color online) Quantum quench dynamics of the sys-
tem for repulsive interatomic interactions by suddenly chang-
ing the Peierls phase of the DW potential, where the initial
state is the ground state of the DW system with 6 = 0. (al)
Up = 2,0 =m7/3, (a2) Uy = 2, 8 = 27/3, (bl) Uy = 10,
0 = m/3, and (b2) Up = 10, § = 27/3. The other parameters
are N = 50, Uz/Up = 0.002, and p = 0. Here the horizontal
ordinate 7 is in units of h/J.

value of the oscillation amplitudes becomes larger, which
is similar to the case of repulsive interactions. In addi-
tion, we find that the population difference keeps zero in
the case of = 7 as shown in figure 7(a3). This point can
be understood because for the weak attractive interaction
of Uy = —2 the ground state of the DW system is still
symmetric, which is similar to the case of repulsive inter-
actions. For strong attractive interaction and 6 = 0, the
ground sate of the DW system is a quantum self-trapping
state with a large population difference, i.e., the atoms
are self trapped in a single trap (e.g., the right trap) of the
DW potential. Once the Hamiltonian is quenched due to
the sudden change of the Peierls phase 6, the oscillation
gradually decays and the population difference eventu-
ally resumes its original value z = —0.991, which can be
seen in figures 7(b1)-7(b3). In the case of 0 < 6 < 7, a
larger Peierls phase 6 implies a higher oscillation ampli-
tude. We expect that the effect of the Peierls phase on
the quench dynamics of the DW system can be observed
and tested in the future experiments.

VI. CONCLUSION

In summary, we have applied a full quantum-
mechanical procedure to investigate the properties of the
stationary states of BECs in a DW potential and the
quantum dynamics of the system with a maximum ini-
tial population difference. At the same time, the quan-
tum quench dynamics of the system is studied by sud-
denly changing the Peierls phase of the DW potential.
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FIG. 7: (color online) Quantum quench dynamics of the sys-
tem for attractive interatomic interactions by suddenly chang-
ing the Peierls phase of the DW potential, where the initial
state is the ground state of the DW system with § = 0. (al)
Uo = —-2,0 =m/3, (a2) Uy = -2, 6 = 27/3, (a3) Up = —2,
0 =m, (bl) Uo = =8, 0 = w/3, (b2) Up = =8, 0 = 2n/3,
and (b3) Uy = —8, § = w. The other parameters are N = 50,
Uz /Uy = 0.002, and p = 0. Here the horizontal ordinate 7 is
in units of 1/J.

We show that the pair tunneling influences significantly
the density profiles and energy spectrums of the station-
ary states especially for the cases of medium or strong
interatomic interactions. With the increase of the ratio
between the pair tunneling strength and the sing-particle
tunneling strength, the eigenstates of the Hamiltonian
become pair degenerate and the corresponding energy
levels ultimately keep almost constant. In addition, it
is shown that in the case of weak repulsion the strong
pair tunneling sustains a quantum self-trapping for the
quantum dynamics of the DW system with a maximum
initial population difference while in the case of large re-
pulsion the strong pair tunneling tends to destroy the
self-trapping effect. By contrast, for the case of attractive
interactions the strong pair tunneling tends to eliminate
the Josephson oscillations and the quantum self-trapping
irrespective of the interaction strength. Moreover, when
the DW system is quenched, the population difference
shows evident oscillation behaviors for most cases. The
maximum amplitude of the oscillation is directly relevant
to the value of the Peierls phase. These properties are re-
markably different from those in a conventional DW BEC
with no pair tunneling, which allows to be observed and
tested in the future experiments.
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