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The magnetic skyrmion with the topological number of unity (Q = 1) is a well-known nanometric swirling
spin structure in the nonlinear σmodel with the Dzyaloshinskii-Moriya interaction. Here, we show that magnetic
skyrmion with the topological number of two (Q = 2) can be created and stabilized by applying vertical spin-
polarized current though it cannot exist as a static stable excitation. Magnetic skyrmion with Q = 2 is a
nonequilibrium dynamic object, subsisting on a balance between the energy injection from the current and the
energy dissipation by the Gilbert damping. Once it is created, it becomes a topologically protected object against
fluctuations of various variables including the injected current itself. Hence, we may call it a topologically
protected dissipative structure. We also elucidate the nucleation and destruction mechanisms of the magnetic
skyrmion with Q = 2 by studying the evolutions of the magnetization distribution, the topological charge
density as well as the energy density. Our results will be useful for the study of the nontrivial topology of
magnetic skyrmions with higher topological numbers.

PACS numbers: 75.70.-i, 75.78.-n, 85.70.-w, 85.75.-d

I. INTRODUCTION

There is a long history of skyrmions from the particle
physics to the condensed matter physics [1–4]. Originally,
Skyrme introduced "skyrmions" in the three-dimensional (3D)
space to describe nucleons as elementary particles possess-
ing nontrivial topological numbers [1]. Subsequently, Belavin
and Polyakov (BP) applied the concept to the two-dimensional
(2D) ferromagnetic (FM) system and predicted a magnetic ex-
citation carrying a nontrivial topological number, that is, the
Pontryagin number [2]. The BP-skyrmion is an exact solution
of the nonlinear σ model. However this solution has a scale
invariance, and hence the BP-skyrmion has no definite radius.
It is necessary for a dynamically stable and physical skyrmion
to have a definite radius. Consequently, a skyrmion is char-
acterized by two types of stabilities: the topological stability
based on the conservation of a nontrivial Pontryagin number,
and the dynamical stability having a finite radius.

Some interactions are required in order to break the scale
invariance. For instance, the dipole-dipole interaction breaks
the scale invariance. However, since it is a long-distance
force, the skyrmion size becomes very large in general [5, 6].
Recently, the Dzyaloshinskii-Moriya interaction (DMI) has
attracted much attention to provide the skyrmion with a finite
radius, where the resultant radius is of the order of nanome-
ters [7–16]. It is called the magnetic skyrmion. Magnetic
skyrmions might be suitable for building next-generation non-
volatile memory devices based on their topological stabil-
ity [10]. Furthermore, it has also been proposed to utilize them
in logic computing [17].

Strictly speaking, the topological number is defined only
in the continuum field theory with an infinitely large space.
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Although the underlying system has a finite size and a lat-
tice structure in the condensed matter physics, the topological
number is well-defined, provided that the skyrmion spin tex-
ture is sufficiently smooth and sufficiently far away from the
edge. Thus it is an intriguing concept in the condensed matter
physics possessing the aspect of the continuum theory and that
of the lattice theory. We can actually leverage these properties
for practical applications. It is possible to create or destroy
magnetic skyrmions which are topologically stable [5, 6, 18–
23].

As far as the topological analysis is concerned, a magnetic
skyrmion with any topological number Q is possible. Let
us call such a skyrmion with Q ≥ 2 a high-Q skyrmion. It
will be realized when the in-plane component of the spin ro-
tates by 2πQ and the skyrmion acquires a high helicity Q.
However, only the magnetic skyrmion with Q = 1 has so far
been realized. This is because that a static magnetic skyrmion
with Q ≥ 2 is unstable since the DMI cannot prevent it from
shrinking to a point, which we shall prove later. In this paper,
employing a dynamical breaking of the scale invariance [21],
we create a high-Q skyrmion with Q = 2 by applying a spin-
polarized current perpendicular to the FM nanodisk with the
DMI. We investigate in details how a high-Q skyrmion with
Q = 2 is created from a magnetic bubble with Q = 0 through
successive creations of two Bloch points.

