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SUMMARY 

This paper studies the static fracture problems of an interface crack in linear piezoelectric bimaterial 

by means of the extended finite element method (X-FEM) with new crack-tip enrichment functions. 

In the X-FEM, crack modelling is facilitated by adding a discontinuous function and the crack-tip 

asymptotic functions to the classical finite element approximation within the framework of the 

partition of unity. In this work the coupled effects of an elastic field and an electric field in 

piezoelectricity is considered. Corresponding to two classes of singularities of the aforementioned 

interface crack problem, namely ε class and κ class, two classes of crack-tip enrichment functions 

are newly derived and the former which exhibits oscillating feature at the crack tip is numerically 

investigated. Computation of the fracture parameter, i.e. the J-integral, using the domain form of the 

contour integral, is presented. Excellent accuracy of the proposed formulation is demonstrated on 

benchmark interface crack problems through comparisons with analytical solutions and numerical 

results obtained by the classical finite element method (FEM). Moreover, it is shown that the 

geometrical enrichment combining the mesh with local refinement is substantially better in terms of 

accuracy and efficiency.  
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1. INTRODUCTION 

As a powerful tool in computation fracture mechanics, the extended finite element method 

(X-FEM) was originally proposed by Belytschko and Black [1]. In the X-FEM, crack discontinuity 

is represented by enriching the classical finite element approximation by discontinuous and crack-

tip enrichment functions based on the framework of the partition of unity. A state-of-the-art review 

of the X-FEM for computational fracture mechanics can be found in [2-5]. Recently, the X-FEM 

has been successfully applied to solve the crack problem of piezoelectric materials [6-12]. Among 

them, Béchet et al. [6] firstly applied the X-FEM to the fracture of piezoelectric materials and 

derived new crack-tip enrichment functions. Bhargava and Sharma [7, 8] further studied the size 

effect and two-unequal-collinear crack problem in piezoelectric materials by means of the X-FEM. 

Sharma et al. [9] analyzed a subinterface crack in piezoelectric bimaterial with the X-FEM. Liu et al. 

[10, 11] studied the crack problems for functionally graded piezoelectric materials under 

electromechanical and thermal impacts, respectively. Nguyen-Vinh et al. [12] investigated the 

dynamic fracture of piezoelectric materials employing the X-FEM. Bui and Zhang [13] applied the 

X-FEM to simulate the stationary dynamic cracks in piezoelectric bodies under impact loading. 

Nanthakumar et al. [14, 15] proposed an effective iteration method to solve the inverse problem of 

detecting voids and cracks in piezoelectric structures using the X-FEM. Alternatively, a number of 

numerical techniques are also turned out to be very efficient to solve complex fracture problems, 

such as the special crack-tip elements [16], the embedded finite element method [17-23], the 

cracking particles method [24-28] and the phase-field models [29, 30]. Most of these numerical 

methods have been extended to the crack analysis in piezoelectric materials [31-41].  

On the other hand, considerable analytical studies have been conducted to investigate the two-

dimentional (2-D) interface crack problem in a piezoelectric bimaterial [42-60]. However, owing to 

the mathematical complexity, all these theoretical studies are limited to the interface cracks between 

two semi-infinite planes or two infinite strips. Also, until now, several numerical methods have 
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been proposed to solve the interface crack problem in piezoelectric bimaterial. For example, Liew 

and Liang [61] presented a numerical model for three-dimensional (3-D) piezoelectric bimaterials 

based on the boundary element method (BEM). Guo and Fang [62] studied the fracture behaviors of 

interface cracks in piezoelectric bimaterials employing the developed element free Galerkin method 

(EFG). In connection with the classical finite element method (FEM), Govorukha and Kamlah [63, 

64] derived the asymptotic solutions to the interface crack problem. Scherzer and Kuna [65] 

proposed a new technique to bypass possible singular oscillatory terms by means of orthogonalized 

eigenfunctions. Benedetti et al. [66] presented a fast boundary element method for the analysis of 3-

D solids with cracks and bonded piezoelectric patches. Sladek et al. [67, 68] put forward a meshless 

method based on the local Petrov-Galerkin approach and applied it to analyse the electrically 

impermeable and permeable interface crack problem. Lei and Zhang [69] and Lei et al. [70] studied 

the transient response of interfacial cracks under electromechanical impacts by a time-domain 

boundary element method. Li et al. [71] extended the scaled boundary finite element method 

(SBFEM) to investigate the dynamic field intensity factors of electrically impermeable interface 

cracks. However, to our best knowledge, application of the X-FEM to fracture analysis on the 

interface crack problem in a piezoelectric bimaterial has not been reported yet; in particular, the 

suitable crack-tip enrichment functions for the aforementioned problem are still not available to 

date.  

Therefore, in this paper, corresponding to two classes of singularities of interface cracks 

between two dissimilar transversely isotropic piezoelectric materials, namely ε class and κ class, 

we newly derive two classes of crack-tip enrichment functions and present the X-FEM analysis on 

the former, which can be regarded as a new topic owing to its oscillating behaviour near the crack 

tip. Following the introduction, the basic equations are briefly given in Section 2, and the basic 

extended finite element formulation is clearly provided in Section 3. The crack-tip asymptotic fields 

of generalised displacement and new crack-tip enrichment functions suitable for an interface crack 
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in a piezoelectric bimaterial are presented in Section 4. The computation of fracture parameters 

using the domain form of the contour integral is described in Section 5 and supportive numerical 

results and discussions are presented in Section 6 to verify the formulation. The last section presents 

the main findings drawn from the theoretical and numerical results.   

2. BASIC EQUATIONS FOR PIEZOELECTRIC SOLIDS 

2.1. Field equations 

 In the rectangular Cartesian coordinate system ix  ( )1,2,3i = , the governing equations for 

piezoelectric materials may be written in the following form 

  ij ijks ks sij s

i iks ks is s

c e E
D e E
σ ε

ε α

= −


= +
 (1) 

  ( ), , ,
1 ,
2ij i j j i i iu u Eε ϕ= + = −  (2) 

  ,, ,mech e
i iij j if fDσ = − =  (3) 

where ijσ  and iD  are the components of the stresses and electrical displacements, respectively; ijε  

and iE  are the components of strains and electrical fields, respectively; and iu  and ϕ  are the 

mechanical displacement components and electrical potential, respectively. ijksc , ikse  and isα  are 

the elastic, piezoelectric constants and dielectric permittivities, respectively. mech
if  and ef  are the 

body force and electric charge density, respectively. , , ,i j k s  range in { }1,2,3 , the repeated indexes 

imply summation and the comma stands for the differentiation with respect to the corresponding 

coordinate variables.  

