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Abstract 

Limits of stability (LOS) is an important yet under-examined postural control ability in 

children with developmental coordination disorder (DCD). This study aimed to (1) compare the 

LOS and fall frequencies of children with and without DCD, and (2) explore the relationships 

between LOS parameters and falls in the DCD population. Thirty primary school-aged children 

with DCD and twenty age- and sex-matched typically-developing children participated in the 

study. Postural control ability, specifically LOS in standing, was evaluated using the LOS test. 

Reaction time, movement velocity, maximum excursion, end point excursion, and directional 

control were then calculated. Self-reported fall incidents in the previous week were also 

documented. Multivariate analysis of variance results revealed that children with DCD had 

shorter LOS maximum excursion in the backward direction compared to the control group (p = 

0.003). This was associated with a higher number of falls in daily life (rho = -0.556, p = 0.001). 

No significant between-groups differences were found in other LOS-derived outcomes (p > 0.05). 

Children with DCD had direction-specific postural control impairment, specifically, diminished 

LOS in the backward direction. This is related to their falls in daily life. Therefore, improving 

LOS should be factored into rehabilitation treatment for children with DCD. 

 

Keywords: Clumsy children; postural control; limits of stability; falls; rehabilitation 
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1. Introduction 

Developmental coordination disorder (DCD) is one of the most common 

neurodevelopmental motor disorders, affecting about 6% of typically-developing children during 

the primary-school years. Classic features include clumsiness, poor coordination, slowness and 

inaccuracy of motor skills and poor postural control [1-3]. It has been reported that 73% to 87% 

of children with DCD suffer from balance problems [4] that interfere with participation in day-

to-day activities and increase the risk of falls [2,5]. Suboptimal balance ability in children with 

DCD is therefore a concern of many parents and clinicians. 

Balance (postural control) requires the ability to control the center of gravity (COG) 

within the base of support (BOS). The perimeter of the BOS is known as the limit of stability 

(LOS). During erect standing, the LOS defines the area in space through which a person can lean 

his or her body without altering the BOS. If the body sways beyond the LOS boundary, a 

corrective step will be elicited (stepping strategy) to re-establish a new BOS or else a fall will 

occur [6,7]. 

It is widely acknowledged that the LOS of an individual is affected by both mechanical 

(e.g., range of joint motion and postural alignment) and neural (e.g., muscle response latency and 

sensorimotor integration) factors [6-9]. Children with DCD exhibit neural deficits involving the 

central nervous system (e.g., parietal cortex and cerebellum) [10,11] and peripheral nervous 

system (e.g., muscle activation) [12,13] that may adversely affect their LOS. Previous studies 

have reported that children with DCD demonstrate poorer static [2,12,14], reactive [14] and 

anticipatory [13] postural control compared to their typically-developing peers. It is plausible 

that their LOS are affected as well. Examining LOS characteristics in children with DCD is very 

important, as stability is fundamental to many daily tasks such as reaching for objects, leaning 
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back for hair washing, and walking. Movements exceeding the LOS will result in falls and 

injuries [6,15]. However, this specific, yet important aspect of balance performance is under-

examined in the DCD population. 

To the best of our knowledge, only Johnston et al. have examined the LOS characteristics 

of children with DCD. They reported that during a reaching forward task, some of the anterior 

trunk muscles in the DCD-affected children demonstrated delayed activation or even absent 

anticipatory muscle action [13]. We hypothesized that poor proximal trunk control may affect 

forward reaching distance and LOS in the antero-posterior directions. However, information 

about the actual LOS deficit in children with DCD remains elusive. Moreover, no information on 

comorbid conditions was provided in Johnston et al.’s study [13]. Because comorbidities (e.g., 

attention deficit hyperactivity disorder) can influence the nature and severity of sensorimotor 

deficits and possibly LOS performance [16], it is important to assess a homogeneous sample of 

children with DCD. The objectives of this cross-sectional, case-control and exploratory study 

were: (1) compare the LOS and fall frequencies of children with DCD (without comorbidities) 

and age- and sex-matched typically-developing children, and (2) explore the relationships 

between LOS parameters and falls in the DCD population. 