Once the spin texture of a high-Q skyrmion becomes suf-
ficiently smooth with respect to the lattice spacing, the topo-
logical protection becomes active. Namely, the resultant spin
texture is topologically robust against fluctuations of various
variables including the injected current itself. This is due to
the fact that the topological number cannot change continu-
ously from its quantized value. However, when the current is
switched off, the high-Q skyrmion quickly shrinks to the order
of the lattice scale and dissipates. The equilibrium and dissi-
pation processes are well-described in terms of the Rayleigh
dissipation function composed of the energy injection and dis-
sipation terms [24]. The dissipation is found to spread all over
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FIG. 1. (Color online) The ordinary skyrmion (Q = 1) and the high-Q skyrmion (Q = 2). (a) Our system consists of a 1-nm-thick FM
nanodisk with a thickness of 150 nm, where the spin current polarized along the −z-direction is injected into the central 30-nm-diameter
region. The out-of-plane magnetization mz , the in-plane magnetization (mx,my) and the topological charge density q are illustrated for the
skyrmion (Q = 1) and the high-Q skyrmion (Q = 2). (b) The topological number Q as a function of time t. We create a skyrmion with
Q = 1 (Q = 2) by applying an external magnetic field perpendicular to the nanodisk plane pointing along the +z-direction with an amplitude
of Bz = 50 mT (Bz = 250 mT), as depicted in blue (red). The DMI constant is D = 2 mJ m−2. The spin current with a current density
of j = 3 × 1012 A m−2 is switched on and off at t = 0 and t = 5 ns. When the DMI is set to be D = 0 mJ m−2, no skyrmion is formed
(Q = 0), as depicted in green. A skyrmion with Q = 1 remains stable as it is even after the spin current is switched off when D = 4 mJ m−2

and Bz = 0 mT, as depicted in cyan, which is consistent with the previous result shown in Ref. 10. (c) A magnetic bubble with Q = 0 has a
pair (two pairs) of blue and red areas, when it develops into a skyrmion with Q = 1 (Q = 2). The cones represent the magnetization, while
the color denotes the topological charge density.

like a burst at the moment of the skyrmion generation and de-
struction [25].

The high-Q skyrmion is a topologically protected dissipa-
tive structure. One might think that the concept is a self-
contradictory proposition. However, this is not the case. We
may suggest an analogy of the quantum Hall (QH) state. It
is well-known that the QH state at an integer filling factor is
robust against impurities and also against the change of the ex-
ternal magnetic field. Indeed the latter develops QH plateaux.
The robustness is due to the fact that the state is protected
by the conservation of the topological number, that is, the
Chern number. Nonetheless, when the external magnetic field
is switched off, the topological robustness is lost and the QH
state collapses. Clearly, the external magnetic field in the QH
system corresponds to the injected spin current in the topolog-
ically stabilized dissipative structure of this work.

II. NUMERICAL RESULTS ON THE HIGH-Q SKYRMION

A. Nucleation of the high-Q skyrmion

Our system is composed of a FM nanodisk and a spin-
polarized current injection region with a radius of rc, as il-
lustrated in Fig. 1(a) (see the Appendix for modeling details).
The development of the topological number Q is shown in
Fig. 1(b). Soon after the spin current is injected, Q suddenly
increases to 1 or 2 from 0, and remains stable, in the pres-
ence of the DMI. On the other hand, when the spin current
is switched off, Q decreases to 0. It should be noted that the
high-Q skyrmion cannot be created dynamically without the

DMI.
We are interested in the process how a magnetic bubble

with Q = 0 is converted into a magnetic skyrmion with
Q 6= 0. Upon the application of the spin current, there is a
large energy injected into the core through the spin transfer
torque (STT). The spins are forced to reverse within the core
upon the spin-polarized current injection. Due to the DMI, the
spins are twisted around the core. The topological number is
zero for such a state. This is a magnetic bubble with Q = 0.

We point out that the seed of a magnetic skyrmion is al-
ready present in the magnetic bubble. In Fig. 1(c), we show
the densities of the in-plane components of the magnetization
(mx(x),my(x)) and the topological charge density q(x) of a
magnetic bubble before the nucleation to a magnetic skyrmion
with Q = 1 or 2. We clearly observe a pair (two pairs) of
blue and red areas indicating negative and positive topologi-
cal charge densities, respectively.

In Fig. 2(a), we show the time evolution of the topological
number, the total energy, the DMI energy, the average mag-
netization (mx, my , mz), and the Rayleigh dissipation func-
tion W for a high-Q skyrmion with Q = 2 (see Ref. 26 for
Supplementary Movie 1). The selected top-views are shown
in Fig. 2(b). The spin component mz measures the size of
the skyrmion, while mx and my contribute to the topologi-
cal charge density. First, mz starts to decrease, implying that
the spins are inverted in the disk region. However, the topo-
logical number remains zero, since the in-plane spin compo-
nents point along the same direction, as shown in Fig. 2(b) at
t = 0.2 ns.