In this paper, we consider transversely isotropic piezoelectric materials poled in the direction 

3x  under plane strain conditions, which have an essential practical significance. In this situation, the 

constitutive equations can be further reduced to 
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    
    
        

 (4) 

2.2. Boundary conditions 

 As shown in Figure 1, a piezoelectric bimaterial system consists of two dissimilar materials 

which occupy the domains 1Ω  and 2Ω , respectively. The problem domain 1 2Ω = Ω Ω , and its 

outer boundary are denoted by Γ . A crack c c c
+ −Γ = Γ Γ  is situated at the interface of the two 

materials. Γ  is subjected to the following boundary conditions: electromechanical load is imposed 

on tΓ  (natural boundary conditions), whereas the extended displacements, namely displacement 

and electrical potential, are prescribed on uΓ (essential boundary conditions). The crack faces c
+Γ  

and c
−Γ  are assumed to be traction-free and electrically impermeable herein. The boundary 

conditions are summarized as 

  
0

on
0

ij j
c c

i i

n
D n
σ

+ −
= Γ Γ
=

  (5a) 

  
0

0
onij j i

t
i i

n t

D n D

σ = Γ
=

 (5b) 

  
0

0
onj j

u

u u

ϕ ϕ

 = Γ
=

 (5c) 

3. EXTENDED FINITE ELEMENT FORMULATION 

 The classical FEM has been widely applied to crack problems in piezoelectric materials, and a 

detailed survey was given by Kuna [72, 73]. The classical FEM requires that the boundary of 

element mesh conforms to the crack faces and therefore double nodes are prescribed on the crack 
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faces. However, the modelling of cracks using the X-FEM is independent of element shape or 

meshing, which simplifies the mesh generation and avoids remeshing as the crack propagates. The 

interface cracks in a bimaterial can also be modelled by changing the nodal properties on crack 

faces without using double nodes in the X-FEM. Moreover, in the classical FEM, the special crack-

tip elements (CTE), for example, the quarter-point elements, are commonly employed to account 

for the stress field singularity with a strength of 1 r , and have been proved to produce accurate 

results for piezoelectric solids [31-34]. However, this sort of elements is only applicable to model 

the real singularity near crack tip, e.g., inverse square root singularity. For the complex singularity 

of interface crack problems in a bimaterial, those elements cannot capture the oscillating feature of 

the displacements and the stresses in the vicinity of a crack tip. The X-FEM, however, can 

satisfactorily address this problem by means of the suitable crack-tip enrichment functions.  

The extended finite element approximation for the displacement and electrical potential for 

impermeable boundary conditions is written as [4-6, 9] 

( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )
H CT

h
i i j j j k k ki N j N k N

N N H f H f N F F α
α αα∈ ∈ ∈

 = Σ + Σ − + Σ Σ −   u x x u x x x x x xa b (6) 

where iN  is the standard finite element shape function related to node i; iu  is a 3-component vector 

of nodal degree of freedom since three nodal variables ( )1 3, ,u u φ  are involved; Fα  is the α th 

component of crack-tip enrichment functions; ja and k
αb  are, respectively, the nodal degree of 

freedom vector associated with the functions H  and Fα ; ( )f x  denotes an implicit function 

description (i.e., a level set) and ( )H t  is the generalised Heaviside function 

  ( )
1, 0
1, 0

t
H t

t
>

= − ≤
 (7) 

 Figure 2 shows the enrichment scheme, in which the nodes enriched by the Heaviside function 

(set HN ) are marked with open circles whereas the nodes enriched by crack-tip enrichment 

functions (set CTN ) are marked with filled circles. Two kinds of enrichment strategies, namely 
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topological enrichment and geometrical (fixed area) enrichment, are presented in Figure 2. The 

former only enriches the nodes directly related to the crack tip (Figure 2a) and the latter spans all 

nodes lying inside a circle of radius re centred at the crack tip (Figure 2b), which is useful to 

improve the X-FEM accuracy [6, 74]. It is remarked that crack-tip enrichment will be used if one 

node is simultaneously enriched by the aforementioned two kinds of functions.  

After the approximate discretization of the governing equations, the standard discrete system of 

equations is obtained as 

  h =Ku f  (8) 

where K  is the stiffness matrix and f  is the external force vector. The system matrix and vectors 

are developed by assembling the matrix and vectors of each element. K  and f  for each element are 

defined as 

  

uu ua ub
ij ij ij

e au aa ab
ij ij ij ij

bu ba bb
ij ij ij

 
 =  
  

k k k
k k k k

k k k
 (9a) 

  { }T1 2e u a b b bl
i i i i i i=f f f f f f  (9b) 

where u, a and b refer to the extended displacement vectors and the extended new (enriched) degree 

of freedom vectors and  l  is the number of the components of crack-tip enrichment functions, so 

that 

  ( ) ( ) ( )T
d , , , ,

e

rs r s
ij i j r s u a b

Ω

= Ω =∫k B C B  (10a) 

  ˆ ˆd d , d d
e e e e

u a
i i i i i iN N S S

∂Ω Ω ∂Ω Ω

= Γ + Ω = Γ + Ω∫ ∫ ∫ ∫f t f f t f  (10b) 

  ( )d d , 1,2, ,
e e

b
i i iS S lα α α α

∂Ω Ω

= Γ + Ω =∫ ∫f t f   (10c) 

where t and f  are the prescribed extended tractions and volume force vector, respectively, and  

  ( )( ) ( )( )ˆ
i i iS N H f H f = − x x  (11a) 
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( ) ( )
( ) ( )

, for elastic field,

, for electric field,

i i i

i

i i i

S N F F
S

S N F F

α
α αα

α
α α

  = − = 
 = −  

x x

x x

  

