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Abstract: This paper proposes a new model for time-delay systems, which contains multiple successive delay compo-

nents in the state and has important applications in remote control and network based control. New results on stability

and H∞ performance are obtained for systems with two successive delay components. The second part of this paper

applies the proposed new model to network based control, which has emerged as a topic of significant interest in the

control community. A sampled-data networked control system with simultaneous consideration of network induced de-

lays, data packet dropouts and measurement quantization is modelled as a time-delay system with two successive delay

components in the state and, the problem of network based H∞ control is solved accordingly.

Key Words: Networked control, sampled-data systems, time-delay systems

1 Motivation and New Model

Time-delay systems, also called systems with after-

effect, equations with deviating argument or differential-

difference equations, have kept being an active research

area for the last few decades. The main reason is that many

processes include after-effect phenomena in their inner dy-

namics, and engineers require models to behave more like

real processes due to the ever-increasing expectations of

dynamic performance. There is a great number of research

results concerning time-delay systems scattered in the lit-

erature (see, [4, 6, 7, 8, 9, 10, 11, 12, 18] and the references

therein).

The most commonly and frequently used state-space model

to represent time-delay systems is

ẋ(t) = Ax(t)+Adx(t −d(t)), (1)

where d(t) is a time delay in the state x(t), which is often

assumed to be either constant, or time-varying satisfying

certain conditions, e.g.,

0 ≤ d(t) ≤ d̄ < ∞, ḋ(t) ≤ τ < ∞. (2)

Almost all the reported results on time-delay systems are

based on this basic mathematical model. It is noted that in
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this model, the time delay in the state variable x(t) is as-

sumed to appear in a single and simple form. Sometimes in

practical situations, however, signals transmitted from one

point to another may experience a few segments of net-

works, which can possibly induce successive delays with

different properties due to variable network transmission

conditions. Let us consider, for example, a state-feedback

remote control problem. Suppose the physical plant is

given by ẋ(t) = Ax(t) + Bu(t), and suppose the measure-

ment of x(t) travels through s segments of transmission

media, each of which will cause some delay with differ-

ent properties, denoted as di(t), i = 1, . . . ,s. In this case,

the closed-loop system with state-feedback gain K is given

by

ẋ(t) = Ax(t)+BKx(t −∑s
i=1

di(t)), (3)

and a natural assumption on the time delay di(t) can be

given by

0 ≤ di(t) ≤ d̄i < ∞, ḋi(t) ≤ τ i < ∞. (4)

It can be seen that there are s successive delay components

appearing in the state x(t). Since the properties of these

delay components may not be identical due to the trans-

mission conditions, it is not reasonable to combine them

together. System (3) is what we refer to as systems with
successive delay components.
One may argue that (3) with assumption (4) can be easily

transformed into the form of (1) with assumption (2) by

imposing

d̄ = ∑s
i=1

d̄i, τ = max
i

(τ i). (5)
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However, it is not difficult to understand that such treat-

ment will be conservative, especially when the delays di(t),
i = 1, . . . ,s, have quite different properties. For illustration,

let us assume that τ1 < τ2 < · · ·< τs, then from (5) we have

τ = τs. If we use the single delay model in (1), the delay

parameters that can be used are d̄ and τ . In such a way, we

have lost the parameters τ i, i = 1, . . . ,s− 1. More specifi-

cally, if we use some established stability results on delay

systems (such as the linear matrix inequality (LMI) based

one given in [14]), the delay-dependent LMI stability con-

dition only contains the parameters d̄ (or ∑s
i=1 d̄i) and τ (or

τs), and thus the parameters τ i, i = 1, . . . ,s−1, will not be

taken into consideration. This is more obvious for the case

when some of di(t) are constant and some are time-varying.

Based on the above discussion, in this paper, our purpose is

to introduce the new model in (3), and present new results

for systems with successive delay components. To make

our idea more lucid and to avoid complicated notation, we

consider the case in which only two successive delay com-

ponents appear in the state, and the idea behind this paper

can be easily extended to systems with multiple successive

delay components. An illustrative example is provided to

show the significant advantage of this new model and the

proposed stability condition over some existing single de-

lay approaches. These constitute the contents of Section

2.

