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We investigate the Kondo effect in a two-dimensional electron system with a nontrivial quadratic energy
band crossing point. We show that the Kondo effect can induce a hybrid topological insulator phase, which is
a coexistence state of the quantum anomalous Hall effect and the time-reversal-symmetry-broken quantum spin
Hall effect. This hybrid topological insulator exhibits not only a quantized charge Hall current but also a net spin
current, which are localized at the edge boundaries. This peculiar topological state arises due to the interplay of
two marginally relevant operators, i.e., the Kondo coupling between the electrons and the local magnetic moment
and the electron-electron interaction in the two-dimensional system.
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I. INTRODUCTION

The most common temperature dependence of the resis-
tivity of metals, p(T), either decreases to zero or goes to
constant value as T — 0, depending on which mechanism
is dominant, the electron-electron (-phonon) interaction or the
nonmagnetic disorders. However, a novel resistivity, with p(T')
being increased as T — 0, is discovered [1] in bulk metals
containing magnetic impurities. This phenomenon is known
as the Kondo effect as it was worked out by Kondo [2] in 1964.
The Kondo model describes a single magnetic impurity that is
locally coupled to the conduction band electrons. The coupling
strength, denoted by g, is smeared by the thermal fluctuation
and becomes insignificant in the high temperature regime.
However, with the temperature being increasingly lowered,
it is renormalized to a much larger value. When T < Tk
(with Tk being the Kondo temperature), g flows to the strong-
coupling limit and leads to the many-body Kondo-singlet state,
where the local magnetic moment is completely screened by
the conduction band electrons [3]. Here, T < Tk is termed
as the strong-coupling regime. In this regime, the system
shows a Fermi-liquid-like behavior [4]. Besides, a perturbative
theory in terms of g cannot be performed. This difficulty has
motivated many exact nonperturbative approaches, including
the numerical renormalization group [5-7], the Bethe ansatz
[8-10], and the conformal field theory [11,12]. On the other
hand, in the weak-coupling regime where the energy scale
is much larger than the Kondo temperature, a perturbative
renormalization group (RG) theory was proposed [13], where
the bare coupling constant is dressed with the RG flow.
Through this method, one can obtain a clear understanding
of the Kondo physics as well as a satisfactory estimation of the
Kondo temperature. Moreover, even though the perturbative
RGisinprinciple applicable only in the weak-coupling regime,
itis also very useful to predict possible instabilities at the strong
to intermediate couplings. These predictions have received
great success in one-dimensional and two-dimensional models
in different fields [14—-17]. The RG method has also been
numerically extended to search for instabilities including
different topological states of matters [18].
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Recently, with the rapid development of the topological
state of matter in condensed matter physics, the Kondo
problem is also updated with new perspectives. For example,
the Kondo effect in graphene was extensively studied [19-22],
which bears qualitatively different phenomena compared to
those in the conventional metals due to the vanishing density
of states at the Dirac point [23]. The Kondo problem in the
Dirac or Weyl semimetal was also investigated, where the
non-Fermi liquid behavior is suggested [24]. More remarkably,
a new type of topological insulator, termed the topological
Kondo insulator [25], was proposed in the mixed valence
compound SmBg¢ [26-28], where the band inversion between
the 5d and 4 f band around the X points in the Brillouin zone
is the main reason for the nontrivial topology. The topological
Kondo insulator is classified by the Z, topological invariant,
and is therefore only another realization of the familiar Z,
strong topological insulator [29]. As such, it is much more
interesting to ask the question: whether any completely new
types of topological state of matter (rather than only a
realization of the familiar topological states) can be generated
by the Kondo-related physics and what is the underlying
mechanism?