          
, for elastic field,

, for electric field,

F
F

F
α

α
α

= 



  (11b) 

Fα
  and Fα


 are, respectively, the α th component of crack-tip enrichment functions for elastic field 

F  and electric field F


. They are extracted from the analytical solution, and will be provided in the 

next section. In Equation (10a), u
iB , a

iB  and b
iB  are the matrices of shape function derivatives, and  

  

,

,

, ,

,

,

0 0
0 0

0
0 0
0 0

i x

i y
u

i y i xi

i x

i y

N
N

N N
N
N

 
 
 
 =
 
 
  

B ,   

,

,

, ,

,

,

ˆ 0 0
ˆ0 0

ˆ ˆ 0
ˆ0 0
ˆ0 0

i x

i y

a
i i y i x

i x

i y

S

S

S S

S

S

 
 
 
 

=  
 
 
 
 

B  (12a) 

  1 2b b b bl
i i i i =  B B B B  (12b) 

  

,

,

, ,

,

,

0 0
0 0

0
0 0
0 0

i x

i y
b
i i y i x

i x

i y

S
S

S S
S
S

α

α

α α α

α

α

 
 
 
 =
 
 
 
 

B





 




 (12c) 

4. GENERALISED DISPLACEMENT FIELDS AND NEW ENRICHMENT FUNCTIONS FOR 

AN INTERFACE CRACK IN A PIEZOELECTRIC BIMATERIAL 

 For the crack problem in isotropic elastic materials, the crack-tip enrichment functions are  

  ( ), sin , cos , sin sin , cos sin
2 2 2 2

r r θ θ θ θθ θ θ =   
F  (13) 

These functions are also called standard four-fold enrichment functions or isotropic enrichment 

functions. As the simplest enrichment functions, they have been used to model the near-tip 

displacement field in homogeneous piezoelectric materials [6-8]. In the present study, we will 

derive new crack-tip enrichment functions for an interface crack in a piezoelectric bimaterial. 
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Since we are mainly interested in the singularity at the crack tip, a semi-infinite crack model is 

employed, which is simpler to obtain analytical solutions. Referring to [42, 43, 64], the general 

solution for a two-dimensional problem can be expressed as  

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
T

1 3, ,m m mm m m m mu u z zϕ = = + u A f A f  (14) 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
T

31 33 3, ,m m m m m m mmD z zσ σ  ′ ′= = + t B f B f  (15) 

where subscript m=1, 2 stands for the upper and the lower materials, respectively; 

( )1 3 1, 2,3s sz x p x s= + = , f is an arbitrary vector function to be determined; and sp and sa are the 

eigenvalues with positive imaginary parts and eigenvectors, respectively, obtained from the 

equation ( )T 2[ ] 0p p+ + + =Q R R T a , where Q, R and T are defined in Stroh’s formalism as 

1 1JK JKC=Q , 1 3JK JKC=R  and 3 3JK JKC=T . A  is a matrix composed of sa , and T= +B R A TAP  [43, 

57], where [ ]1 2 3diag , ,p p p=P . 

For an electrically impermeable crack, the continuity and boundary conditions at the interface 

can be written as  

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2
1 1 1 1 1,0 ,0 , ,0 ,0 , cx x x x x= = ∉Γu u t t  (16a) 

  ( ) ( ) ( ) ( )1 2
1 1 1,0 ,0 0, cx x x= = ∈Γt t  (16b) 

Assuming ( ) ( )( ) ( )m mm
sz

δ
=f q ,  where  indicates the diagonal matrix with each component 

varying according to s, and using ( )cos sins sz r pθ θ= +  in polar coordinates, Equations (14) and 

(15) can be rewritten as [75] 

  ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )cos sin cos sinm m mm m m m
s sr p p

δ δ
δ θ θ θ θ = + + +  

u A q A q  (17) 

  ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )1 1
1 cos sin cos sinm m m m m m m

s sr p p
δ δ

δδ θ θ θ θ
− −

−  = + + +  
t B q B q  (18) 

For θ π= ±  and 0θ = , we have 
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ie ,

, 0s
r

z
r

π θ π
θ

± = ±
= 

=
 (19) 

Substituting Equations (17) and (18) into Equation (16) and introducing matrix 1i −=Y AB , one gets 

[75]  

  ( ) ( ) ( )1 12 i 1 0e π δ − + = H H B q  (20) 

where ( ) ( )1 2 i= + = +H Y Y D W . Ou and Wu [48] have shown that for the transversely isotropic 

piezoelectric materials considered in the present study, 1 0c −= =D W  holds true and the singularity 

of the present problem defined by the roots of Equation (20) can be classified into two classes: (1) if 

b<0, 1,2 1 2 iδ ε= ± , 3 1 2δ = ; (2) if b>0, 1,2 1 2δ κ= ± , 3 1 2δ = , where ε  and κ  are real, and  

  11 tanh 2bε
π

−= − , 11 tan 2bκ
π

−=  (21) 

  ( )211 tr
4

b − =   
D W  (22) 

The former is called ε -class (oscillating singularity), and the latter is called κ -class (non-

oscillating singularity) [48]. The crack-tip enrichment functions for the two cases will be derived 

separately.  

 (i) ε -class (oscillating singularity) 

For the present plane strain problem, there are six eigenvalues for each piezoelectric material, 

namely ( )
1

mp , ( )
2
mp  and ( )

3
mp , with positive imaginary parts and their conjugates complex 

( ) ( )
4 1
m mp p= , ( ) ( )

5 2
m mp p= , ( ) ( )

6 3
m mp p= . For the ε -class problem, the stresses near the crack tip have 

the oscillating singularity while electric displacement has inverse square root singularity according 

to Equation (18). The difference in the singularities above leads to different crack-tip enrichment 

functions and, therefore, the crack-tip enrichment functions for the elastic field and electric field 

should be derived, respectively. 
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First, we consider the elastic field, which corresponds to 1,2 1 2 iδ ε= ± ; as the necessary part 

for deriving the enrichment functions, the term ( ) ( )cos sin 1,2, ,6m
tr p t

δδ θ θ + =    in Equation 

(17) for each arbitrary eigenvalue ( )m
tp  can be expressed as  

  ( ) ( ) ( ) ( ) ( )( ) ( )( )cos ln i sin ln cos i sin
m

tm m m
t t tr e r rεψβ ε ε ϑ ϑ−   + +     (23) 

where  

  ( ) ( )
( )

ln
2

m
m m t

t t
ψϑ ε β= +  (24a) 

