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Original Article 

Interpreting sero-epidemiologic studies for influenza in a context of 

non-bracketing sera 

 

ABSTRACT 

Background: In influenza epidemiology, analysis of paired sera collected from 

people before and after influenza seasons has been used for decades to study the 

cumulative incidence of influenza virus infections in populations. However, 

interpretation becomes challenging when sera are collected after the start or 

before the end of an epidemic, and do not neatly bracket the epidemic.  

Methods: Serum samples were collected longitudinally in a community-based 

study. Most participants provided their first serum after the start of circulation of 

influenza A(H1N1)pdm09 virus in 2009. We developed a Bayesian hierarchical 

model to correct for non-bracketing sera and estimate the cumulative incidence 

of infection from the serological data and surveillance data in Hong Kong.   

Results: We analyzed 4843 sera from 2097 unvaccinated participants in the 

study, collected from April 2009 through December 2010. After accounting for 

non-bracketing, we estimated that the cumulative incidence of H1N1pdm09 virus 

infection was 45.1% (95% credible interval, CI: 40.2%, 49.2%), 16.5% (95% CI: 

13.0%, 19.7%) and 11.3% (95% CI: 5.9%, 17.5%) for children 0-18y, adults 

19-50y and older adults >50y respectively. Including all available data 
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substantially increased precision compared to a simpler analysis based only on 

sera collected at 6-month intervals in a subset of participants. 

Conclusions: We developed a framework for the analysis of antibody titers that 

accounted for the timing of sera collection with respect to influenza activity and 

permitted robust estimation of the cumulative incidence of infection during an 

epidemic. 
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INTRODUCTION 

Serologic data are commonly used to identify past exposures to antigens either 

through natural infection or vaccination. In influenza epidemiology, serologic 

studies have been used for decades to study the cumulative incidence of 

influenza virus infections in persons of different ages [1-3]. There are two basic 

types of serologic study. In a serial cross-sectional study, sera are collected before 

and after an influenza epidemic, and infection risks are estimated by comparing 

the proportions of participants with antibody titers greater than a certain 

threshold [4-6]. In some situations when pre-epidemic seroprevalence is very 

low, a cross-sectional study with only post-epidemic specimens can be used to 

estimate cumulative incidence [7]. The second type corresponds to longitudinal 

studies in which sera are collected from the same persons before and after an 

epidemic, and the cumulative incidence of infection is estimated by the 

proportion of persons with 4-fold or greater rises in antibody titers in paired 

specimens [3,8]. Smaller rises are traditionally ignored because of the potential 

for assay variability and measurement error [9-11]. However, one recent study 

suggested that the exclusion of 2-fold rises might lead to under-ascertainment of 

some infections particularly for seasonal influenza [9].  

 

Interpretation of serologic data may be challenging. For example, in certain 

serologic studies sera are collected after the start or before the end of an 
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epidemic. This can be called “non-bracketing” and contrasts with the ideal 

scenario that consists of collection of paired sera that neatly bracket the 

epidemic period. This can happen either because of unpredictability in influenza 

seasonality for example in tropical and subtropical regions, or for an 

unpredictable influenza pandemic [7,12-19]. For example, in some locations, the 

first wave of H1N1pdm09 occurred quite soon after the new virus was identified, 

and most serologic studies therefore failed to collect baseline sera before the 

start of the first wave [19]. In some studies multiple sera are collected at various 

times before, during and after epidemics, with consecutive pairs of sera 

providing information on incidence of infection during the corresponding 

periods, but it can be challenging to integrate all of this information into 

estimates of cumulative incidence across the entire epidemic. In general, failing 

to account for the timing of sera collection relative to influenza activity may lead 

to underestimation of the cumulative incidence of influenza virus infections. 

Furthermore, if there is a long delay between the end of an epidemic and the 

collection of post-epidemic sera, waning in antibody that occurs in the months to 

years after infection might lead to under-ascertainment of some infections. 

 

The objective of our study was to develop a unifying framework to address the 

issue of timing of sera collection, and particularly non-bracketing in sera, with a 

view to estimate more accurately the cumulative incidence of influenza virus 
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infections. We also aim to characterize the distribution of boosting of antibody 

titers after infection and that of waning of antibody titers without infection. We 

used these methods to estimate the cumulative incidence of infection with 

pandemic A(H1N1) influenza virus in 2009 (H1N1pdm09) in different age 

groups in Hong Kong. 