In Section 3, we apply the proposed new model to the

problem of network based control, which has emerged as a

topic of significant interest in the control community (see,

[1, 13, 22] and the references therein). As can be seen later,

a sampled-data networked control system with simultane-

ous consideration of network induced delays, data packet

dropouts and measurement quantization can be modelled as

a time-delay system with two successive delay components

in the state, which forms a solid background for the new

model presented in this paper. Then, the H∞ performance

condition developed in Section 2 is exploited to investigate

the problem of network based H∞ control. An Illustrative

example is provided to show the advantage and applicabil-

ity of the developed results for network based controller

design.

For space consideration, all proofs have been omitted, but

can be found in the full version of the paper.

2 Main Results

2.1 Stability Analysis
Consider the following system with two successive delay

components in the state:

Σ : ẋ(t) = Ax(t)+Adx(t −d1(t)−d2(t)),
x(t) = φ(t), t ∈ [−d̄,0

]
. (6)

Here x(t) ∈ R
n is the state vector; d1(t) and d2(t) represent

the two delay components in the state; A, Ad are system

matrices with appropriate dimensions. It is assumed that

d1(t) and d2(t) satisfy (4), and d̄ = d̄1 + d̄2. φ(t) is the

initial condition on the segment
[−d̄,0

]
.

In the following, we present a new stability criterion, which

can be proved based on the following Lyapunov-Krasovskii

functional:

V (t) = V1 (t)+V2 (t)+V3 (t)+V4 (t) ,
V1 (t) = xT (t)Px(t),

V2 (t) =
∫ t

t−d1(t)
xT (s)Q1x(s)ds

+
∫ t−d1(t)

t−d1(t)−d2(t)
xT (s)Q2x(s)ds,

V3 (t) =
∫ t

t−d̄1−d̄2

xT (s)Rx(s)ds,

V4 (t) =
∫ 0

−d̄1

∫ 0

β
ẋT (t +α)Z1ẋ(t +α)dαdβ

+
∫ −d̄1

−d̄1−d̄2

∫ 0

β
ẋT (t +α)Z2ẋ(t +α)dαdβ

+
∫ 0

−d̄1−d̄2

∫ 0

β
ẋT (t +α)Mẋ(t +α)dαdβ ,(7)

where P > 0, Q1 ≥ Q2 ≥ 0, R ≥ 0, Z1 ≥ Z2 > 0 and M > 0

are matrices to be determined.

Theorem 1 System Σ in (6) with delays d1(t) and d2(t) sat-
isfying (4) is asymptotically stable if there exist matrices
P > 0, Q1 ≥ Q2 ≥ 0, R ≥ 0, Z1 ≥ Z2 > 0, M > 0, and S, T ,
U, V satisfying

[
Ξ1 +Ξ2 +ΞT

2 +Ξ3 Ξ4

∗ Ξ5

]
< 0, (8)

where

Ξ1 =

⎡
⎢⎢⎣

Δ1 0 PAd 0

∗ Δ2 0 0

∗ ∗ Δ3 0

∗ ∗ ∗ −R

⎤
⎥⎥⎦ ,

Ξ2 =
[

S +V T −S U −T −U −V
]
,

Ξ3 = ΔT
4

[
d̄1Z1 + d̄2Z2 +

(
d̄1 + d̄2

)
M

]
Δ4,

Ξ4 =
[

S T U V
]
, Δ4 =

[
A 0 Ad 0

]
Ξ5 = diag

{−d̄−1
1 Z1,−d̄−1

2 Z2,−d̄−1Z2,−d̄−1M
}

,

Δ1 = PA+AT P+Q1 +R,

Δ2 = −(1− τ1)(Q1 −Q2) ,
Δ3 = −(1− τ1 − τ2)Q2, d̄ = d̄1 + d̄2. (9)

Remark 1 Theorem 1 presents a new stability criterion
for system Σ with two successive time-varying delay com-
ponents. This criterion is derived by defining the new
Lyapunov-Krasovskii functional in (7), which makes full
use of the information about d1(t) and d2(t). It is also
worth mentioning that some novel techniques have been ex-
ploited in the calculation of the time derivative of V (t), for
example, no system transformation has been performed to
the original system and thus there is no need to seek upper
bounds of the inner product between two vectors, which has
the potential to yield less conservative results.
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In the following, we further extend the above idea to an im-

portant case. More specifically, we assume the two succes-

sive delay components d1(t) and d2(t) have very different

properties in that d1(t) and d2(t) are assumed to be constant

and non-differentiable respectively. Thus the assumption in

(4) reads

d1(t) ≡ d̄1 < ∞, 0 ≤ d2(t) ≤ d̄2 < ∞. (10)

As can be seen in the next section, this case is much related

to the model we use for network based control.