The Rayleigh dissipation function gives us a vivid informa-
tion on how the dissipation occurs in the dissipative system.
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FIG. 2. (Color online) Time evolution of the high-Q skyrmion (Q = 2). (a) Time evolution of the total energy Etotal, the DMI energy EDMI,
the topological number Q, the in-plane (mx,my) and out-of-plane mz components of magnetization averaged over the simulation area, and
the dissipation functions W . A high-Q skyrmion with Q = 2 is created nearly at t = 0.38 ns. The DMI constant D = 2 mJ m−2. The spin
current density j = 3 × 1012 A m−2. The external magnetic field Bz = 250 mT. (b) Top-views of the magnetization distributions mx, my

and mz of the FM nanodisk, the corresponding topological charge density distribution q and the Rayleigh dissipation function W at selected
times. The green circle indicates the spin current injection region. The nucleation of a high-Q skyrmion with Q = 2 occurs nearly at t = 0.38
ns, where the dissipation function spreads all over the FM nanodisk, implying that the spin wave propagates. The DMI is turned off at t = 10
ns. It is remarkable that the high-Q skyrmion remains stable even if the DMI is switched off, which demonstrates the topological protection
against the change of a variable, that is, the DMI.

In the present system, the energy is injected into the core and
dissipated in its outer side steadily before and after the nu-
cleation of a magnetic skyrmion. However, the dissipation
spreads around all over the FM nanodisk like a burst at the
transition moment of the topological number from Q = 0 to
Q = 2 (see Fig. 2(b) at t = 0.38 ns).

We show a close-up of the change of the topological num-
ber Q around t = 0.38 ns in Fig. 3(a). Clearly, there are two
successive jumps of Q as 0 → 1 → 2. We also show the
topological charge density, the energy density, and the spin
distribution around t = 0.38 ns in Fig. 4.

Based on these we obtain the following picture of the nu-
cleation process. We focus on the case where there are two
pairs of blue and red areas in the domain boundary region of
the magnetic bubble (Fig. 1(c)). Both the topological charge
density q(x) and the energy density ε(x) are large in these
areas. In particular, there is a chance that ε(x) becomes large
in a lattice-scale area so that the area has almost Q = −1.
This happens when two spins are antiparallel with one down-
spin site between them, at t = 372.2 ps in Fig. 4. A single
or a few spins make a large rotation in order to decrease the
energy of the area. Indeed, the antiparallel spins become par-
allel at t = 372.8 ps in Fig. 4. In this process the topological
numberQ = −1 is lost, which is possible in the lattice theory.
This phenomenon would be viewed as a generation of a Bloch
point in the continuum theory. This makes clearer the role of
the Bloch point presented by Sampaio et al. in Ref. 10. There

exists still a pair of blue and red areas. Now, there is a chance
that another lattice-scale area develops which has Q = −1 in
the spin texture with Q = 1. (Note that there are two spins
antiparallel at t = 406 ps, which become parallel at t = 407.6
ps.) It corresponds to the emergence of another Bloch point.
As a result, it turns out that two Bloch points emerge suc-
cessively in a single magnetic bubble. When the spin texture
becomes sufficiently smooth, it yields a high-Q skyrmion with
Q = 2.

We have also numerically observed that a high-Q skyrmion
can be successfully created in a wide range of parameters as
well as the spin current injection size, as shown for instance
in Fig. 5. Fig. 5(a) shows the phase diagram of the high-Q
skyrmion creation with respect to the external magnetic field
Bz and time, where the spin current is injected into a circle
region with a radius of rc = 15 nm. Fig. 5(b) shows the phase
diagram of the high-Q skyrmion creation with respect to the
spin current injection region radius rc and the time t, where
the spin current is injected into a circle region with a radius of
rc.