 

METHODS 

Study participants 

We used data on longitudinal serum samples collected in two community-based 

trials of the direct and indirect benefits of influenza vaccination [20,21]. In 

2008-09 we enrolled 119 households and randomly allocated one child 6-15 

years of age in each household to receive either a single dose of TIV or saline 

placebo. Serum specimens were collected from each household member three 

times: at enrolment to the study in November-December 2008, in April 2009, and 

in August-October 2009 [20].  

 

In a larger trial in 2009-10 we enrolled 796 households, including 83 of the 119 

households from the previous study, and randomly allocated one child 6-17 years 

of age per household to receive either a single dose of TIV or saline placebo. 

Serum specimens were collected from every household member at enrolment to 

the study in August 2009 through February 2010, and at the end of the study in 
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August-December 2010, and a third sample was collected from all persons in a 

random sample of 25% of households plus in all 83 households that continued 

from the prior study in April 2010 [21]. For those 83 households, the specimens 

collected at the end of the 2008-09 study were used as the baseline specimens 

for 2009-10. In both studies, children who received TIV or placebo also provided 

one additional serum specimen one month after vaccination. Therefore in total 

we collected up to seven sequential serum specimens from participants over a 

2-year period covered by the two trials, while the majority of participants in the 

large 2009-10 study provided 2 serum specimens. 

 

Ethics 

Written consent was obtained for participants ≥18 years of age. Proxy written 

consent from parents or legal guardians was obtained for participants who were 

≤17 years of age, with additional written assent from those aged 8 to 17 years. 

The study protocol was approved by the Institutional Review Board of Hong 

Kong University. 

 

Surveillance data 

Influenza activity in the general community is monitored through a sentinel 

surveillance network in outpatient clinics, which report the proportion of 

patients with influenza-like illness defined as a fever >37.8°C plus a cough or 
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sore throat. The public health laboratory also collects data on the weekly 

proportion of specimens from sentinel outpatient clinics and local hospitals that 

tested positive for influenza virus. We used a proxy measure of the weekly 

incidence rate of influenza virus infections in the community, derived as the 

weekly proportion of outpatients with influenza-like illness multiplied by the 

weekly proportion of laboratory specimens testing positive for H1N1pdm09 

virus [22-25]. We previously reported that this particular proxy provided a good 

indication of incidence of H1N1pdm09 virus infection in the community based 

on hospital admissions [26]. 

 

Laboratory methods 

All serum samples were stored in a refrigerated container immediately at 2-8ºC 

immediately after collection and delivered to the Department of Microbiology, 

Hong Kong University, before the end of the day. Serum samples were extracted 

and stored at -70°C within 24 hours of receipt at the laboratory. Serum 

specimens were tested against the H1N1pdm09 virus A/California/7/2009 in 

parallel by hemagglutination inhibition (HAI) assays in serial doubling dilutions 

from an initial dilution of 1:10 using standard methods as previously described 

[21,27].  
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Statistical methods 

While in theory there could be as many as seven serum samples for some 

participants, in practice there was no pandemic influenza activity when 

pre-vaccination and post-vaccination sera were collected in the 2008/09 study, 

hence we used the sera collected in April 2009 as the baseline titers for every 

individual. Post-vaccination sera were ignored in the analysis since they were 

only available for a subset of children in the 2009/10 study. We therefore 

included data from four rounds of sera collection spaced at intervals of 

approximately 6 months. All participants who had at least one antibody titer 

measurement during the study period were included in the study.  