 

2. Methods 

2.1. Participants 

Children with DCD were recruited from child assessment centers, non-government 

organizations, local primary schools, and parents’ groups through flyer and website advertising. 

All child volunteers were screened and assessed by two physiotherapists to determine their 

eligibility to participate in the study. The inclusion criteria were: (1) a diagnosis of DCD based 
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on the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR) [1]; (2) a total 

impairment score of  < 5th percentile on the Movement Assessment Battery for Children (MABC) 

[17]; (3) a total score of < 46 (for children aged 5 years to 7 years 11 months), < 55 (for children 

aged 8 years to 9 years 11 months), or < 57 (for children aged 10 years) on the DCD 

questionnaire (2007 version) [18]; (4) aged between 6 and 10 years; and (5) studying in a 

mainstream primary school. Exclusion criteria were: (1) comorbid conditions such as attention 

deficit hyperactivity disorder or dyslexia; (2) diagnosis of cognitive, psychological, emotional, 

neurological or other motor disorders; (3) known significant congenital, musculoskeletal, visual, 

vestibular or other sensorimotor disorders that might affect balance; (4) receiving rehabilitation 

services; or (5) unable to follow the assessor’s instructions. 

Typically-developing children were recruited from mainstream primary schools as 

controls. The eligibility criteria were the same as those for the DCD group, except that eligible 

control children did not have a diagnosis of DCD; obtained a total impairment score of > 15th 

percentile on the MABC [17]; and had a total score of > 46 (for children aged 5 years to 7 years 

11 months), > 55 (for children aged 8 years to 9 years 11 months), or > 57 (for children aged 10 

years) on the DCD questionnaire (2007 version) [18]. Ethical approval was obtained from the 

Human Research Ethics Committee of the administering university. Each child and parent gave 

informed written consent before data collection. Data collection was performed by an 

experienced physiotherapist and a trained assistant. All experimental procedures were conducted 

in accordance with the Declaration of Helsinki for human experiments. 

 

2.2. Outcome measurements 
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Participants’ relevant personal information, medical history, and number of falls in the 

previous week were obtained by interviewing them and a parent. Physical activity level (in 

metabolic equivalent (MET) hours per week) was estimated based on the self-reported physical 

activity intensity (light, moderate or hard), duration (hours), frequency (times per week), and the 

assigned MET value of the specific activity according to the Compendium of Energy 

Expenditures for Youth [19]. Body height and weight of each child were measured using a 

mechanical scale equipped with a height rod. Body mass index (BMI, in kg/m2) was then 

calculated using the equation: weight/height2. In addition, each child was assessed on their motor 

proficiency using MABC [17] and the parent was invited to fill in the DCD questionnaire (2007 

version) [18].  

A computerized dynamic posturography (CDP) machine (Smart Equitest, NeuroCom 

International Inc., Oregon, USA) with dual force plates and a video screen was used to perform 

the LOS test. This test assesses the participant’s ability to intentionally shift his or her weight 

(i.e., displace their COG) in eight spatial directions (four cardinal and four diagonal directions) 

within a fixed BOS, and to briefly maintain stability at these target positions (Fig. 1). Each 

participant was instructed to stand barefoot on the force platform of the CDP machine with 

standardized foot placement. A safety harness was used to prevent falls. During the test, the 

initial center of pressure (COP) was displayed on the screen of the CDP machine together with 

eight target positions – front, right-front, right, right-back, back, left-back, left and left-front (Fig. 

1). These target positions represent the perimeter of the theoretical LOS, which is determined 

automatically by the machine based on the sway angle of the COG of the participant: 8° right 

side, 8° left side, 8° anteriorly, and 4.5° posteriorly. On command (a visual cue and an auditory 

cue), the participant moved his or her COP trace to hit one of the eight randomly selected spatial 
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target positions located on the LOS perimeter as fast, accurately, and smoothly as possible and 

then briefly maintained this position (COP as close to the target as possible) (Fig. 1). To do this, 

each participant needed to lean his or her body as far as possible in a given direction without 

losing balance, stepping, or reaching for assistance. The displacements of COP were displayed 

on screen in real time (as visual feedback) (Fig. 1) and recorded automatically [15,20]. 