Moreover, as shown in Fig. 6, the high-Q skyrmion is cre-
ated and maintained even at finite temperature. Fig. 6(a) il-
lustrates the phase diagram of the high-Q skyrmion creation
with respect to the temperature T and time. Fig. 6(b) shows
the topological number Q as a function of the time at T = 0
K and T = 100 K, where the high-skyrmion with Q = 2 is
created shortly after the spin current is switched on. The struc-
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FIG. 3. (Color online) (a) Nucleation and (b) annihilation pro-
cesses of the high-Q skyrmion with Q = 2. A sudden change of
the topological numberQ occurs twice successively when the high-Q
skyrmion withQ = 2 is created or destroyed. The topological charge
density q(x), the energy density ε(x), and the spin-component distri-
bution mz(x) of the state indexed by (t, Q) in (a) and (b) are shown
in Fig. 4 and Fig. 9, respectively.

ture of the high-Q skyrmion is deformed at finite temperature
(see Fig. 6(b) insets). Its topological number is almost 2 but
fluctuates slightly because the continuity of the spin texture of
a deformed skyrmion is broken at finite temperature.

B. Evolution of the high-Q skyrmion

The continuity of the spin texture is recovered since a
smooth texture has a lower energy. Then the topological pro-
tection becomes active. The dissipation function decreases
rapidly and oscillates around zero. The system is relaxed to
a steady state around t = 5 ns. Both the topological charge
density and the Rayleigh dissipation function are almost zero
outside the domain wall encircling the high-Q skyrmion (see
Fig. 2).

Oscillations in various variables occur due to the DMI. It is
instructive to switch off the DMI in numerical simulations. In
Fig. 2, we switch off the DMI at t = 10 ns. First of all, the
high-Q skyrmion remains stable. Second, the oscillations in
the energy, the magnetization components, and the dissipation
functions disappear. After the relaxation at t = 20 ns, the in-
plane magnetization components and the dissipation functions
becomes exactly zero (see Ref. 26 for Supplementary Movie
2). The spin texture is described precisely by the magnetiza-
tion components of the domain wall.

We show how the balance holds between the energy injec-
tion from the spin current and the dissipation by the Gilbert
damping in Fig. 7. The energy injection occurs in the vicinity
of the edge of the current injection region (r . rc) while the
dissipation occurs mostly within the domain wall encircling
it (r ∼ r0) together with energy flow from the inner to outer
regions. This is due to the fact that spins precess within the
domain wall.

C. Topological protection of the high-Q skyrmion

It is important to point out that this energy balance takes
place automatically so as to keep the topological number un-
changed. To check this, we change the spin current stepwise,
which is shown in Fig. 8. The topological number remains to
be 2 when the spin current intensity changes even more than
twice. The energy injection due to the STT becomes larger
as the spin current density increases. Accordingly, the energy
dissipation due to the Gilbert damping increases. As a result,
the Rayleigh dissipation function remains zero in average al-
though it is oscillating. The total energy increases stepwise
but remains almost constant for each current strength. The to-
tal mz decreases as the spin current density increases, which
implies that the magnetic skyrmion expands for larger cur-
rent density. We have shown that the magnetic skyrmion is
topologically robust against a considerable change of the spin
current injection.

As we have stated, once it is created, the high-Q skyrmion
remains stable even if the DMI is switched off (see Fig. 2).
Furthermore, it is stable against the fluctuations of various
variables. This is because a small change can induce only a
small change of the topological number Q, but this is impos-
sible since Q is a quantized quantity. This property is called
the topological protection.

D. Destruction of the high-Q skyrmion

When the spin current is switched off at t = 5 ns, the topo-
logical number remains as Q = 2 until t ∼ 6.4 ns and sud-
denly decreases to Q = 0, as shown in Fig. 1(b). The radius
of the magnetic skyrmion shrinks since the skyrmion core is
fixed by the spin current against the shrinking force due to
the kinetic energy as well as the external magnetic field (see
Ref. 26 for Supplementary Movie 3).

A close examination shows that the collapse of the topo-
logical number occurs in two steps as Q = 2 → 1 → 0 as in
Fig. 3(b). We may understand how the destruction of a mag-
netic skyrmion with Q = 2 occurs by investigating the time
evolution of the topological charge density, the energy den-
sity, and the spin distribution around t = 6.4 ns as shown in
Fig. 9.