 

Participants who reported vaccination or who were randomly assigned to receive 

vaccination as part of our study were excluded from analyses, because 

vaccination reduced risk of infection and also because interpretation of serology 

in vaccinated persons can be challenging [28]. Infection was defined by having 

4-fold rise or greater in consecutive pairs of sera. We built a 3-level hierarchical 

model to estimate the cumulative risk of infection across an epidemic accounting 

for non-bracketing. The first level of the model described the distribution of the 

pre-epidemic antibody titer levels among participants (Supplementary section 

1.1). The second level of the model described the risk of infection during the 

epidemic, by assuming that the weekly hazard of infection was proportional to an 
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influenza proxy, constructed by the method mentioned in the surveillance data 

subsection above [26]. Hence, the hazard of infection at time t is 

𝜆(𝑡|𝑎) = 𝜓𝑐,𝑎 ∗ 𝑃𝑡 , 

where a is the age group of the participant, 𝜓𝑐,𝑎 is the scaling factor for the 

influenza risk of infection for the age group a and 𝑃𝑡  is the influenza activity 

proxy at time t based on local surveillance data. Hence, the probability of 

infection in time period(tj−1, 𝑡𝑗) is 1 − exp {−∑ 𝜆(𝑡|𝑎)𝑡𝑗
𝑡=𝑡𝑗−1

} (Supplementary 

section 1.2). The third level of the model described the pattern of boosting of 

antibody titers for infected participants and the pattern of waning of antibody 

titers for uninfected participants. We used multinomial distributions to model 

the boosting distribution after infection and waning without infection. Since we 

defined infection by using 4-fold rise in pair sera, boosting distributions were 

estimated conditioning on participants with at least 4-fold rise after infection 

and we assumed there was no waning in the paired sera that have greater than or 

equal to 4-fold rise (Supplementary section 1.3). Those patterns were observed 

between rounds of sera collection at intervals of approximately 6 months. We 

assumed that antibody titers were boosted exactly at 14 days after infection and 

there was no change from 0 to 14 days, and that it was not possible for an 

individual to be infected more than once during a single epidemic. For those 

participants with missing pre-epidemic antibody titer measurements, we 

imputed the pre-epidemic antibody titer based on the estimated individual 
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posterior distribution of the antibody titer levels combining the information from 

the estimated cumulative incidence of infection before the individual’s serum 

collection and estimated pre-pandemic antibody titer distribution from other 

individuals with data available.  

 

In our study, we collected sera once per year (in rounds 2 and 4) for two thirds of 

participants and inferences from these paired sera may not be directly 

comparable with the paired sera that were collected on two occasions (in rounds 

2, 3 and 4) each year for the other participants. To account for this potential 

impact on estimation of cumulative incidence, we assumed that there was a 

missing mid-year serum sample (assumed to be collected at the time when the 

round 3 sera were collected for other participants) for those participants that 

provided once-annual sera and estimated it within the inferential framework by 

combining the information on the individual’s antibody titer on round 2 and 4, 

the estimated boosting and waning distribution from the study participants and 

the estimated cumulative incidence of infection in the corresponding periods. 

 

During the first wave of pandemic influenza H1N1 in 2009, the sentinel 

surveillance system was affected by the establishment of special Designated Flu 

Clinics (not part of the sentinel network), before and during the peak in the first 

wave, which provided subsidized consultation and medication for patients [13]. 
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Additionally, there were changes in health-care seeking behaviors during that 

period because of the increased media and government attention on influenza 

[29]. To account for these changes, we assumed that the scaling factor relating 

the influenza proxy to incidence rates changed after a fixed date that we denoted 

the change point. To evaluate uncertainty in the change point, we evaluated 

models with different change points and selected the change point that 

minimized the differences between the expected and observed number of 

infections in each age group. 

 

A Bayesian Markov Chain Monte Carlo algorithm [30] was constructed to impute 

antibody titer levels when they were missing. Censoring of the antibody boosting 

or waning (eg: drop from 1:40 to <1:10) was accounted for. Simulation studies 

demonstrated that this algorithm could give unbiased parameter estimates 

(Appendix). The adequacy of model fit was assessed by comparing the observed 

and expected distributions of number of 4-fold rise in consecutive sera collected 

between rounds in different age groups. A sensitivity analysis of the delay from 

infection to boosting in antibody titer was conducted (eAppendix). Statistical 

analyses were conducted using R version 3.1.1 (R Foundation for Statistical 

Computing, Vienna, Austria) and MATLAB 7.8.0 (MathWorks Inc, Natick, MA). 