In this work, we show that a new hybrid topological
insulator can be realized in the magnetically doped 2D
electron system with a nontrivial quadratic band crossing point
(QBCP). The nontrivial QBCP with a 2w Berry phase has
been theoretically predicted to occur in the surface state of
the crystalline topological insulator (CTI) [30], as well as in
the two-dimensional photonic crystal [31]. Besides, it is also
found in two-dimensional tight-binding electron models with
different lattice structures, including the checkerboard [32],
Kagome and honeycomb [33] lattices. We study the effect of
a Kondo impurity on the QBCP. Specifically, the electron-
electron interaction and the Kondo coupling g are investigated
on equal footing. Using the perturbative RG method, we study
the renormalization of the coupling constants, where it is
found that both the interactions and the Kondo coupling are
marginally relevant in the RG sense, and their competition
leads to a particularly interesting RG flow of the parameters.
In order to determine the possible ground state, an RG-based
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mean-field theory is constructed to study this strong-coupling
regime, where we arrive at several conclusions. (A) In contrast
to the conventional Kondo problem, a threshold g. emerges
due to the relevant interactions between electrons. For g < g,
the screening of the local magnetic moment is suppressed,
and the leading instability is the quantum anomalous Hall
(QAH) effect. (B) For g > g., the Kondo-singlet state is
developed in the bulk, and it is found to be compatible
with the edge states generated by the spontaneous symmetry
breaking. (C) For g > g, the Kondo effect induces a particular
topological phase, which is a coexistence state of the QAH
and the quantum spin Hall (QSH) effect. This state possesses
both nonzero Chern number and the spin Chern number and
enjoys a nonzero quantized charge current and a net transport
of spin Hall current that are localized at the edges of the
CTI surface. This hybrid topological insulator is a direct
consequence of the interplay between two marginally relevant
operators, i.e., the electron-electron interaction and the Kondo
coupling.

II. MODEL AND HAMILTONIAN

We consider a two-dimensional electron system with
a QBCP, which can be described by the Hamil-
tonian [30], H =), YK Hok)W(k), where W(k)=
(.1 K), ¥y 1K) ¥4 2(K). 1y 2 (K], with o (K) being the
annihilation operator for the electron with the spin s and the
flavor «. « represent the pseudospin degree of freedom, whose
physical meaning depends on the specific models. It can either
denote the sublattice or the orbital degrees of freedom. In
what follows, we regard « as the orbital index. Then, the
single-particle Hamiltonian of the QBCP reads

Ho(k) = (d; (&)1, + d (K)o* + d (K)o )7’ 6]

with
di(k) = t;(k; + k), 2

do(K) = 2tkyk,, ©)

d(k) = 1(k} —k3), )

where o and 7 denote the orbital and spin degrees of freedom,
respectively, and I, is the identity matrix in the orbital space.
In the following, we focus on the particle-hole symmetric case
where t; = 0. The special feature of the above Hamiltonian,
as was studied in Ref. [34], is that it depicts a QBCP with
the Berry phase 2. This type of energy node is robust in
the sense that the lattice symmetry (C4 or C¢) or the time-
reversal symmetry (TRS) has to be broken in order to lift the
energy degeneracy and open up a gap, leading to the split
of the QBCP into Dirac cones. However, even though QBCP
is protected by these symmetries, it shows a fragility against
electron-electron interactions since instabilities will develop
for any nonvanishing interaction, resulting in the spontaneous
breaking of the lattice symmetry or the TRS. Different from
the general case in Ref. [34], the QBCP considered here enjoys
both the orbital and spin flavor. The orbital and spin degrees of
freedom complicate the interactions by bringing about more
channels, such as the inter- and intraorbital couplings. In the
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following, we study the case where the screening effect is
significant and focus on the short-ranged interactions between
electrons, as described by the following local model:

Vi=o Y vl Gyl kv k) k), (5)

{k}

Vi=v3 3 v,k k) o) (ks (6)

{k}

with V| and V; being the intraorbital and the interor-
bital scattering, respectively. The sum, Z{k}, denotes
“D ki ki ki .k, O(Ki + ko — k3 —ky)” and the sum for repeated
index is implied. In what follows, we consider the repulsive
couplings with v; > 0 (i = 1,3). Moreover, in order to extract
the physics clearly, we have temporarily neglected the other
two interactions V, and V4, which describe the scattering
between electrons within the same orbital and the coupling
process where two electrons are both scattered from one
orbital to the other, respectively. The effect of these two
more couplings will be calculated and discussed in detail in
Sec. VL.

Besides the interactions, we are interested in the effect
of a single magnetic impurity on the QBCP, which can
be investigated using the Kondo model. By adopting the
pseudofermion representation of the local magnetic moment,
S=1floso f, with the constraint }_, f/f, =1 and f,
being the annihilation operator for the pseudofermion, the
interaction between the local magnetic moment and the
conduction electron is written as

Hy =gy iy 1K) flfi. (7)
k. kK

where g is the s-d coupling constant. Here we have assumed
that the local moment is only coupled to one orbital. The
coupling to both the two orbitals constitutes a two-channel
Kondo problem, which we left for future investigation.
Equations (1)—(7) constitutes the main model we are interested
in this work. Since this model is essentially a combined
problem of the Kondo effect and the QBCP, we term it by
the Kondo-QBCP (KQBCP) model for the purpose of brevity.