In the first step the energy density is localized almost on one
lattice site, where a Bloch point is generated and the topolog-
ical number changes from Q = 2 to Q = 1. The size of the
magnetic skyrmion with Q = 1 shrinks almost to the order of
the lattice site.
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FIG. 4. (Color online) Nucleation process of the high-Q skyrmion with Q = 2. Snapshots of the topological charge density q(x), the energy
density ε(x), the spin-component distribution mz(x), and its close up at sequential times. The DMI constant D = 2 mJ m−2. The spin
current density j = 3 × 1012 A m−2. The external magnetic field Bz = 250 mT. In the simulation, each cell corresponds to one spin, and
the cell size is 1.5 nm × 1.5 nm × 1 nm. In the spin distribution panels, each arrow stands for four spins, while it stands for one spin in the
insets. The nucleation process of the high-Q skyrmion with Q = 2 is found to occur in two steps. First, it starts when a high-energy-density
part is localized to a lattice-scale area, which possesses almostQ = −1. A few spins rotate by large angles in this area, making the topological
number of the area almost zero. The resultant spin texture has Q = 1. Second, a similar phenomenon occurs, yielding the high-Q skyrmion
with Q = 2 after the relaxation. See Ref. 26 for Supplementary Movie 4.

The second step has some new features. The topologi-
cal stability of the magnetic skyrmion is guaranteed by the
fact that the core spin points in the direction opposite to the
FM background. However, such a core spin disappears at
t = 6407 ps since there is no lattice site at the core spin.
As a result, the spin texture becomes a vortex structure. Ac-
cordingly, all the spins point along upward direction and the
magnetic skyrmion disappears. This is possible since the sys-
tem is on the lattice and such a transition never happens for
the continuum system. In this process, the spiral spin wave is
generated, as seen obviously in the topological density as well
as the energy density at t = 6410 ps in Fig. 9.

A comment is in order with respect to the stability of a mag-
netic skyrmion withQ = 1 when the spin current is turned off
(see Fig. 1(b)). The stability diagram has been explored in
Ref. 10 in the absence of the spin current. For instance, it is
stable for D = 4 mJ m−2 and Bz = 0 mT, while it is unsta-
ble for D = 2 mJ m−2 and Bz = 50 mT. Indeed, when the
spin current is switched off, a magnetic skyrmion with Q = 1
remains stable or is destroyed according to these parameter
choices, as depicted in cyan or in blue in Fig. 1(b).

III. THEORETICAL ANALYSIS OF THE HIGH-Q
SKYRMION

A. Hamiltonian

The Hamiltonian of the system is given by

H =− J
∑
〈i,j〉

mi ·mj +
∑
〈i,j〉

D · (mi ×mj)

+K
∑
i

[1− (mz
i )

2] +Bz
∑
i

mz
i +HDDI, (1)

where mi represents the local magnetic moment orientation
normalized as |mi| = 1 at the site i, and 〈i, j〉 runs over all
the nearest neighbor sites in the FM layer. The first term rep-
resents the FM exchange interaction with the FM exchange
stiffness J . The second term represents the DMI with the
DMI vector D. The third term represents the perpendicular
magnetic anisotropy (PMA) with the anisotropic constant K.
The fourth term represents the Zeeman interaction. The fifth
term HDDI represents the dipole-dipole interaction. Although
we have included the dipole-dipole interactions in all numer-
ical calculations, the effect is negligible since the size of a
magnetic skyrmion is of the order of nanometers.
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FIG. 5. (Color online) (a) Phase diagram of the high-Q skyrmion
creation with respect to the external magnetic field Bz and time t.
The spin current density j = 3 × 1012 A m−2, which is injected
into a circle region with a radius of rc = 15 nm. The DMI constant
D = 2 mJ m−2. (b) Phase diagram of the high-Q skyrmion creation
with respect to the spin current injection region radius rc and time
t. The spin current density j = 3 × 1012 A m−2, which is injected
into a circle region with a radius of rc. The DMI constant D = 2
mJ m−2. The external magnetic field Bz = 250 mT. The color scale
indicates the topological number Q.

B. Topological number

The classical field m(x) is introduced for the spin texture
in the FM system by considering the zero limit of the lattice
constant, that is, a → 0. The ground-state spin texture is
m = (0, 0, 1). We employ the continuum theory when we
make an analytic study of the system.