Additional technical details of the methods are provided in the eAppendix. 
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RESULTS 

A total of 3160 participants participated in the studies in 2008-09 or 2009-10 

including 301 who participated in both. After excluding participants who 

received influenza vaccination either as part of the trials (n=530) or privately 

(n=217), and 316 participants who did not provide any sera, 2097 participants 

remained for analysis of antibody titers. There were four rounds of serum 

collection in our study (Figure 1), and the characteristics of participants who 

provided a serum sample in each round were similar (Table 1). The time of 

collection of sera in our study and distribution of antibody titers in different 

rounds are shown in Figure 1. While in total we collected 4843 sera from 2097 

unvaccinated participants in the study, a relatively smaller number of samples 

were collected in rounds 1 and 3, and only 2396 sera could be used if restricting 

analysis to participants with consecutive sera in rounds 1+2, rounds 2+3, and 

rounds 3+4. 

 

The proportions of persons with 4-fold rises in paired titers for different age 

groups are shown in Table S1. However, the interpretation of these proportions is 

complicated because of the non-bracketing shown in Figure 1. We used the 

statistical methods described above to address this issue. The model with a 

change point on November 21, 2009 gave the best fit to the data (Figure S1). This 

change point was consistent with findings of a previous study [13]. Hence we 



 13 

used this model as our baseline scenario.   

 

Estimates of the cumulative risk of infection for different age groups during the 

H1N1pdm09 epidemic are shown in Figure 2. Based on our model, we estimated 

that the cumulative risks of H1N1pdm09 infection from 5 July 2009 to 16 January 

2010 were: 45.1% (95% CI: 40.2%, 49.2%), 16.5% (95% CI: 13.0%, 19.7%) and 

11.3% (95% CI: 5.9%, 17.5%) for children, adults and older adults respectively. 

Estimates from sensitivity analyses assuming that the delays from infection to 

boosting were 10 days or 21 days were similar (Table S2). 

 

We evaluated how accounting for the timing of sera collection relative to 

influenza activity could affect estimates in more naive analyses. Without the 

methodology described above we would need to make arbitrary choices about 

the data to retain in analyses, for example restricting analysis to participants 

with consecutive sera in rounds 1+2, rounds 2+3, and rounds 3+4 (Figure 1), and 

summing the cumulative incidence in each of the three corresponding periods 

(Table S1). This would lead to estimates of 51.3% (95% CI: 34.0%, 73.0%), 21.1% 

(95% CI: 13.3%, 32.0%), and 13.9% (95% CI: 3.8%, 65.6%) for children, adults, 

and older adults respectively. The corresponding estimates based on our 

statistical model that included all data, and accounted for the timing of sera 

collection relative to influenza activity, were 58.2% (CI: 53.1%, 62.5%), 22.2% 
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(CI: 18.6%, 25.6%) and 17.1% (CI: 10.5%, 24.4%). Using all available data and 

accounting for the timing of sera collection therefore gave more precise estimates 

of incidence, which could shorten the length of confidence intervals by 4.1-fold, 

2.7-fold, and 4.5-fold for children, adults, and older adults respectively.  

 

In our main analysis, the estimated distributions of pre-epidemic antibody titers 

indicated that more than 80% of children and adults had titers below 1:10 (Table 

S3). We found that the geometric mean boosting in antibody titers after infection 

was higher for children (22.0-fold; 95% CI: 19.6 to 24.8-fold) than for adults 

(12.6-fold; 95% CI: 11.0 to 14.6-fold) (Figure 3). We also estimated the 

distribution of antibody titer waning after accounting for censoring. The 

estimated probabilities of having 2-fold rise, no change in titer, or a drop in titer 

of various magnitudes in paired sera were shown in Table S4. The average 

waning rate of antibody titers across a period of six months was faster for adults 

(3.5-fold drop over 6 months; 95% CI: 3.0- to 4.2-fold drop) than for children 

(1.7-fold drop over 6 months; 95% CI: 1.6 to 1.9-fold drop). 

 

We then examined the advantage of collecting additional sera halfway through a 

year from 1/3 of participants (i.e round 3), in the context of waning in antibody 

titers after infection. Using only the paired sera in rounds 1+2 and then in rounds 

2+4, the estimates of the cumulative incidence of infection were 44.4% (95% CI: 
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31.4%, 60.1%), 12.5% (95% CI: 7.4%, 19.9%) and 6.1% (95% CI: 2.3%, 28.2%) 

for children, adults and older adults respectively, which underestimated the 

cumulative incidence of infection by 23.7%, 43.6% and 64.3% relatively when 

compared with estimates obtained from the model that included the mid-year 

sera in round 3. 