  ( ) ( )( ) ( )( )
2 2

cos Re sin Im sinm m m
t t tp pβ θ θ θ   = + +     (24b) 

  ( ) ( )( ) ( )( )arg cos Re sin i Im sinm m m
t t tp pψ θ θ θ = + +   (24c) 

( )Re z  and ( )Im z  are the real part and imaginary part of complex z; arg(z) denotes the principal 

argument of complex z. The crack-tip enrichment functions for the elastic field for an arbitrary 

eigenvalue ( )m
tp  can be extracted from (23) and are presented as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4, , , , , , , , , 1, 2, ,6
m

tm m m m m m
t t t t t tr r e F r F r F r F r tεψθ β θ θ θ θ−  = = F       (25) 

  ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 2, cos ln cos , , cos ln sinm m m m
t t t tF r r F r rθ ε ϑ θ ε ϑ= =   (26a) 

  ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )3 4, sin ln cos , , sin ln sinm m m m
t t t tF r r F r rθ ε ϑ θ ε ϑ= =   (26b) 

By assembling the enrichment functions for each eigenvalue and only retaining the independent 

components, the whole crack-tip enrichment functions for the elastic field can be presented as  

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 5 6, , , , , , , , , , , ,m m m m m m mr r r r r r rθ θ θ θ θ θ θ =  F F F F F F F        (27) 

On the other hand, for the interfacial crack problem the electric displacement exhibits the 

classical 1 r  singularity behavior near the crack tip. This is consistent with the internal crack 

problem in a homogeneous piezoelectric material, in which both stresses and electrical 



 12 

displacement have the classical inverse square root singularity. The aforementioned real singularity 

makes the crack-tip enrichment functions for the electric field rather simple. By setting 0ε = in 

Equation (27), the corresponding crack-tip enrichment functions for the electric field concerning 

( )m
tp  can be readily acquired as  

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3, , , , , ,m m m mr r r rθ θ θ θ =  F F F F
   

 (28) 

where  

  ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 2, , , , cos , sin , 1, 2,3
2 2

m m
m m m m s s

s s s sr F r F r r sψ ψθ θ θ β
    

 = = =              
F
  

 (29) 

In this way, we have obtained the crack-tip enrichment functions for the elastic field and electric 

field, i.e., Equations (27) and (28), respectively. For arbitrary angles of poling direction with respect 

to the crack path, Béchet et al. [6] developed the crack-tip enrichment functions for cracks in 

homogeneous piezoelectric materials. If we assume that the poling direction is perpendicular to the 

crack faces, which is considered in the present paper, the corresponding crack-tip enrichment 

functions in Béchet et al. [6] and Bhargava and Sharma [8] are consistent with Equation (28). 

Additionally, if further neglecting the electric field, namely ( )3 ,r θF


, the crack-tip enrichment 

functions composed of ( )1 ,r θF


 and ( )2 ,r θF


 in Equation (28) agree with those in Asadpoure and 

Mohammadi [76] for the homogeneous orthotropic elastic materials.  Moreover, Equation (27) 

shows that a total of 24 crack-tip enrichment functions are obtained for the interface crack problem 

in piezoelectric bimaterial, compared with the case of isotropic elastic bimaterial in which 12 are 

proposed in Sukumar et al. [77]. This is owing to the special material property of piezoelectric 

solids. However, in Equation (28) the crack-tip enrichment functions for the electric field only have 

six components. The reason for this is that the electric field possesses a real singularity, and in this 

situation ( )m
tp  and ( )m

tp  will lead to identical enrichment functions, which greatly reduces the 

number of crack-tip enrichment functions.  
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It is noted that for the present interface crack problem, the component numbers of the crack-tip 

enrichment functions for the elastic field and electric field are different according to Equations (27) 

and (28). As previously mentioned, Equation (28) is a special case of Equation (27) as the 

oscillating index 0ε = . Hence when assembling the system stiffness matrix, for convenience, we 

can still regard Equation (28) as a vector with 24 components, in which only six of them, namely, 

the 1st, 2nd, 5th, 6th, 9th, 10th are effective and the other 18 components are equal to zero. 

However, these zero components of crack-tip enrichment functions for the electric field will lead to 

linear dependence or the fact that all the elements of the corresponding rows and columns in the 

system stiffness matrix equal to zero. Obviously, this will result in the appearance of singularity in 

the system stiffness matrix. Therefore, in order to avoid the singular solution problem, the added 

nodal degrees of freedom k
αb associated with the aforementioned zero components of crack-tip 

enrichment functions for the electric field will be set as zero in the FEM pre-processing, which can 

be regarded as the generalised essential boundary conditions. 

In addition, it is worth mentioning that two pairs of crack-tip enrichment functions, namely 

( )1F and ( )1F


 corresponding to material 1 and ( )2F  and ( )2F


 corresponding to material 2, should be 

adopted in numerical analysis since different material constants produce different eigenvalues ( )m
tp . 

Additionally, the enrichment functions (27) are applicable to the interface crack problem in 

anisotropic elastic bimaterials if neglecting the components relating to the piezoelectric phase.   