Corollary 1 System Σ in (6) with delays d1(t) and d2(t)
satisfying (10) is asymptotically stable if there exist matri-
ces P > 0, Q ≥ 0, R ≥ 0, Zi > 0, i = 1,2, M > 0, and S, T ,
U, V satisfying[

Ξ̄1 +Ξ2 +ΞT
2 +Ξ3 Ξ4

∗ Ξ5

]
< 0, (11)

where Ξ̄1 = Ξ1 +diag{(Q−Q1) ,(−Δ2 −Q) ,−Δ3,0}, and
Ξi, i = 2, . . . ,5, Δ2, Δ3 are given in (9).

2.2 H∞ Performance Analysis
In this subsection, we investigate the problem of H∞ per-

formance analysis for systems with two successive delay

components in the state. Consider the following system:

Σ̄ : ẋ(t) = Ax(t)+Adx(t −d1(t)−d2(t))+Ew(t),
y(t) = Cx(t)+Cdx(t −d1(t)−d2(t))+Fw(t),
x(t) = φ(t), t ∈ [−d̄,0

]
. (12)

Here x(t), φ(t), d1(t) and d2(t) are the same as those in the

above subsection; w(t) ∈ R
l is the disturbance input which

belongs to L2 [0,∞); A, Ad , B, C, Cd , D are system matrices.

Our objective is to investigate under what condition system

Σ̄ in (12) is asymptotically stable with an H∞ disturbance

attention level γ , that is, ‖y‖2 < γ ‖w‖2 for all nonzero w ∈
L2 [0,∞) under zero initial condition. We first consider the

assumption in (4).

Theorem 2 System Σ̄ in (12) with delays d1(t) and d2(t)
satisfying (4) is asymptotically stable with an H∞ dis-
turbance attention level γ if there exist matrices P > 0,
Q1 ≥ Q2 ≥ 0, R ≥ 0, Z1 ≥ Z2 > 0, M > 0, and S, T , U,
V satisfying[

Ψ1 +Ψ2 +ΨT
2 +Ψ3 +Ψ4 +Ψ5 Ξ4

∗ Ξ5

]
< 0, (13)

where Ξ4 and Ξ5 are given in (9),

Ψ1 =

⎡
⎢⎢⎢⎢⎣

Δ1 0 PAd 0 PE
∗ Δ2 0 0 0

∗ ∗ Δ3 0 0

∗ ∗ ∗ −R 0

∗ ∗ ∗ ∗ 0

⎤
⎥⎥⎥⎥⎦ ,

Ψ2 =
[

S +V T −S U −T −U −V 0
]
,

Ψ3 = ΔT
5

[
d̄1Z1 + d̄2Z2 +

(
d̄1 + d̄2

)
M

]
Δ5,

Ψ4 =
[

C 0 Cd 0 F
]T [

C 0 Cd 0 F
]
,

Ψ5 = diag
{

0,0,0,0,−γ2I
}

,

Δ5 =
[

A 0 Ad 0 E
]
, (14)

and Δi, i = 1,2,3, are given in (9).

For the special case in (10), we have the following corol-

lary.

Corollary 2 System Σ̄ in (12) with delays d1(t) and d2(t)
satisfying (10) is asymptotically stable with an H∞ distur-
bance attention level γ if there exist matrices P > 0, Q ≥ 0,
R ≥ 0, Zi > 0, i = 1,2, M > 0, and S, T , U, V satisfying

[
Ψ̄1 +Ψ2 +ΨT

2 +Ψ3 +Ψ4 +Ψ5 Ξ4

∗ Ξ5

]
< 0,

where Ψ̄1 = Ψ1 + diag{(Q−Q1) ,(−Δ2 −Q) ,−Δ3,0,0},
Ξ4, Ξ5, Δ2, Δ3 are given in (9) and Ψi, i = 2, . . . ,5, are
given in (14).

2.3 Illustrative Example
We use a numerical example to illustrate the advantage of

the proposed new model and the developed stability condi-

tion.

Example 1 Consider system Σ in (6) with the following
parameters (borrowed from [4, 15]):

A =
[ −0.2 0

0 −0.09

]
, Ad =

[ −1 0

−1 −1

]
.