A magnetic skyrmion is a spin texture which has a topolog-
ical number. Spins swirl continuously around the core, where
spins point downward, and approach the spin-up state asymp-
totically. The magnetic skyrmion is characterized by the topo-
logical number known as the Pontryagin number. It is given
by Q̂ =

∫
d2xq(x) with the density

q(x) = − 1

4π
m(x) · (∂xm(x)× ∂ym(x)) . (2)

The spin configuration of a magnetic skyrmion is
parametrized as

mx = cosφ (ϕ) sin θ (r) , my = sinφ (ϕ) sin θ (r) ,

mz = cos θ (r) , (3)

where ϕ is the azimuthal angle and r is the radius in the polar
coordinate. The topological charge density q(x) is shown to
be a total derivative, and hence the topological number is a
boundary value. It is explicitly calculated as

Q̂ =
1

4π
[cos θ(∞)− cos θ(0)][φ(2π)− φ(0)], (4)

which does not depend on the detailed profile of cos θ(r)
and φ(ϕ). The boundary conditions cos θ(0) = −1 and
cos θ(∞) = 1 are imposed for any skyrmion at the skyrmion
center (r = 0) and at infinity (r = ∞). When φ = Qϕ + χ,
the topological number is Q, where χ stands for the helicity.

FIG. 6. (Color online) (a) Phase diagram of the high-Q skyrmion
creation with respect to the temperature T and the time t. The DMI
constant D = 2 mJ m−2. The spin current density j = 3 × 1012

A m−2. The external magnetic field Bz = 250 mT. The color scale
indicates the topological number Q. (b) The topological number Q
as a function of time t at T = 0 K and T = 100 K. The insets show
the snapshots of the high-Q skyrmion at T = 0 K and T = 100 K.

Q must be an integer for the single-valuedness. In general, θ
and χ are functions of time t. The latter interpolates the Néel-
type (χ = 0, π) or Bloch-type (χ = π/2, 3π/2) skyrmion.
We show the spin configurations of the magnetic skyrmions
with Q = 1 and Q = 2 in Fig. 1(a). Spins rotate Q times as
ϕ changes from ϕ = 0 to ϕ = 2π for the magnetic skyrmion
with Q. That is to say, when going around the spin texture
of the magnetic skyrmion, the in-plane component of the spin
rotates by 2πQ.

C. Dzyaloshinskii-Moriya interaction

The DMI is the Néel-type or Bloch-type depending on
whether it is introduced from the surface or bulk. We take
the interface-induced Néel-type DMI,

HDM = D⊥

∫
d2x [nzdivn− (n ·∇)nz] . (5)

We substitute the magnetic skyrmion configuration equa-
tion (3) into the DMI Hamiltonian, and we find

HDM = D⊥

∫
rdrdϕ

1

2r
cos [(Q− 1)ϕ+ χ]

× (Q sin 2θ (r) + 2r∂rθ (r)) . (6)

For Q 6= 1, by integrating over ϕ, we find HDM = 0. As a
result, the DMI does not prevent a static magnetic skyrmion
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FIG. 7. (Color online) Profile of mz and the Rayleigh dissipation function W of the high-Q skyrmion with Q = 2 in the presence and
absence of the DMI. (a) The radius of the FM nanodisk equals 75 nm, and the spin-polarized current is injected into a circle region with a
radius of rc = 15 nm. The simulated skyrmion radius r0 is equal to 24.55 nm, which is defined as the radius of the circle where mz = 0. The
DMI constant D = 2 mJ m−2. The spin current density j = 3 × 1012 A m−2. The external magnetic field Bz = 250 mT. (b) The form of
mz(r) is fitted by the domain wall solution equation (14) with the use of λ = 4.54 nm, which is in good agreement with the theoretical value
λ =

√
J/K = 4.33 nm. The functions Wα and WSTT in (a) are also well fitted by the same domain-wall solution.

from shrinking to a point unless Q = 1. Hence, there is no
static magnetic skyrmion stabilized by the DMI for Q 6= 1.

D. Rayleigh dissipation function

The system contains an energy injection by the spin-
polarized current and an energy dissipation by the Gilbert
damping. They cannot be analyzed in the framework of the
Hamiltonian formalism, where the energy is a constant of mo-
tion. It is described by the generalized Lagrangian formalism
including the Rayleigh dissipation function.

The Rayleigh dissipation function consists of two terms,
W =Wα +WSTT, the Gilbert damping term [27],

Wα = ~α
(
dm

dt

)2

= ~α
(
θ̇2 + φ̇2 sin2 θ

)
, (7)

with the Gilbert damping constant α, and the STT term,

WSTT = ~|γ|uz · (ṁ×m) = −~|γ|uφ̇ sin2 θ, (8)

where u describes the injection of the spin-polarized current,
u (r) = | ~

µ0e
| P
2dMS

j (r) with j (r) representing the injected
current and z = (0, 0, 1). We take u(r) = u0 for r < rc and
u(r) = 0 for r > rc. We note that Wα > 0, while WSTT can
be positive or negative depending on the direction of the spin
current. We use the first (second) equations in equation (7)
and equation (8) for numerical (analytical) calculations.