As is well known, for antiferromagnetic coupling g > 0
(which we consider), the RG analysis on the traditional
Kondo problem in metals shows two fixed points, g = 0 and
g = +oo. For a nonzero bare g, the renormalized coupling
gets stronger and stronger when the temperature is lowered,
and finally leads to the complete screening of the local
magnetic moment, forming the well-known Kondo singlet
state. However, in the current case, due to the fragility of the
QBCP, the interaction between electrons is also a marginally
relevant operator, which may lead to various ground states
with symmetry spontaneously broken. So, there exists two
trends towards two different strong coupling limits in this
model. The questions naturally arise as whether the two trends
cooperate or compete with each other, and what is the most
relevant order formed at low temperature. In this paper, we
address these questions using the combined method of the
perturbative RG and the mean-field theory.
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III. RENORMALIZATION GROUP FLOW OF THE
COUPLING CONSTANTS

Resorting to the functional path integral representation
of the partition function Z = [ DWDWD fDfeS [35], and
introducing a Lagrangian multiplier [24] to enforce the
number constraint condition of the pseudofermions, we arrive
at the imaginary-time action S describing the KQBCP model,

S = /dtdk[llﬁ(—af — Ho)W + fI(—=d; — V) fi]

4
— v / dr [Jd%iy! k)w! ,)vy 20ks)y (k)

4
— 3 / dr [Jd%iv! ,k)w!  o)wry 2ks)y,1 (k)

—g / drdkdK' ], (s (KD f] . ®)

For brevity, the dependence of ¥ on t is implicit and the §
function enforcing the momentum conservation is not explic-
itly written but represented by *“”” in the integral. We shall focus
on the most interesting case where the Fermi energy lies at
the QBCP by setting the chemical potential of the electrons to
zero [36]. As one can see in the above equation, the Lagrangian
A acts as the chemical potential of the pseudofermions, which,
as will be shown later, should be calculated self-consistently
so that the pseudofermion number condition is satisfied at the
mean-field level. Since the QBCP is the low-energy effective
description of the tight-binding models [32,33], a cutoff Ay is
implied. As what RG does, one can decrease A step by step
to obtain the effective action with renormalized parameters
for the coarse-grained model, integrating out the degree of
freedom with the larger momentum.

Through the standard RG analysis, one can find that the
three coupling constants, vy, v3 and g are all marginal at
tree level [34,35], therefore the perturbative RG to one-loop
order needs to be performed. In order to do so, all the
topologically distinct one-loop diagrams should be calculated,
which can be classified into three different channels, i.e.,
the ZS, ZS', and the BCS diagrams [35]. Moreover, a key
point lies in the choice of basis. Here, we perform the RG
calculation in the W (k) basis (see Sec. II), rather than the
diagonalized basis of Hy. This is important due to the following
reasons. Transforming H to its diagonalized basis leads to
the orbital make-ups in the interactions [32], which should
not be neglected in order to keep the complete topological
behavior of the QBCP. However, in RG sense, the high-order
expansion of k of the orbital make-ups are irrelevant, only
leaving a few constant bare couplings that are marginal at tree
level [17,35]. Therefore the perturbative RG treatment in the
diagonalized basis can only present incomplete predictions of
the leading instability. In comparison, even though it is much
more complicated, the W(Kk) basis can avoid this problem. In
this basis, the Green’s functions of the noninteracting electrons
are matrices, whose elements are G g,y g = Gy 5:0,895,5, With
Gt g =Gy 1iap = Ga,g. SO, when treating the second-
order perturbation, one would encounter averages over the
fast mode of the loop-momentum both in the particle-particle
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FIG. 1. Typical diagrams in the one loop order RG calculations.
(a) denotes the average in the particle-hole channel and (b) represents
the average in the particle-particle channel. Different vertices vy,
v3, and g bring about various notations in terms of spin and orbital
degrees of freedom, which is not shown for the purpose of brevity.