(ii) κ -class (non-oscillating singularity) 

Considering that all singularities are real for κ -class bimaterial, the enrichment functions are 

formally similar to Equation (28) in this case. For completeness, they are presented as follows 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3, , , , , ,m m m mr r r rθ θ θ θ =  F F F F     (30a) 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3, , , , , ,m m m mr r r rθ θ θ θ =  F F F F
   

 (30b) 

where  
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  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4, , , , , , , ,m m m m m
s s s s sr F r F r F r F rθ θ θ θ θ =  F      (31a) 

  ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( )( )
1 1
2 2

1 2, cos , , sinm m m m m m
s s s s s sF r r F r r

κ κ
θ β ρ θ β ρ

+ +
= =   (31b) 

  ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( )( )
1 1
2 2

3 4, cos , , sinm m m m m m
s s s s s sF r r F r r

κ κ
θ β ξ θ β ξ

− −
= =   (31c) 

  ( ) ( ) ( ) ( )1 1, , 1, 2,3
2 2

m m m m
s s s s sρ κ ψ ξ κ ψ   = + = − =   

   
 (31d) 

and ( ) ( ),m
s r θF


 has the same form as Equation (29). As previously mentioned, for real singularity, 

( )m
sp  with positive imaginary parts and their conjugates complex ( )m

sp  will lead to identical 

enrichment functions; therefore, for this case only the eigenvalues with positive imaginary parts are 

involved. Similar to the ε -class problem, the numbers of enrichment functions for the elastic field 

and electric field are still different and special treatment should be applied to avoid the singularity 

of the system stiffness matrix.  

In the following sections, our attention will be mainly focused on the ε -class problem, 

considering that the κ -class problem cannot be regarded as a new topic owing to the fact that, for 

the κ -class problem, no oscillating singularity is observed and its crack-tip enrichment functions 

are formally analogous to the existing ones for the homogeneous elastic materials [76] and 

piezoelectric materials [6, 8].   

5. COMPUTATION OF J-INTEGRAL FOR INTERFACIAL CRACKS 

 The singular fields at the crack tip are usually characterized by stress intensity factors (SIFs) in 

the fracture mechanics of homogeneous materials. However, for interfacial crack problems in an 

elastic bimaterial and the ε -class piezoelectric bimaterial, the stresses near the crack tip exhibit the 

oscillating singularity. This is not realistic in practice. Therefore, researchers adopt the energy 

release rate (ERR) as the fracture parameter in fracture analysis for piezoelectric bimaterials [50, 55, 

57]. In the fracture mechanics of linear piezoelectric materials, the ERR is equivalent to the path-
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independent J-integral, which remains globally path independent for interface crack problems when 

there is no material inhomogeneity in the direction parallel to the crack [78]. Kuna [33, 72] has 

shown that the direct numerical determination of the J-integral is quite difficult owing to the fact 

that a contour or surface must be defined throughout the mesh for the accurate calculation of the 

integral. Therefore, the modified crack closure integral (MCCI) and equivalent domain integral are 

usually well suited to compute the ERR. MCCI can be utilized with both regular elements and 

special crack-tip elements, and has been extended to crack problems in homogeneous 

piezoelectricity [72]. One advantage of it is that the mechanical and electric ERRs can be calculated 

separately. However, the work concerning the application of MCCI to piezoelectric interface crack 

is very rare. This may be due to the presence of oscillating singularity, since some researchers have 

already observed that although the total ERR converges to a constant value, the individual 

components of ERRs do not exhibit steady values as the virtual crack extension tends to zero for an 

interface crack in elastic materials [79-81]. On the other hand, a transformation of the J-integral into 

an equivalent domain integral is much more favourable, which usually delivers the total ERR with 

the highest precision under both static and dynamic loadings [72]. Moreover, the equivalent domain 

integral also allows for an inherent error control because of its path independence. Therefore, herein 

we will adopt the equivalent domain integral to compute the J-integral.  

The J-integral for piezoelectric cracked solids is defined as [6, 53] 

  ( )1 ,1 ,1 d , , 1,3j ij i j jJ W u D n i jδ σ φ
Γ

= − − Γ =∫  (32) 

where Γ  is an arbitrary enclosing contour around the crack tip, starting from a point on the lower 

crack surface and terminating at a point on the upper crack surface; jn  is the jth component of the 

outward unit vector normal to it and W is the electric enthalpy density, which can be written as 

  ( )1 , , 1,3
2 ij ij j jW D E i jσ ε= − =  (33) 
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Applying the Gauss integral theorem, Equation (32) can be transformed to an equivalent 

domain expression 

  ( ) ( ),1 ,1 1 , ,1 ,1 1 ,
d d , , 1,3ij i j j j ij i j j j

A A

J u D W q A u D W q A i jσ φ δ σ φ δ= + − + + − =∫ ∫  (34) 

where A is the area inside the contour Γ , and q is a smooth function, which assumes unity at nodes 

inside the domain A and zero at the nodes outside the domain. The value of q in any position of an 

element can be evaluated by the interpolation of the nodal values of q  

  i ii
q N q= Σ  (35) 

The results of the J-integral are naturally independent of the integral path, but in the numerical 

calculation the accuracy may be affected by the integration path owing to the numerical error. 

Therefore, it is necessary to determine the proper integral path. 

6. NUMERICAL EXAMPLES AND DISCUSSIONS 

 In this section, numerical examples of interfacial crack problems in a piezoelectric bimaterial 

are solved using X-FEM to validate the formulation. The first example corresponds to a Griffith 

interface crack under a combined far-field electromechanical uniform load. The analytical solution 

for this problem can be found in Suo et al. [43] and Herrman et al. [57]. The second example 

involves the interface crack between two bonded infinite strips and the analytical solution is given 

by Gu et al. [50]. Example 3 is an interface crack between two piezoelectric plates with finite size 

and the influence of the crack location on the fracture parameter is studied. In all the numerical 

examples, a piezoelectric bimaterial composed of piezoceramics BaTiO3 and PZT-5H is used and 

the corresponding material constants are listed in Table I [48, 51]. With these material constants, 

the oscillating index ε  is found as 0.0130 [48]. 

Moreover, in the present study, bilinear quadrilateral elements are used in all numerical 

examples. Since the interface crack is coincident with the element edges, no element partitioning is 

needed [77]. However, for the consideration of the accuracy in the numerical integration of the 
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weak form, the use of the high-order Gauss quadrature rule in the elements with an enriched degree 

of freedom is necessary [77]. We decompose the elements with the nodes enriched with the 

Heaviside function and the crack-tip enrichment functions into four quadrilaterals and, respectively, 

adopt 5 5×  and 10 10×  Gauss quadrature rules in each quadrilateral. A 2 2×  Gauss quadrature rule 

is adopted in other non-enriched elements.  