The LOS test measured the following parameters for each movement direction (note that 

only the four cardinal directions were included in the statistical analysis): (1) reaction time (in 

seconds), the time between the presentation of a visual-auditory cue and onset of voluntary 

shifting of the participant’s COP toward the designated target; (2) movement velocity (in °/s), the 

average velocity of COP movement quantified for 5% to 95% of the distance from the initial 

position to the target position; (3) maximum excursion (in % LOS), the maximum distance 

traveled by the COP during a trial, including movements that passed beyond the designated 

target; (4) endpoint excursion (in % LOS), the distance of the COP movement at first attempt 

toward the target, which provides a measure of how far the participant is willing to move on the 

first attempt leaning toward the target and reflects the participant’s perception of his or her own 

safety limits (endpoint is defined as the point at which the initial movement toward the 

designated target ceases); and (5) directional control (in % accuracy), which measures the 

smoothness of the displacement of the COP toward the target position. Its value, expressed as a 

percentage of the total on-target movement, was computed using the equation: [(Amount of on-

target movement – amount of off-target movement)/Amount of on-target movement] × 100%. A 

value of 100% indicates a straight-line path from the starting position toward the target without 

any off-target movement [15,20]. 
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Test-retest reliability of the LOS test was found to be moderate to good with intraclass 

correlation coefficients ranging from 0.69 to 0.88 in young people [21]. For the purpose of data 

recording, only one trial (lasting 8 seconds) was performed for each target position. However, 

one familiarization trial to each target position was given to ensure all participants understood 

how to weight shift to the target positions before the actual data recording [20]. 

 

2.3. Statistical analyses 

Sample size calculations were based on statistical power of 80% and a two-tailed alpha 

level of 5%. In our previous study of children with DCD [3], the mean balance ability scores 

were 43.3 (SD = 12.8) and 57.1 (SD = 9.6) for the DCD group and control group, respectively. 

This translates into a large effect size of 1.23. Therefore, the minimum sample size required to 

detect a significant between-groups difference in LOS outcomes was 12 children per group. 

All statistical analyses were performed using SPSS 20.0 software (IBM, Armonk, NY). 

Descriptive statistics (means and standard deviations) were used to describe all relevant 

demographic and outcome variables. Kolmogorov-Smirnov tests and/or histograms were used to 

check the normality of continuous data. Independent t-tests and chi-square tests were used to 

compare the continuous and categorical demographic variables, respectively, between the DCD 

and control groups. The Mann-Whitney U-test was used to compare the self-reported number of 

falls between groups. To compare LOS test outcomes between the two groups while accounting 

for a possible inflation of type I error due to multiple comparisons, multivariate analysis of 

variance was performed for each category of outcomes (i.e., reaction time, movement velocity, 

maximum excursion, end point excursion, and directional control). An alpha level of 5% (two-

tailed) was set and Bonferroni adjusted, as appropriate. Effect sizes (partial eta-squared) were 
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also calculated for all outcome variables. Values of 0.01, 0.06 and 0.14 indicate small, medium, 

and large effect sizes, respectively. Spearman’s correlation coefficient (rho) was used to evaluate 

the bivariate association between selected LOS test scores and the number of falls among 

children with DCD (alpha = 0.05, two-tailed).  

 

3. Results 

Thirty children with DCD and twenty typically-developing children were eligible to 

participate in the study. No significant between-group differences in any of the participants’ 

demographic characteristics were found (p > 0.05), except that the DCD group scored 

significantly lower on the MABC (p < 0.001) and the DCD questionnaire (p < 0.001) than the 

control group (inclusion criteria were fulfilled). In addition, they fell more frequently than the 

control participants (Mann-Whitney U = 80.500, p < 0.001) (Table 1). 