and in the particle-hole channels with different orbital flavors.
We represent these averages by loops in Feynman diagram.
Examples in both the particle-hole and the particle-particle
channels are shown in Fig. 1, where the dashed lines represent
the fast modes. Performing Gaussian integrals in the diagrams,
we obtain the results of all the averages (over fast mode) needed
in the RG calculation, which are listed below:

3
G G’ = ———dl, 9
( 11 22> 167”‘ ( )
1
G11Gn)P7P = ——dl, 10
< 11 22> 167‘[1‘ ( )
1
(GG )’ ™ = (G1nG )PP = ——dl,  (11)
167t
1
(GG )" = (GnGp)P ™ = ———dl, (12)
167t
3
(G1iG1)P™P = (GnGn)P P = —dI, 13)
167t
(G1nG1)P™" = (G12Gn)P™" =0, (14)

where dl = In A/ A’ is the RG flowing parameter, with A being
the cutoff at a generic RG step and A’ being the reduced cutoff
for the coarse-grained Hamiltonian at the next RG step. Then
following the standard RG procedure, we obtain the coupled
RG flow rate equations of the coupling constants vy, v3, and g
under the one-loop correction,

dv, 1 ([, 1 1, s

— = —v] — zviv3 — V3 ),

dil — 4ax\'' 2717 T 43

dvs 1 1 1

= (e gt) 0o
dg 1 ([, 1
98 _ (o2 - i), 17
- o (g 8v3g> (17)

where we have rescaled the interactions by v;3 — v13/¢
and g — g/t. As is seen from above equations, only the
interorbital interaction V3 explicitly modifies g. Even though
V1 does not dress the flow of g by itself, it is also essential
since it will affect g via the indirect modification on V3. The
running of the coupling constants leads to the fixed points in the
three-dimensional parameter space. Several observations can
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FIG. 2. (Color online) The RG-flow of the coupling constants vy,
v3 vs the flowing parameter /. The green and grey curves represent
for the couplings v, v3, respectively. The bare coupling constants are
chosen as v = v§ = 0.01. Similar flows can always be found despite
the choice of the initial bare parameters.

be drawn from the above equation. First, when both the bare
interactions v{, vJ, and the bare Kondo coupling g° are zero,
the system always lies at the fixed point, (v;,vs3,g) = (0,0,0),
which stands for the initial noninteracting QBCP. Second,
when the interaction is absent but the bare Kondo coupling g°
is nonzero, the flow equation is reduced to that of the traditional
Kondo problem, where g is renormalized to larger and larger
value and arrives at the fixed point (vy,vs3,g) = (0,0,+00),
which represents the formation of the Kondo-singlet state.
Despite the above observation, however, our real interest lies
in the situation where both the bare interaction and the bare
Kondo coupling are nonzero. In this case, solving the flow
equations numerically, we find an interesting renormalization
flow of the interactions, which is plotted in Fig. 2. As is
shown, for generic bare interactions (except for vg > v(l)),
v; and v3 always tend to diverge toward large positive and
negative values respectively when the energy scale is gradually
lowered, i.e., vi > v and v3 > —v, with v > v? 5. This
renormalization behavior is very interesting since it will lead
to a peculiar topological state when the magnetic moment is
present (see below), and therefore is our main focus in this
work. In Fig. 2, we do not show the regime where v; 3 diverge
since this regime is beyond the perturbative treatment and the
RG flow fails to give an exact description.

IV. SUSCEPTIBILITIES

Based on the flow equation of the coupling constants, we
can further determine what is the most relevant instability of
the KQBCP model. To do so, we introduce test susceptibilities,
i.e., the quadratic perturbations, into the action Eq. (8), and
then investigate their RG flow up to one-loop order. The earliest
divergent susceptibility will indicate the most possible ground
state at the low temperature [17].

First, following Ref. [34], we list all the possible vertices
or the marginal operators in the Table I, including the
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TABLE I. All possible susceptibilities as the test vertices.