The convergence can be studied by comparing the analytical solution to a reference problem 

with the actual results of a numerical model; the error in the total energy norm is given by  

  ( )( ) ( )( )1err d
2

Ana Ana Ana Ana
W ijkl ij ij kl kl ij i i j jc E E E E Vε ε ε ε α = − − + − − ∫  (36) 

where Ana
ijε and Ana

iE  correspond to the analytical (exact) solution for elastic strains and electric 

fields, respectively. The convergence of error in the total energy norm with respect to mesh density 

has been thoroughly investigated in [6, 9, 82-84]. These all show that the convergence rate of 

topological enrichment is 0.5 whereas the geometrical one achieves a higher convergence rate, 

namely, 1.0. Therefore, in the present paper, we will no longer continue with the convergence rate 

study and instead the main focus will be on the accuracy study of X-FEM.  

The following three subsections correspond to the aforementioned three examples, respectively. 

Figures 3 to 6 and Tables II to IV are related to the first example whereas Figure 3 and Table V 

correspond to the second example. Figures 7 and 8 refer to Example 3.  

6.1. An interface crack between two semi-infinite piezoelectric planes  

 First, to validate the extended finite element implementation, an interface crack with the length 

2a parallel to the x1-axis between two dissimilar piezoelectric semi-infinite planes is considered. 

The crack is subject to a remote electromechanical load combination 0σ  and 0D  in the x3 direction. 

The applied normal stress 0σ  is taken as 10 MPa and the loading combination parameter Dλ  is 

taken as 2, which is introduced to reflect the applied electrical load and is defined as 
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( ) ( )1 1
11 0 33 0D c D eλ σ= . If no special explanation is given, this load combination will always be adopted. 

Under the aforementioned load combination, the analytical result of the normalized J-integral 

0
AnaJ aσ for this problem is equal to 42.7863 10−× [57]. 

Considering the symmetry, only half of the specimen is considered, as shown in Figure 3a, and 

the horizontal displacement on the left-hand edge of the half model is set as zero. The sample size is 

firstly taken as 20w a=  and 2 40h a=  to model the infinite domain, and in the following numerical 

results we will show this assumption is reasonable. Figure 3b shows the uniform finite element 

mesh with 10eh a=  in the vicinity of the crack, where eh  denotes the element size. A numerical 

investigation is conducted in detail, with the following objectives: 

 (i) To study domain independence and the influence of the element size on the J-integral; 

(ii) To compare the performance of topological enrichment and geometrical enrichment as well as 

the performance of new enrichment functions (Equations (27) and (28), and the standard isotropic 

enrichment functions, i.e. Equation (13));  

(iii) To explore finite size specimen effects and trends on the J-integral;  

(iv) To study the robustness of the present method for small perturbations of the crack tip； 

(v) To compare the accuracy of results obtained on uniform mesh and non-uniform mesh with local 

refinement.  

Considering the material mismatch in the interface crack problem, the domain independence 

study for determining an appropriate domain radius is necessary to achieve good accuracy of the 

J-integral. This study is very meaningful since, to date, it has not been carried out in relation to the 

interface crack problem in piezoelectric bimaterial. In Figure 4, results of the domain independence 

study are presented, where kr  is a scalar multiple used to define the domain radius dr  by d k er r h= . 

Two different uniform meshes, 6eh a=  and 10eh a= , are adopted, respectively corresponding to 

120 240× and 200 400×  elements. Moreover, six enrichment strategies are employed, including 
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topological and geometrical enrichments based on the newly derived crack-tip enrichment functions 

and standard isotropic enrichment functions. The results in Figure 4 demonstrate that for all the 

aforementioned enrichment strategies, the J-integral obtained by X-FEM tends to be a converged 

value as 4kr ≥ . This is in agreement with the results of Sukumar et al. [77] in relation to the 

interface crack problem in isotropic elastic bimaterials. Therefore, in the following computation, if 

no special explanation is given, kr  is taken as 5. Certainly, some researchers adopt more 

conservative values; for example Béchet et al. [6] and Bhargava and Sharma [7] used 0.8kr a= . 

Figure 5 describes the convergence of the J-integral by plotting the relationship between the 

mesh density and the error percentage of the J-integral in a log-log scale. As expected, with the 

increase in mesh density, the error decreases rapidly and a high accuracy is available with a relative 

coarse finite element mesh. The results in Figures 4 and 5 show that the geometrical enrichment 

achieves a higher accuracy than the topological enrichment. The geometrical enrichment with a 

larger radius of enriched domain performs better than that with a small one. All these phenomena 

are consistent with those previously observed in homogeneous piezoelectric materials [6] and 

magnetoelectroelastic materials [82, 83].  Moreover, the accuracy of the new crack-tip enrichment 

functions specifically derived for piezoelectric bimaterials is superior to that of the standard 

isotropic ones if the same topological and/or geometrical enrichment is employed. Additionally, 

comparison between the results obtained by the X-FEM and those obtained by classical FEM 

without enrichment is made, and obviously the former is greatly superior to the latter. 

Since the reference solution is related to the infinite domain problem, we also study the finite 

specimen effects for different enrichment strategies as 10eh a=  and the results are presented in 

Table II. As expected, as the ratio of w a  increases, the J-integral decreases. As 20w a ≥ ( h w= ), 

variations of the J-integral are extremely small and negligible for all enrichment strategies. 

Therefore, using the domain size of 40a  to model the infinite domain is acceptable.  
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To investigate the robustness of the present method, a simple test is carried out and 

corresponding results are listed in Table III. The specimen and mesh parameters are also 20w a= , 

2 40h a= , 10eh a=  and 5kr = , assuming that the location of the crack tip is perturbed by 

0.001a±∆ = ±  [77], and the results are compared with those for 0∆ = . Similar to previous 

numerical examples, six different enrichment strategies are employed. From Table III, we observe 

that for small perturbations, the J-integrals are stable for all enrichment strategies. 