Multivariate analysis results revealed an overall significant difference in LOS maximum 

excursion between the two groups (Hotelling’s trace = 0.271; F(4,45) = 3.051; p = 0.026). No 

significant between-group differences were found in the LOS reaction time (Hotelling’s trace = 

0.137; F(4,45) = 1.540; p = 0.207), movement velocity (Hotelling’s trace = 0.084; F(4,45) = 

0.948; p = 0.445), end point excursions (Hotelling’s trace = 0.151; F(4,45) = 1.703; p = 0.166) 

and directional control (Hotelling’s trace = 0.095; F(4,45) = 1.069; p = 0.383). When each 

individual LOS maximum excursion outcome was considered, the between-group difference 

remained significant for the maximum excursion in the backward direction (p = 0.003), but not 

in other movement directions (p > 0.0125, Bonferroni adjusted). The DCD group had 22.4% less 

maximum excursion in the backward direction than the control group (p = 0.003) and the partial 

eta-squared value was 0.165, indicating a large effect size (Table 2). Moreover, there was a 
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significant negative correlation between LOS maximum excursion in the backward direction and 

the number of falls among children with DCD (rho = -0.556, p = 0.001). 

 

4. Discussion 

This study is the first to show that children with DCD without comorbidities had 

impaired stability limits, specifically in the backward direction, compared to their typically-

developing peers. It is known that in adults, an inability to reach a target at the back is due to 

biomechanical constraints (e.g., limited joint range of motion), sensorimotor deficits or fear of 

falling [9,15]. Although biomechanical factors [22] and balance confidence may not be adversely 

affected in children with DCD (as reflected by similar LOS endpoint excursion scores between 

the two groups), these children may exhibit various sensorimotor deficits, including impaired 

development of multisensory reweighting [23], inferior sensory organization of balance control 

(primarily visual and vestibular deficits) [2], less well developed internal models of body 

orientation and self-motion [24], atypical postural control strategies (excessive reliance on hip 

strategy to balance) [3], slow muscle force production [25], and delayed activation of anterior 

trunk muscles during reaching [13]. Therefore, it is not surprising to find that their ability to lean 

backward was compromised. We postulate that multi-sensory integration problems in children 

with DCD [2,23,24] might be the major cause of this LOS-related directional balance 

dysfunction. It is because the LOS test challenged the visuo-postural integration of the 

participants – participants had to move their COG to hit the visuospatial targets in response to 

visual and auditory cues [15,20]. Children with DCD probably had difficulty in integrating all 

these sensory signals so that their postural control, especially in the backward (most challenging) 

direction, was compromised. Further studies may establish the link between multi-sensory 
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integration and directional balance performance in children with DCD and also explore the 

treatment strategies for remediating the sensory integration deficits and improving directional 

balance performance in this population.   

LOS plays a significant role in indicating susceptibility to falls in adults [26]. Similarly, 

in children with DCD, we found that their limited COP maximum excursion in the backward 

direction was associated with more falls in daily life. Our findings thus inform rehabilitation 

treatments for this group of children: clinicians should pay special attention to restoring their 

ability to lean backward during balance and fall prevention training. Perhaps repeatedly 

practicing voluntary weight shifts in the sagittal plane may improve their LOS [20] and minimize 

the occurrence of falls. Further randomized controlled trials are necessary to explore effective 

interventions to remediate this direction-specific impairment of stability limits in children with 

DCD. 

Apart from the maximum excursion and fall outcomes, we did not find any differences in 

other LOS parameters (i.e., reaction time, movement velocity, end point excursion and 

directional control) between children with and without DCD. This finding was surprising given 

that children with DCD may have numerous sensorimotor impairments that can affect reaction 

time, movement velocity, directional control, and balance performance [2,3,12,13,25]. We 

postulate that perhaps standing on both legs during the LOS test is not challenging enough to 

elicit their postural control deficits [14], or our DCD group might have developed compensatory 

strategies to remediate their LOS balance dysfunctions during the course of development [27]. 

Certainly, further studies are needed to confirm these hypotheses. 

The present study has several limitations. First, the assessors were not blinded to group 

assignment, so bias might have been introduced during the measurements. Second, there could 
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be a recall bias in reporting falls. A previous study suggested that subjects with injurious falls 

and better cognitive functions are more likely to recall their falls [28]. In addition, our 

participants did not report the direction of falls, which may not be always in the backward 

direction. Third, it is known that LOS is a significant predictor of functional performance [29]. 

We did not take this possible confounding factor (functional performance) into account in the 

correlation analysis. Further study is necessary to determine how impaired LOS, functional 

performance, and falls affect quality of life in children with DCD. Finally, some of our 

participants may have undiagnosed visual, vestibular or other sensorimotor disorders that might 

affect balance performances [30] because not all of them had received complete vestibular, 

auditory and visual assessments before the study. Further research should include a homogenous 

group of subjects to improve internal validity of the study. 