Test vertices Phases I

oY, ¥ik)o' (k) QAH (v —203)
01 Y, Vik)o W(k) NSI (v — vy = 3v3)
0, Y, VK)o (k) NSII (v — 2v03)
Q Y, Vi T o W(k) NSNI L — v —1vy)
Q, >, VKT o*W(k) NSNII (v = 203)
@'Y VKT WK QSH (v —203)
Ag D>y wi S Kondo-singlet £

m), Vi(K)To'W(k) MO 0

(spontaneous) rotation symmetry-breaking nematic phases,
i.e., the nematic semimetal I (NSI), nematic semimetal II
(NSII), nematic-spin-nematic I (NSNI), and the nematic-spin-
nematic II (NSNII), as well as the (spontaneous) TRS-breaking
QAH and its triplet counterpart, the QSH state, and the
magnetic ordering (MO) phase. Then, considering the one-
loop RG correction to these introduced vertices, we obtain
the renormalization of the coupling constants using the same
method as before. The results read

A = Aj(14Tjdl), (18)

where j denotes the different phases in Table I, A; and A,
represent the corresponding bare and dressed order parameters
respectively. I'; is the calculated susceptibilities, which have
been listed in the third column of Table I. In the RG
sense, the divergence of the susceptibility I'; implies a phase
transition from the free QBCP to these various spontaneous
symmetry-breaking orders in Table I. The susceptibilities for
the Kondo-singlet state is plotted by the black curve in Fig. 3
for bare couplings g° = 0.1 and v{ = vJ = 0.1. It shows that
the Kondo-singlet emerges as the leading instability. In the
case where Kondo-singlet state is developed, we have further

—a— Kondo-singlet
—e— QAH/QSH

0.02 1 —4a— NSI/NSNI

—v— NSII/NSNII

0.01 1

Susceptibilities

0.00 FFIIIFTTTIIIFTIIFITFTTITZZARLLELE

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Flowing parameter |

FIG. 3. (Color online) The flow of the susceptibilities I"; vs the
flowing parameter /. The black curve denotes the I of the Kondo-
singlet state, which is the leading instability. The bare parameters are

chosen as g° = v) = 1]
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—e QAH/QSH ?
—a— NSINSNI |
—v— NSII/NSNII

0.3 1

Susceptibilities

1.48

1.50 1.52

Flowing parameter |

1.54

FIG. 4. (Color online) The flow of the susceptibilities I'; other
than the Kondo-singlet state. The red curve denotes the susceptibilities
of the QAH and the QSH states (which are the same), the blue curve
represents for susceptibilities of the NSI and the NSNI states, and the
green curve describes the susceptibilities of the NSII and the NSNII
phases. The bare parameters are chosen as g” = v? = v?.

investigated the effect of vy, vs on the Kondo temperature
Tk. It is found that, for repulsive interactions, Tx is much
more dependent on vg than v?, and it decreases with the
increase of vg. This means that the interactions hampers
the formation of the Kondo-singlet state, which can also be
obviously seen from the flow equations Eq. (15)—(17). In
Fig. 4, we search for the leading instabilities besides the
Kondo-singlet state. Two conclusions can be drawn from
Fig. 4. First, the triplet orderings have the same susceptibilities
as their singlet counterparts, and they cannot be distinguished
by the RG-flow alone, which is consistent with the conclusion
drawn by Ref. [34]. Second, as is shown, the susceptibility
for the QAH or the QSH states are always the first one to
get divergent, suggesting the QAH or QSH to be the leading
instabilities, instead of the NSI/NSNI, and the NSII/NSNII
phases. The above observation provides us with both insights
and puzzles in understanding the true ground state in the
KQBCP model. On one hand, insights are obtained as
(1) the complete screening of the local magnetic moment and
the formation of the Kondo-singlet are still likely to take place
(as long as g° is large enough) even though the interaction is
present, as is shown in Fig. 3. (2) The interaction can lower the
Kondo temperature and make the Kondo-singlet more difficult
to occur. (3) Besides the Kondo-singlet, the leading instability
is the QAH and QSH states. On the other hand, problems still
remain as following. (i) Can the Kondo-singlet coexist with the
symmetry-breaking phases? (ii) Which order is more likely to
take place, the QAH or the QSH? This cannot be answered
by the above RG analysis since the RG method is unable to
extract the energetics of the relevant states, which is necessary
to determine which phases are more stable. Therefore, in what
follows, we solve these problems by taking one step further,
using a RG-based mean-field theory.