 

DISCUSSION 

In this study, we proposed a method to account for the timing of sera collection 

relative to influenza activity, by combining the information from surveillance 

data, distribution of pre-epidemic antibody, patterns of antibody boosting after 

infection, and waning. We applied the method to estimate the cumulative 

incidence of H1N1pdm09 virus infection across the entire first epidemic wave in 

Hong Kong which spanned from April 2009 through to November 2010. While 

our estimate for the cumulative incidence of H1N1pdm09 virus infection in 

children was similar to that in other studies, the estimate for adults and elderly 

was higher than in other studies [7,16,18]. One potential explanation for this 

observation is that our data were from a vaccine trial that involved families of 

school-age children, and therefore excluded adults that did not live with children 

and might therefore generally be at lower risk of infection [31]. However, we 

would expect that our method could provide more accurate estimates if the 

participants were a more generalizable sample, while the data from the present 
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study might allow population-based estimates under a series of assumptions and 

estimates of transmission dynamics within households of different types. 

 

We described a typical problem in serologic studies, namely collection of sera 

that do not neatly bracket an epidemic (Figure 1). While we collected pairs of 

sera across 6-month intervals from a smaller number of participants that 

permitted reasonable estimates of cumulative incidence summing across each 

period, the methodology developed here enabled us to include a much larger 

number of sera collected once per year that did not bracket the epidemic (Figure 

1). Inclusion of all available data improved precision in estimates. In addition, 

using only data from the participants that provided sera once per year led to 

underestimation of cumulative incidence because of waning in titers over time. 

This implies that in sero-epidemiological studies, the cumulative incidence of 

infection may be underestimated if sera are collected once per year, in particular 

for adults, unless antibody waning is addressed in the analysis. Collection of 

mid-year sera from a subset of participants provided the required information on 

waning for our analysis. 

 

We estimated the distribution of boosting in antibody titers after infection 

(defined as having at least 4-fold rise in paired sera) and found the average 

boosting after infection for children was higher than for adults, conditional on 
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having at least a 4-fold rise in titer. The pattern shown in Figure 3 suggests that 

infection might lead to less than 4-fold rises in titers in some adults, and 

consequently that the cumulative incidence of infection for adults might have 

been underestimated, compared with children [9]. 

 

Waning of antibody titers after infection or vaccination is a well-known problem 

[32-35], which may lead to under-ascertainment of infections if post-epidemic 

sera are not collected soon after the end of the epidemic [12-15]. We estimated 

that waning of antibody titers was considerable over six-month time periods, 

which was consistent with other studies [32-34]. The distribution of waning of 

antibody titers was faster in adults than in children. We found that children had 

both higher boosting of antibody after infection and slower waning, suggesting 

that most children infected in the first wave of H1N1 pandemic were still 

immune in the second wave of H1N1 pandemic, and may partly explain the 

observed shift in age distribution of infected people (from children to adults) in 

the second wave of H1N1 pandemic in Hong Kong [25]. Waning in antibody titers 

over a calendar year may also partly explain the generally lower boosting 

distributions inferred in an earlier study [9]. 

 

Our model accounted for missing data on antibody titers, which allowed us to 

fully use the information from all participants, even those for whom 
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pre-epidemic antibody titers were missing, although such data were required on 

a subset of participants. While our study showed that the non-bracketing 

problem would seriously influence the estimation of cumulative incidence of 

infection and should be avoided in future serology studies, we demonstrated an 

approach for addressing this problem when unavoidable.  

 

In our model, we used a proxy measure of influenza activity in the community 

(Figure 1) based on surveillance data, and the reliability of estimates from our 

model are dependent to some extent on the accuracy of this proxy in reflecting 

the risk of influenza virus infection in study participants. Moreover, the proxy 

used here was not age-specific, and it is possible that patterns in the risks of 

influenza vary for different age groups for example because of faster depletion of 

susceptibles in school-age children. However, we did have age-specific data on 

incidence in 2009 and found that patterns in the incidence rates of H1N1pdm09 

were similar for different age groups [26]. 