Suppose we know that ḋ1(t) ≤ 0.1, ḋ2(t) ≤ 0.8. Our pur-
pose is to find the upper bound d̄1 of delay d1(t), or d̄2

of d2(t), when the other is known, below which the sys-
tem is asymptotically stable. By combining the two delay
components together, some existing stability results can be
applied to this system. The calculation results obtained by
Theorem 1 in this paper, Theorem 2 in [19], Theorem 1 in
[15], Theorem 3.2 in [17], Corollary 1 in [16] and Theo-
rem 1 in [4] are listed in Table 1 for different cases. It can
be seen from the table that Theorem 1 in this paper yields
the least conservative stability test than the other single de-
lay approaches, showing the advantage of our approach.

3 Application to Network Based Control

3.1 Problem Formulation
In this section, we apply the results obtained above to

the problem of H∞ control for networked control systems.

Consider a typical networked control system shown in Fig-

ure 1. Suppose the physical plant is given by the following

linear system:

ẋ(t) = Ax(t)+Bu(t)+Ew(t) ,
y(t) = Cx(t)+Du(t)+Fw(t) . (15)

Here x(t) ∈ R
n is the state vector; u(t) ∈ R

p is the control

input; w(t) ∈ R
l is the disturbance input which belongs to

L2 [0,∞); y(t) ∈ R
q is the output; and A,B,C,D,E,F are

system matrices with appropriate dimensions.

In Figure 1, it is assumed that the sampler is clock-driven,

while the quantizer, controller and actuator are event-

driven. The sampling period is assumed to be h where
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Delay bound d̄2 for given d̄1 Delay bound d̄1 for given d̄2

d̄1 = 1 d̄1 = 1.2 d̄1 = 1.4 d̄2 = 0.1 d̄2 = 0.2 d̄2 = 0.3

By Theorem 1 0.512 0.406 0.320 2.300 1.779 1.453

By [19] 0.364 0.164 infeasible 1.264 1.164 1.064

By [15] 0.364 0.164 infeasible 1.264 1.164 1.064

By [4] 0.364 0.164 infeasible 1.264 1.164 1.064

By [17] infeasible infeasible infeasible 0.315 0.215 0.115

By [16] infeasible infeasible infeasible 0.222 0.122 0.022

Table 1 Calculated delay bounds for different cases

h is a positive real constant. In addition, it is assumed

that the state variable x(t) is measurable, and the mea-

surements of x(t) are firstly quantized via a quantizer, and

then transmitted with a single packet. The quantizer is

denoted as f (·) =
[

f1(·) f2(·) · · · fn(·)
]T

, which

is assumed to be symmetric. In this paper, we are inter-

ested in the logarithmic static and time-invariant quantizer.

For each f j(·), the set of quantized levels is described by

U j =
{
±u( j)

i , i = 0,±1,±2, . . .
}
∪ {0}. According to

[3, 5], for the logarithmic quantizer, the associated quan-

tizer f j(·) is defined as follows:

f j(v)=

⎧⎪⎨
⎪⎩

u( j)
i , if 1

1+σ j
u( j)

i < v ≤ 1
1−σ j

u( j)
i , v > 0,

0, if v = 0,
− f j(−v), if v < 0,

(16)

where σ j =
1−ρ j
1+ρ j

with ρ j being the quantization density.

Now denote the updating instants of the zero-order hold

(ZOH) as tk, k = 1, . . . ,∞, and suppose that the updating

signal (successfully transmitted signal from the sampler to

the controller and to the ZOH) at the instant tk has experi-

enced signal transmission delays ηk (ηk = τk +dk where τk
is the delay from the quantizer to the controller and dk is the

delay from the controller to the ZOH). Therefore, consider-

ing the behavior of the ZOH, the state-feedback controller

takes the following form:

u(t) = K f (x(tk −ηk)) , tk ≤ t < tk+1, (17)

where K is the state-feedback control gain, and tk+1 is the

next updating instant of the ZOH after tk.

A natural assumption on the network induced delays ηk can

be made as ηm ≤ ηk ≤ ηM , where ηm and ηM denote the

minimum and the maximum delays respectively. In addi-

tion, at the updating instant tk the number of accumulated

data packet dropouts since the last updating instant tk−1 is

denoted as δ k. We assume δ k ≤ δ̄ for all k. Then, we have

h+ηm ≤ tk+1 − tk ≤ ηM +
(
δ̄ +1

)
h, (18)

which implies that the interval between any two successive

updating instants is upper bounded by ηM +
(
δ̄ +1

)
h and

lower bounded by h+ηm.