In conclusion, children with DCD have direction-specific postural control impairment, 

specifically, diminished LOS in the backward direction. This is related to their higher fall 

incidents in daily lives. These new findings inform and optimize treatment strategies to 

rehabilitate children with DCD. 
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Tables 
 
Table 1. Participant characteristics  

 DCD group 

(n = 30) 

Control 
group  

(n = 20) 

p value 

Age, year 7.7 ± 1.5 7.9 ± 1.6 0.652 

Sex (boy/girl), n 23 / 7 11 / 9 0.108 

Weight, kg 26.0 ± 9.2 24.0 ± 4.5 0.312 

Height, cm 123.7 ± 11.5 125.8 ± 8.5 0.504 

Body mass index, kg/m2 16.5 ± 2.8 15.2 ± 2.4 0.087 

Physical activity level, metabolic equivalent 
hours/week 

13.1 ± 12.8 14.7 ± 8.6 0.632 

Movement Assessment Battery for Children total 
impairment score percentile  

4.5 ± 8.3 58.3 ± 13.1 < 0.001* 

DCD questionnaire total score 46.4 ± 10.8 59.2 ± 8.2 < 0.001* 

Cumulative number of falls in the previous week 71 6 < 0.001* 

Average number of falls per person in the previous 
week 

2  0  0.001* 

Participants reporting falls, n (%) 27 (90%) 5 (25%) < 0.001* 

Note: Means ± standard deviations are presented unless specified otherwise. 
*p < 0.05. 
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Table 2. Results from the Limits of Stability Test 
 DCD group  

(n = 30) 

Control group  

(n = 20) 

p value Effect size 

Reaction time, s     

   Forward direction 0.92 ± 0.47 0.94 ± 0.31 0.838 0.001 

   Backward direction 0.61 ± 0.31 0.71 ± 0.31 0.277 0.025 

   Right direction  0.83 ± 0.36 0.68 ± 0.26 0.114 0.051 

   Left direction 0.77 ± 0.31 0.82 ± 0.26 0.606 0.006 

Movement velocity, °/s     

   Forward direction 4.92 ± 2.56 4.67 ± 2.00 0.715 0.003 

   Backward direction 4.29 ± 2.20 3.31 ± 1.85 0.108 0.053 

   Right direction  6.02 ± 2.68 6.61 ± 2.56 0.448 0.012 

   Left direction 6.35 ± 2.86 6.17 ± 2.65 0.820 0.001 

Maximum excursions, %     

   Forward direction 97.97 ± 12.89 94.60 ± 11.49 0.350 0.018 

   Backward direction 67.63 ± 22.81 87.15 ± 20.63 0.003* 0.165 

   Right direction  100.07 ± 11.60 97.60 ± 13.36 0.492 0.010 

   Left direction 95.17 ± 16.08 134.65 ± 179.81 0.235 0.029 

End point excursions, %     

   Forward direction 67.10 ± 28.67 80.50 ± 20.09 0.076 0.064 

   Backward direction 59.63 ± 25.62 46.20 ± 18.04 0.048 0.079 

   Right direction 77.53 ± 29.52 77.80 ± 21.04 0.972 < 0.001 

   Left direction 80.73 ± 25.51 78.00 ± 14.08 0.665 0.004 

Directional control, %     

   Forward direction 78.97 ± 16.44 81.70 ± 9.14 0.503 0.009 

   Backward direction 49.13 ± 23.95 58.95 ± 19.19 0.132 0.047 

   Right direction 99.00 ± 125.13 74.85 ± 8.55 0.395 0.015 
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   Left direction 74.83 ± 13.32 79.50 ± 10.88 0.199 0.034 

Note: Means ± standard deviations are presented. 
*p < 0.0125  (Bonferroni adjusted).   
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Figure 
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Figure 1. Trajectories of the center of pressure (COP) of a participant during the limits of 
stability test moving the COP from a central square (representing COP in erect standing) to 
target squares in eight different directions (representing 100% limits of stability). 
 
 

 