The generalized Lagrange equation reads [24]

d

dt

δL

δQ̇
− δL

δQ
= −δW

δQ̇
, (9)

where L is the Lagrangian and Q is the generalized coor-
dinate. By taking m as Q, the generalized Lagrange equa-
tion yields the Landau-Lifshitz-Gilbert-Slonczewski (LLGS)
equation,

dm

dt
= −|γ|m×Beff + αm× dm

dt
+ |γ|um× (z ×m) ,

(10)
with ~Beff = −∂H/∂m.

The energy E changes in the presence of the energy injec-
tion and dissipation, dE/dt = −2

∫
d2xW 6= 0, in general.

Nevertheless, when we take the time average, we should have∫
d2x〈W 〉 = 0, (11)

because this is necessary for a dynamically stabilized mag-
netic skyrmion. We may call it the weak stationary condition.

E. Skyrmion solution

We substitute equation (3) in the LLGS equation (10),
which leads to a set of two equations for θ(t, r, ϕ) and
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FIG. 8. (Color online) The high-Q skyrmion with Q = 2 under
stepwise increasing of the spin-polarized current injection. We show
how the topological number Q, the total energy Etotal, the averaged
out-of-plane magnetization mz , and the dissipation functions (Wα,
WSTT, W ) change, when the injected spin current density j is in-
creased. The DMI constant D = 2 mJ m−2. The external magnetic
fieldBz = 250 mT. The topological numberQ remains as it is when
we change the spin current density. The average of W is zero, which
implies the energy is balanced in average. It demonstrates that the
topological protection against the change of a variable, that is, the
spin current injection.

χ(t, r, ϕ). They are too complicated to solve, reflecting
complicated behaviors revealed by numerical solutions (see
Ref. 26 for Supplementary Movies 1-3). However, when we
set D⊥ = 0, simple behaviors have been revealed by numeri-
cal simulations. Hence, we solve them by setting D⊥ = 0 as
the unperturbed system.

We search for a solution such that θ̇ = 0. By substituting
equation (3) in the LLGS equation (10), and by setting θ̇ = 0,
we obtain

−J(∂2rθ +
∂rθ

r
) + (

JQ2

2r2
+K) sin 2θ

+Bz cos θ +
1

α
u(r) sin θ = 2D⊥F (r, θ, ϕ), (12)

where

F =− Q

r
sin θ cos[(1−Q)ϕ+ χ]

− 1

α
∂rθ sin[(1−Q)ϕ+ χ] sin θ. (13)

The role of the injected spin-polarized current (u 6= 0) is to
impose the boundary condition cos θ = −1 at r = 0.

WhenQ = 1, since F = − sin θ/r, equation (12) is numer-
ically solvable with respect to θ with the boundary condition
cos θ = −1 at r = 0 and cos θ = 1 at r = ∞. The azimuthal

angle is given by ϕ0(t) = (γu/αQ)t. The equations of mo-
tion are well approximated by J∂2rθ = K sin 2θ for any Q
asymptotically. This equation has the domain-wall solution,

cos θ = tanh
r − r0
λ

, (14)

with the domain-wall width λ =
√
J/K and the skyrmion

radius r0.
Our major interest is the case of Q 6= 1. Since θ and ϕ

are coupled, it is not straightforward to solve for a magnetic
skyrmion. Let us require the weak stationary condition by
taking the time average of equation (13). We find that 〈F 〉 = 0
unless Q = 1. Then, equation (12) is solvable with respect
to θ with the boundary condition cos θ = −1 at r = 0 and
cos θ = 1 at r =∞.

The profile of mz(r) is given by equation (3) and equa-
tion (14). The Gilbert damping term Wα(r) and the STT term
WSTT(r) are given by equations (7) - (8) together with θ̇ = 0,
φ̇ = constant and equation (14) or sin2 θ = sec2[(r − r0)/λ].
The theory and numerical simulation lead to identical results
which overlap within the precision of numerical simulation as
shown in Fig. 7(b).

On the other hand, when the injected spin-polarized current
is switched off, that is, u = 0, there is no skyrmion solution
and we recover the FM ground state cos θ = 1.