Remark 2 It is worth noting that the assumption on the
network induced delays ηk made above is more general
than those in [20, 21]. The main difference lies in the lower

bound we introduced. By assuming ηm = 0, the assumption
is the same as those in [20, 21]. The introduction of the
lower bound ηm will be shown later, via a numerical ex-
ample, to be advantageous for reducing conservativeness
by utilizing the idea of successive delay components devel-
oped in the above section.

Therefore, from (15)–(17) we obtain the following closed-

loop system:

ẋ(t) = Ax(t)+BK f (x(tk −ηk))+Ew(t) ,
y(t) = Cx(t)+DK f (x(tk −ηk))+Fw(t) ,

tk ≤ t < tk+1. (19)

Remark 3 It is important to note that in (17), tk refers to
the updating instant of the ZOH. While in [20], the con-
troller is expressed as u(t) = Kx̄(tk), tk ≤ t < tk+1, with
tk standing for the sampling instant. It should be noted that
when the controller and actuator are event-driven, we can-
not use the sampling instant to model the behavior of the
ZOH. The reason is that the signal transmission delays may
not necessarily be integer multiples of the sampling period,
and thus the ZOH may be updated between sampling in-
stants. By using the updating instant in this paper, we do
not need to synchronize the ZOH and the sampler, and thus
the networked control model formulated here is essentially
different from that in [20] and is more general, though they
appear to be similar.

3.2 H∞ Controller Design
It is noted that the closed-loop system in (19) is in the form

of a sampled-data system. As the time sequence {tk} de-

pends on both the network induced delays and data packet

dropouts, the period tk+1 − tk for the sampled-data system

in (19) is variable and uncertain. From (18) we know that

tk+1 − tk is upper bounded by ηM +
(
δ̄ +1

)
h and lower

bounded by h+ηm.

Now, let us represent tk −ηk in (19) as

tk −ηk = t − t + tk −ηm +ηm−ηk = t −ηm−η(t), (20)

where η(t) = t − tk +(ηk −ηm). Then, from (18) we have

0 ≤ η(t) ≤ κ, (21)

where κ = 2ηM −ηm +
(
δ̄ +1

)
h. By substituting (20) into

(19) we obtain

ẋ(t) = Ax(t)+BK f (x(t −ηm −η(t)))+Ew(t) ,
y(t) = Cx(t)+DK f (x(t −ηm −η(t)))+Fw(t) .
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In addition, we denote υ = ηm +κ .

Remark 4 In the above transformed system, ηm is a con-
stant delay, and η(t) is a non-differentiable time-varying
delay with bound κ . Our main idea in the above transfor-
mation is to represent the sampled-data system in (19) as a
continuous time system with two successive delay compo-
nents in the state, which takes a very similar form as system
Σ in (6) with the assumption in (10). The H∞ control prob-
lem will be solved based on this new model.

Theorem 3 Consider the networked control system in Fig-
ure 1. Given a positive constant γ , there exists a state-
feedback controller in the form of (17) such that the closed-
loop system in (19) is asymptotically stable with an H∞
disturbance attention level γ if there exist matrices P̄ > 0,
Q̄ ≥ 0, R̄ ≥ 0, Z̄i > 0, i = 1,2, M̄ > 0, K̄, S̄, T̄ , Ū , V̄ , and a
diagonal matrix W̄ > 0 satisfying⎡

⎢⎢⎢⎢⎢⎢⎣

Δ8 Π3 Π5H Π7 Π8 Π10

∗ Π4 0 0 0 0

∗ ∗ Π6 0 Π9 0

∗ ∗ ∗ −I DK̄ 0

∗ ∗ ∗ ∗ W̄ −2P̄ 0

∗ ∗ ∗ ∗ ∗ −Λ−2W̄

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0,

(22)