PHYSICAL REVIEW B 92, 195151 (2015)

V. MEAN-FIELD THEORY AND THE HYBRID
TOPOLOGICAL INSULATOR

From Secs. III and IV, two important conclusions are
obtained. (1) Besides the local Kondo-singlet, the lead-
ing orders are found to be the QAH or the QSH states.
(2) When both the electron-electron interaction and the Kondo
coupling are present in the system, the interactions flow
to the strong-coupling regime, where v; and v3 tend to
move toward large positive and negative values, respectively.
Based on the two conclusions, a mean-field theory can be
performed by studying the dressed Hamiltonian at certain
low-energy scale, which is obtained by substituting the bare
coupling constants by the renormalized ones. In the mean-field
level, we introduce the bosonic mean-fields in the channels
of the Kondo-singlet, QAH and the QSH orderings, i.e.,
& = (Vi) t'W(r), & = (Vi(r)e? T W(r)) and Ak =
2>k Wi 1(K) f5), and make Hubbard-Stratonovich decompo-
sition of the interactions. This treatment leads to the following
Hamiltonian:

Hvr = Z WT(k)[Ho(k) - %Gyrocb - %U'V(I)t : _T):|‘I’(k)
K

—8Ak Y fIva) — gAY Y wl M f,
k,s

Kk,s

v 4g A2 A

- 3024+ 97 2K )4 = f£—1).

+4Xk:( +07 4 = )+Nk2;(fsf )
19)

Through a Bogoliubov transformation in the mixing basis of
the electron and the pseudofermion [37], the energy spectrum
E,(k) can be obtained, with n denoting the band index.
Then the self-consistent equations are obtained by minimizing
the mean-field energy, i.e., Zk,n JdE,(k)/0C = 0, where C
represents the mean-field parameters Ag, ®, ®', and the
Lagrangian multiplier A. The self-consistent equations can be
numerically solved and the saddle points can be extracted for
different parameters v and g, the result of which is shown
in Fig. 5. Three conclusions can be drawn from Fig. 5. First,
with v fixed, we find that Ax = O for small g, while Ag # 0
for large g. So, compared with the traditional Kondo problem
where no QBCP is present, there emerges a threshold g. above
which the Kondo-singlet will be developed. This is the result of
the renormalization of v3 on g [see Eq. (17)]. Second, since the
mean-field order parameters undergo abrupt stepwise changes
at g., we conclude that a quantum phase transition takes place
at this critical point. As shown in Fig. 5, in the region g < g,
the nonzero @ indicates a simple QAH phase. In the region
g > g., both QAH and QSH phases develop nonzero order
parameters. Therefore we observe the coexistence of the QAH
and the QSH states, forming a new hybrid topological state.
This new hybrid topological insulator only emerges when the
Kondo coupling g reaches the threshold g, and its formation is
due to the interplay between the electron-electron interaction
and the s-d coupling.

In order to understand the corresponding phases, we
investigate the nontrivial topology of the Hamiltonian (19)
by calculating the Chern number C and the spin Chern Cg

195151-5



WANG, WANG, SHENG, XING, AND WANG

9.0

B A AV V.YV V.YV V.V.V.V.V.V.V\Vj A AK
SRRRA AR —O0—
. vy,
85 -1 . ""'"""""Vvvvvyv

(2,0) : (1.1

Mean-field parameters
A\
\
3]
>
T

FIG. 5. (Color online) The self-consistent solution of the mean-
field order parameters, ®, ®', and A, represented by the purple,
red, and blue curves, respectively. The calculated Chern number and
spin Chern number (C,Cy) are shown to distinguish different phases.
The parameters chosen are v = 0.8. similar results are valid for other
values of parameters.

number [38] for g < g. and g > g., respectively, which is
shown in Fig. 5. For g < g., the Chern numbers are calculated
to be (C,Cs) = (2,0). The high Chern number C =2 is
due to the d-wave characteristic of the QBCP. In this case,
the relevant interactions lead to the spontaneous breaking
of TRS, developing a mass term & and opening up a gap
at the QBCP. Similar to the linear Dirac node, the gapped
TRS-broken QBCP also bears a QAH effect, but with the
Hall conductance doubled. For g > g., the Chern number
and spin Chern number are obtained as (C,Cs) = (1,1). Both
the Chern numbers and the spin Chern number are nonzero,
this verifies the coexistence region where both ® and ®' are
nonzero.