In classical FEM, local refinement of the meshes near the crack tip is a commonly used method 

for improving computational accuracy. In the present work, we also investigate the efficiency and 

accuracy of uniform mesh and non-uniform mesh with local refinement. As shown in Figure 6, 1
eh  

and 2
eh  are, respectively, the mesh sizes of elements in the vicinity of the crack tip and far away 

from the crack tip, and 1
eh  is much smaller than 2

eh . Herein the mesh with size 1
eh  is only applied to 

the domain composed of [ ]0, 2x a∈  and [ ],y a a∈ − . A similar mesh was also adopted by 

Asadpoure and Mohammadi [76] to perform the X-FEM analysis for crack problems in orthotropic 

solids. Certainly, the uniform mesh herein is less efficient than the graded mesh [33, 72], but one 

advantage of it is that its mesh generation is simpler than the latter.  In Table IV we compare the 

element numbers and computational accuracy of uniform mesh and non-uniform mesh for different 

mesh densities and enrichment strategies. The results in Table IV reveal that the non-uniform mesh 

achieves a high accuracy with a less number of elements. As previously shown in Figures 4 and 5, 

if the same enrichment strategy is adopted, the accuracy of new crack-tip enrichment functions is 

better than that of standard isotropic enrichment functions. Moreover, by refining the meshes near 

the crack tips and using a large enriched radius, the geometrical isotropic enrichment can also 

achieve high accuracy.  

6.2. An interface crack between two bonded infinite piezoelectric strips  
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 In this example, an interface crack between two infinite piezoelectric strips is analysed. The 

load boundary conditions are the same as for the previous example, i.e. 0 10 MPaσ =  and 2Dλ = . 

As shown in Figure 3, the width of half model 20w a=  is also taken to model the strips with 

infinite length and the height of each layer h is taken as a much smaller value. The analytical 

solution to this problem can be readily obtained from Gu et al. [50] by setting the applied load 

independent of time. According to the results presented in the first example, herein we only adopt 

the non-uniform mesh, i.e. 1 20eh a=  and 2 4eh a= , which costs less computational time. Results of 

the J-integral obtained by the analytical solution and the X-FEM for different heights of the strips 

are given in Table V.  It is found that the J-integral solved by the X-FEM is always in excellent 

agreement with the analytical solution. Table V and Figure 5 again demonstrate that, although a 

specific enrichment scheme with standard isotropic enrichment functions produces a good 

approximation with less computational cost, it remains slightly inferior to the corresponding one 

with the new crack-tip enrichment functions specially derived for piezoelectric bimaterials when 

compared with the analytical results.  

6.3. An interface crack between two bonded piezoelectric plates  

 As shown in Figure 7, an interface crack of arbitrary location between two finite piezoelectric 

plates is considered. The load boundary conditions are same as in the previous examples, i.e. 

0 10 MPaσ =  and 2Dλ = . The specimen parameters are as follows: the square plate width is 20a  

and the heights of upper and lower plates 10h a= . The left and right crack tips are, respectively, 

denoted by A and B. The distance between the crack centre and interface centre is denoted by d. 

Similarly, we still adopt the non-uniform mesh, 1 20eh a= , 2 4eh a=  and the mesh with size 1
eh  is 

only applied to the domain composed of [ ]2 , 2x d a d a∈ − +  and [ ],y a a∈ − . Moreover, for 

comparison the results obtained by classical FEM with the mesh 1 200eh a= , 2 4eh a=  are also 
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provided. The domain radius factor kr  is taken as 10. The influence of the location of the interface 

crack on the J-integrals at the left and right crack tips is examined and the numerical results are 

plotted in Figure 8. It is found that with the increasing of d, the J-integral at both the left crack tip 

JA  and the right crack tip JB increase, especially as the right crack tip approaches the right edge of 

the plate. This is consistent with our expectations. Again, the difference in results among the X-

FEM based on new enrichment functions, the standard isotropic enrichment functions and the 

classic FEM is slight, at less than 0.4%.  

From the aforementioned three numerical examples, it is demonstrated that high accuracy can 

be achieved with relatively coarse meshes, especially when the newly derived crack-tip enrichment 

functions are adopted in the X-FEM.  

6. CONCLUDING REMARKS 

 An extended finite element method (X-FEM) formulation for the fracture analysis of interface 

cracks between two dissimilar transversely isotropic piezoelectric materials is presented. 

Corresponding to two classes of singularities of the aforementioned problem, namely ε class and 

κ class, two classes of crack-tip enrichment functions are newly derived by referring to the analytic 

solution. As a completely new topic, the ε  class problem is numerically analyzed by means of the 

X-FEM under plane strain conditions. The validity of the X-FEM analysis on interface crack 

problems in a piezoelectric bimaterial is verified by showing that the X-FEM results of the 

J-integral for several crack configurations are in excellent agreement with the existing analytical 

and numerical solutions. Two enrichment strategies, namely topological enrichment and 

geometrical enrichment, as well as two kinds of mesh, namely uniform mesh and non-uniform mesh 

with local refinement, are adopted in numerical examples. It is found that the geometrical 

enrichment in connection with the non-uniform mesh is substantially better in terms of accuracy 

and efficiency. Additionally, the numerical tests indicate that although the geometrical enrichment 
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with a large enriched domain based on the simpler isotropic enrichment functions can produce a 

good approximation for the interface crack problem in piezoelectric bimaterials, the newly derived 

crack-tip enrichment functions lead to the most accurate results.  
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Figure and table captions  

Figure 1. An interface crack in a piezoelectric bimaterial.  

Figure 2. Enriched nodes for a bimaterial interface crack: (a) topological enrichment; (b) 

geometrical enrichment (the nodes enriched by the Heaviside function are marked with open circles 

whereas the nodes enriched by crack-tip enrichment functions are marked with filled circles). 

Figure 3. Interface crack under electromechanical load (half -model): (a) problem configuration; (b) 

uniform mesh in the vicinity of the crack ( 10eh a= ). 

Figure 4. Domain independence study for interface crack: (a) 6eh a= ; (b) 10eh a= . 

Figure 5. Convergency study of the J-integral with respect to mesh density for interface crack.  

Figure 6. The non-uniform mesh with local refinement in the vicinity of the crack: 1 20eh a= , 

2 4eh a= . 

Figure 7. An interface crack between two finite piezoelectric plates.  

Figure 8. Normalized J-integral with respect to the location of interface crack. 