where

Π1 =

⎡
⎢⎢⎢⎢⎣

AP̄+ P̄AT + Q̄+ R̄ 0 BK̄ 0 E
∗ −Q̄ 0 0 0

∗ ∗ 0 0 0

∗ ∗ ∗ −R̄ 0

∗ ∗ ∗ ∗ 0

⎤
⎥⎥⎥⎥⎦ ,

Π2 =
[

S̄ +V̄ T̄ − S̄ Ū − T̄ −Ū −V̄ 0
]
,

Π3 =
[

S̄ T̄ Ū V̄
]
, H =

[
I I I

]
,

Π6 = diag
{−η−1

m Z̄1,−κ−1Z̄2,−υ−1M̄
}

,

Π9 = HT BK̄, Δ8 = Π1 +Π2 +ΠT
2 +Ψ5,

Π4 = diag
{

η−1
m (Z̄1 −2P̄) ,κ−1 (Z̄2 −2P̄) ,

υ−1 (Z̄2 −2P̄) ,υ−1 (M̄−2P̄)
}

,

Π5 =

⎡
⎢⎢⎢⎢⎣

P̄AT

0

K̄T BT

0

ET

⎤
⎥⎥⎥⎥⎦ ,Π7 =

⎡
⎢⎢⎢⎢⎣

P̄CT

0

K̄T DT

0

FT

⎤
⎥⎥⎥⎥⎦ ,Π8 =

⎡
⎢⎢⎢⎢⎣

BK̄
0

0

0

0

⎤
⎥⎥⎥⎥⎦ ,

Π10 =
[

0 0 P̄ 0 0
]T

, (23)

and Ψ5 is given in (14). Moreover, if the above condition
is feasible, a desired controller gain matrix in the form of
(17) is given by K = K̄P̄−1.

3.3 Illustrative Example
Example 2 Suppose the physical plant in Figure 1 is the
satellite system, considered in [2]. The satellite system
consists of two rigid bodies joined by a flexible link. This
link is modelled as a spring with torque constant k and vis-
cous damping f . Denoting the yaw angles for the two bod-
ies (the main body and the instrumentation module) by θ 1

and θ 2, the control torque by u(t), the moments of inertia
of the two bodies by J1 and J2. Assume the output is the an-
gular position θ 2(t). Here we choose J1 = J2 = 1, k = 0.09

and f = 0.04. Then, the corresponding matrices described
in Section 3 are given by

A =

⎡
⎢⎢⎣

0 0 1 0

0 0 0 1

−0.3 0.3 −0.004 0.004

0.3 −0.3 0.004 −0.004

⎤
⎥⎥⎦ ,

B =
[

0 0 1 0
]T

, E =
[

0 0 0 0.1
]T

,

C =
[

0 1 0 0
]
, D = 0, F = 0.

It is assumed that: the sampling period h = 10 ms; the net-
work induced delay bounds are given by ηm = 10 ms and
ηM = 20 ms; the maximum number of data packet dropouts
δ̄ = 2. In addition, the parameters for the quantizer f (·)
are assumed to be ρ1 = ρ2 = ρ3 = ρ4 = 0.9.
The eigenvalues of A are −0.04 + 0.4224 j, −0.0400 −
0.4224 j, 0, 0; thus the above system is not stable. By
using Theorem 3 (minimizing γ in (22)), the gain matrix
for the state-feedback controller in (17) is given by K =[ −1.1789 −1.3096 −1.6629 −7.3974

]
, and the

obtained minimum guaranteed H∞ performance is γ∗ =
0.7864.
We first illustrate that the closed-loop system is asymptoti-
cally stable under the above obtained controller. The state
responses are depicted in Figure 2, from which we can see
that all four state components converge to zero. In the sim-
ulation, the network induced delays and the data packet
dropouts are generated randomly (evenly distributed within
their ranges) according to the above assumption. The com-
puted control inputs arriving at the ZOH are shown in Fig-
ure 3, where we can see the discontinuous holding behavior
of the control inputs.
Next, we illustrate the H∞ performance of the closed-loop
system. To this end, let us assume zero initial conditions,
and select a set of input signals as follows:

w(t) =
{

sin0.2t, 5 ≤ t ≤ 15 s,
0, otherwise. (24)

In the simulation, by calculation, ‖w‖2 = 2.5468, ‖y‖2 =
1.3537, which yields ‖y‖2

‖w‖2
= 0.5315 < γ∗ = 0.7864, show-

ing the effectiveness of the H∞ controller design.

4 Conclusions

This paper has proposed a new model on time-delay sys-

tems, which contains multiple successive delay compo-

nents in the state. New results on stability and H∞ per-

formance are proposed by exploiting a new Lyapunov-

Krasovskii functional and by making use of novel tech-

niques for time-delay systems. Moreover, the proposed

new model has been utilized to model networked control

systems with simultaneous consideration of network in-

duced delays, data packet dropouts and measurement quan-

tization. Illustrative examples have been presented to show

the advantage and applicability of the proposed new time-

delay model and network based controller design method.
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Figure 1: A typical networked control system

Figure 2: State response

Figure 3: Control input signal
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