The coexistence state found here is closely related to our
previous work, which discusses the fate of the QSH effect with
the presence of a TRS-breaking Zeeman field [39]. Using the
spin Chern number, we found in Ref. [39] that the nontrivial
topological properties of QSH systems remain intact even
when the TRS is broken [39]. The breaking of the TRS leads to
a small gap of the QSH edge. Remarkably, even though a small
gap is opened up, the TRS-broken QSH is still topologically
distinct from the trivial state, i.e., the edge states become
quasi-helical and are robust as long as the bulk energy gap
is not closed. In this phase, there is usually a weak scattering
between forward and backward movers, as evidenced by the
small energy gap in the edge state spectrum, leading to a
low-dissipation spin transport. The TRS-broken QSH phase
has also been found in the Cr-doped (Bi,Sb), Tes [40] and in the
spin-orbit coupled electron system with staggered magnetic
fluxes [41], where the quasihelical QSH edge state coexists
with the chiral QAH edge state on the sample edge. The hybrid
topological insulator phase we predicted here enjoys the same
bulk topology with that of Refs. [40,41]. The nonzero C = 1
implies that the 2D electron system has an exactly quantized
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charge Hall conductance due to the gapless chiral QAH edge
states, and the nonzero C; = 1 suggests that it exhibits a net
transport of spin owing to the quasihelical QSH edge state [39].

VI. EFFECTS OF OTHER INTERACTION CHANNELS

In this section, we take into account the other two local
scattering processes, which are described by the following
interactions:

Va=u Y ¥l kv (K)Ysa(ks)atks),  (20)
{k}

Vo =us ) ¥l )y )Y alka) z(ke). 21
(K},

Here, V, denotes the coupling between electrons from the
same orbital and V, describes the interaction process where
two electrons are scattered from one orbital to the other.
The corrections from these two vertices will lead to new
renormalization flow of the coupling constants. Following
the same perturbative RG approach as before, we obtain
the coupled flow equations in the five-dimensional parameter
space, which read

dv; 1 2 1 1,
= v1—2v1v2—§v1v3——v , (22)

dl 4w 4
dU2 _ 1 2 + + + 3 2 (23)
T = . V) VU3 + VoUs 21)4 s
dvs 1 1 1
e —E<v§ o gv%), 24
dvy L/, 1,
W = _E vy + 57)2 + 3vv4 — VU4 |, (25)

2
dg _ 87 _vsg 26)
dl 2r  l6x
The new RG flows describing the renormalization of the inter-
actions for small values of v9 and v{ can be solved numerically.
It is found that, in the regime where the perturbative RG
method is applicable, the small perturbations due to V, and
V4 do not affect the renormalization of V| and V3, whose flow
show quite similar trends as indicated in Fig. 2, i.e., v; and
v3 couplings are always dressed to large positive and negative
values, respectively. Meanwhile, v, and v4 are renormalized to
negligible values compared to v; and vs. Therefore it suggests
that as long as the bare value of v, and vy is not too large, their
renormalization do not have any qualitative consequence on
the above conclusions, i.e., the same mean-field Hamiltonian
can be constructed in certain low energy window and therefore
the hybrid topological insulator will take place when the Kondo
coupling g is larger than g.. When the values of the bare
interaction vg and vff are larger so that they are comparable to
v) and vg, their renormalization flows do not lead to negligible
values. In this case, we have checked that v, also flows toward
large negative value in the strong-coupling regime. As such,
instead of the hybrid TI, the nematic phases in Table I would
be the possible leading instability. We will leave the detailed
discussion on this topic to further investigation.
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VII. SUMMARY

We have revisited the traditional Kondo problem in the
background of the recently discovered QBCP in two dimen-
sional electron system. It is found that the Kondo problem,
when combined with strongly-correlated effect, shows com-
pletely different physical behaviors compared to the traditional
ones. On one hand, it is found that the Kondo singlet will
be destroyed when g is less than the threshold value g,
while robust for g > g.. On the other hand, when g > g,
the interplay of the two marginally relevant operators, i.e., the
electron-electron interactions and the Kondo coupling leads to
a coexistence state of the Kondo-singlet, QAH and the QSH

PHYSICAL REVIEW B 92, 195151 (2015)

state. This coexistence state has both nonzero Chern number
and spin Chern number, which is a new hybrid topological
insulator since it is gapped in the bulk but enjoys a quantized
charge Hall current and net transport of spin on its edges.
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