Table I. Material properties of piezoelectrics BaTiO3 and PZT-5H [48, 51] (cij in 109 N/m2, eij in 

C/m2, εij in 10-9C/Vm). 

Table II. Finite specimen effects for interface crack in terms of error ( ) ( ). . %Ana AnaJ J J−  ( 10eh a= ). 

Table III. Robustness study for interface crack in terms of error ( ) ( ). . %Ana AnaJ J J−  ( 10eh a= ). 

Table IV. Comparison of element number and error ( ) ( ). . %Ana AnaJ J J−  between uniform mesh and 

non-uniform mesh for interface crack. 

Table V. Convergency study of the J-integral in terms of error ( ) ( ). . %Ana AnaJ J J− with respect to the 

height of piezoelectric layers ( 1 20eh a= , 2 4eh a= ). 
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Figure 1. An interface crack in a piezoelectric bimaterial. 
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Figure 2. Enriched nodes for a bimaterial interface crack: (a) topological enrichment; (b) 

geometrical enrichment (the nodes enriched by the Heaviside function are marked with open circles 

whereas the nodes enriched by crack-tip enrichment functions are marked with filled circles). 
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Figure 3. Interface crack under electromechanical load (half -model): (a) problem configuration; (b) 
uniform mesh in the vicinity of the crack ( 10eh a= ). 
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Figure 4. Domain independence study for interface crack: (a) 6eh a= ; (b) 10eh a= . 
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Figure 5. Convergency study of the J-integral with respect to mesh density for interface crack.  
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Figure 6. The non-uniform mesh with local refinement in the vicinity of the crack: 
1 20eh a= , 2 4eh a= . 
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Figure 7. An interface crack between two finite piezoelectric plates.  
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Figure 8. Normalized J-integral with respect to the location of interface crack. 
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Table I. Material properties of piezoelectrics BaTiO3 and PZT-5H [48, 51] 

( cij in 109 N/m2, eij in C/m2, εij in 10-9C/Vm). 

 

 c11 c13 c33 c44 e15 e31 e33 ε11 ε33 

BaTiO3 150 66 146 44 11.4 -4.35 17.5 9.87 11.2 

PZT-5H 126 53 117 35.3 17.0 -6.50 23.3 15.1 13.0 
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Table II. Finite specimen effects for interface crack in terms of error ( ) ( ). . %Ana AnaJ J J−  ( 10eh a= ). 

w a  
( h w= ) 

Topological 
enrichment 

Geometrical 
enrichment 
( 0.2er a= ) 

Geometrical 
enrichment 
( 0.3er a= ) 

Topological 
isotropic 

enrichment 

Geometrical 
isotropic 

enrichment 
( 0.2er a= ) 

Geometrical 
isotropic 

enrichment 
( 0.3er a= ) 

5 -9.2604 -9.7657 -9.8738 -8.9068 -9.4399 -9.6272 

10 -1.5518 -1.9905 -2.0508 -1.2647 -1.7411 -1.8348 

15 0.3125 -0.1177 -0.1858 0.5715 0.1197 0.0313 

20 0.6454 0.2015 0.1358 0.8880 0.4390 0.3492 

25 0.8023 0.3419 0.2765 1.0256 0.5785 0.4891 
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Table III. Robustness study for interface crack in terms of error ( ) ( ). . %Ana AnaJ J J− ( 10eh a= ). 

a∆  Topological 
enrichment 

Geometrical 
enrichment 
( 0.2er a= ) 

Geometrical 
enrichment 
( 0.3er a= ) 

Topological 
isotropic 

enrichment 

Geometrical 
isotropic 

enrichment 
( 0.2er a= ) 

Geometrical 
isotropic 

enrichment 
( 0.3er a= ) 

0 0.6454 0.2015 0.1452 0.8880 0.4390 0.3492 

-0.001 0.6961 0.2516 0.1887 0.9792 0.5654 0.4562 

0.001 0.5094 0.0652 0.0009 0.7912 0.3633 0.2717 
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Table IV. Comparisons of element number and error ( ) ( ). . %Ana AnaJ J J−  between uniform mesh and 

non-uniform mesh for interface crack. 

Mesh Element 
number 

Topological 
enrichment 

Geometrical 
enrichment 
( 0.2er a= ) 

Geometrical 
enrichment 
( 0.3er a= ) 

Topological  
isotropic 

enrichment 

Geometrical 
isotropic 

enrichment 
( 0.2er a= ) 

Geometrical 
enrichment 
isotropic 

( 0.3er a= ) 

10ea h =  200 400×  0.6454 0.2015 0.1452 0.8880 0.4390 0.3492 

        
1 20ea h =  
2 3ea h =  

94 154×  
 

0.4018 
 

0.1389 0.1205 0.5311 0.2233 0.1923 

 
1 20ea h =  
2 4ea h =  

112 192×  0.3359 0.0689 0.0504 0.4615 0.1534 0.1223 

 
1 20ea h =  
2 5ea h =  

130 230×  0.3061 0.0362 0.0178 0.4290 0.1207 0.0897 

 
1 20ea h =  
2 6ea h =  

148 268×  0.2910 0.0184 0.0005 0.4113 0.1030 0.0719 
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Table V. Convergency study of the J-integral in terms of error ( ) ( ). . %Ana AnaJ J J−  with respect to the 

height of piezoelectric layers ( 1 20eh a= , 2 4eh a= ). 
 

2h a  
Topological 
enrichment 

Geometrical 
enrichment 
( 0.2er a= ) 

Geometrical 
enrichment 
( 0.3er a= ) 

Topological 
isotropic 

enrichment 

Geometrical 
isotropic 

enrichment 
( 0.2er a= ) 

Geometrical 
isotropic 

enrichment 
( 0.3er a= ) 

10 0.3135 0.0227 -0.0016 0.4689 0.1214 0.0789 

12 0.3845 0.1048 0.0814 0.5337 0.1998 0.1590 

14 0.3122 0.0391 0.0163 0.5061 0.1804 0.1406 

16 0.3399 0.0713 0.0494 0.4829 0.1595 0.1250 

18 0.3610 0.0955 0.0744 0.5022 0.1814 0.1490 

 
 
 