 

Our study had a number of limitations. First, infections were defined by a 4-fold 

rise or greater in paired titers, which may not have ideal sensitivity and 

specificity to identify influenza virus infections owing to cross-reactive antibody 

associated with other infection or unreported vaccination. Moreover, to ensure 

identifiability of the model, we assumed that there would be no antibody waning 
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in the paired sera that have greater than or equal to 4-fold rise, which may lead to 

underestimation of the boosting distribution. The boosting distributions were 

estimated conditioning on participants with at least 4-fold rise after infection, 

which may overestimate the boosting distribution if some infected persons did 

not have a 4-fold or greater rise in antibody titer after infection, as we believe 

may have occurred for adults (Figure 3). Second, measurement error in titers 

may be important [9] and its impact on estimation of cumulative incidence 

remains unclear. Third, because serum samples were collected at different times 

for different participants, 23% of the consecutive intervals in sera collection (i.e. 

R1-R2,R2-R3 and R3-R4) were longer or shorter than 6 months by at least 1 

month and this may have affected the estimation of waning and imputation of 

missing antibody titers. Finally, our study was household-based and hence the 

estimation of cumulative incidence of infection could be improved by taking 

transmission dynamics in households into account, so that more accurate 

estimates of cumulative incidence of infection for population could be provided.  

 

In conclusion, we found that failing to account for the timing of sera collection 

could inhibit accurate and precise estimation of cumulative incidence of infection. 

We presented a methodological framework to address this issue and permit 

more accurate estimates of the cumulative incidence of infection during an 

epidemic. 
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FIGURE LEGENDS 

 

 

 

Figure 1. Panel A: Timeline of the study and local influenza virus activity for 

H1N1pdm09 epidemic. Black lines represent the local influenza activity. Orange, 

green, blue and black lines represent the pairs of sera draw from round 1+2 (246 

pairs), round 2+3 (698 pairs), round 3+4 (676 pairs) and round 2+4 (1126 pairs), 

respectively. Collection dates are adjusted for the 2-week delay from infection to 

rise in antibody titer. Participants were ordered vertically by age. Panel B: 

Antibody titer measurements over calendar time. A value of 5 corresponds to a 

titer measured at <10.  
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Figure 2. Panel A: Estimated monthly risk of infection during the H1N1pdm09 

epidemic. Circles, triangles, and diamonds represent the point estimates of the 

infection risks of H1N1pdm09 each month and the vertical lines represent the 

corresponding 95% credible intervals. Panel B: Estimated cumulative risk of 

infection over the entire epidemic of H1N1pdm09 for different age groups with 

95% credible intervals. 

 

 

Figure 3. Estimated antibody titer boosting distribution for children and adults 

infected with H1N1pdm09 virus. Panel A: boosting distribution for children 

infected with H1N1pdm09 virus. Panel B: boosting distribution for adults 

infected with H1N1pdm09 virus  



Table 1. Characteristics of participants in community-based serologic study 

Characteristic Round 1 Round 2 Round 3 Round 4 

Date range of sera collection April 2 to April 29, 2009 August 29, 2009 to February 

20, 2010 

April 16 to May 15, 2010 August 19 to December 11, 

2010 

Median sample collection date April 15, 2009 November 17, 2009 April 30, 2010 November 12, 2010 

No. of participants 259 2057 703 1824 

     

Age     

  ≤18 years 77 (29.7%) 660 (32.1%) 214 (30.4%) 596 (32.7%) 

  19-50 years 159 (61.4%) 1217 (59.2%) 438 (62.3%) 1076 (59%) 

  >50 years 23 (8.9%) 180 (8.8%) 51 (7.3%) 152 (8.3%) 

     

Sex     

  Male 117 (45.2%) 933 (45.4%) 315 (44.8%) 819 (44.9%) 

     

Serum available in other 

rounds 

    

Round 1  246 (12%) 172 (24.5%) 173 (9.5%) 

Round 2 246 (95%)  698 (99.3%) 1798 (98.6%) 

Round 3 172 (66.4%) 698 (33.9%)  676 (37.1%) 



Round 4 173 (66.8%) 1798 (87.4%) 676 (96.2%)  
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