IV. CONCLUSIONS

We have analyzed the nucleation, the stability, and the de-
struction of the high-Q skyrmion withQ = 2 in ferromagnets.
It is realized when the in-plane component of the spin rotates
by 2πQ and the magnetic skyrmion has acquired a high helic-
ity Q. In the presence of the DMI, although there exist static
magnetic skyrmions with Q = 1, there exist no static high-Q
skyrmions. Nevertheless, a high-Q skyrmion can be created
and stabilized dynamically by injecting the spin-polarized cur-
rent. The DMI plays a crucial role in the creation mechanism
by twisting spins and generating fluctuations of the energy
density and the topological charge density. Indeed, we have
numerically verified that a high-Q skyrmion cannot be created
dynamically without the DMI.

We have also observed numerically that a high-Q skyrmion
can be created in a wide range of parameters as well as the
spin current injection size. Furthermore, the high-Q skyrmion
has been found to be created and maintained even at finite
temperature, although its structure is deformed due to thermal
fluctuations.

The nucleation process of a high-Q skyrmion is revealed
by investigating the magnetization distribution, the topologi-
cal charge density, and the energy density. It occurs in two
steps. First, it so happens that the high density part is local-
ized to a lattice-scale area in the boundary of a magnetic bub-
ble with Q = 0. The topological number jumps from Q = 0
to Q = 1 by making a large spin rotation in this lattice-scale
area within a few picoseconds. This phenomenon would be
viewed as an emergence of a Bloch point in the continuum
theory. Second, a similar process occurs to make a jump from
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FIG. 9. (Color online) Annihilation process of the high-Q skyrmion with Q = 2. Snapshots of the topological charge density q(x), the
energy density ε(x), the spin-component densitymz(x), and its close up at sequential times. The DMI constantD = 2 mJ m−2. The external
magnetic field Bz = 250 mT. The spin current density is switched off at t = 5000 ps. In the simulation, each cell corresponds to one spin,
and the cell size is 1.5 nm × 1.5 nm × 1 nm. In the spin distribution panels, each arrow stands for four spins, while it stands for one spin in
the insets. In the first step, the topological number changes from Q = 2 to Q = 1, where the skyrmion size remains almost unchanged. Then,
the magnetic skyrmion with Q = 1 shrinks to the size of the lattice scale. In the second step, the topological number changes from Q = 1 to
Q = 0, and the magnetic skyrmion disappears. See Ref. 26 for Supplementary Movie 5.

Q = 1 to Q = 2. The dissipation spreads over the sample like
a burst at the moment of the birth of a magnetic skyrmion.

The continuity of the spin texture is recovered since a
smooth texture has a lower energy. Once a sufficiently smooth
high-Q skyrmion is generated, it remains stable even if we
switch off the DMI or even if we change the current density
of the injected spin current considerably. We have explained
its stability as a topologically protected dissipative structure.

When the spin current injection is switched off, the high-Q
skyrmion is destroyed. The destruction process occurs also
in two steps as in the case of the nucleation process. How-
ever, the detailed mechanism is different. The first step occurs
by way of a Bloch point, where the continuum picture is still
good. In the second step, the lattice structure becomes impor-
tant since the skyrmion size is so small, where the skyrmion
spin texture turns into the vortex spin texture and disappears.
The dissipation spreads over the sample like a burst at the mo-
ment of the destruction of a magnetic skyrmion.

It is a hard problem to solve the nucleation or destruction
process analytically since it is a highly nonlinear process in-
volving Bloch points. Furthermore, the lattice structure plays
a key role in these processes at the microscopic level. We hope
this work provides useful guidelines in searching new type
of skyrmions and will afford a new dimension towards fully
understanding the nontrivial topology of magnetic skyrmions
with higher topological numbers.
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APPENDIX: SIMULATION AND MODELING

The micromagnetic simulation is carried out with the
well-established Object Oriented MicroMagnetic Framework
(OOMMF) software (1.2a5 release) [28]. The OOMMF ex-
tensible solver (OXS) extension module of the interface-
induced DMI, that is, the Oxs_DMExchange6Ngbr class, is
included in the simulation [29]. The OXS extension module of
the thermal fluctuation, that is, the Xf_ThermSpinXferEvolve
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class, is employed to simulate the finite-temperature system.
The 3D time-dependent magnetization dynamics at zero tem-
perature is determined by the LLGS equation [28, 30], while
a highly irregular fluctuating field representing the irregular
influence of temperature is added into the LLGS equation for
simulating the magnetization dynamics at finite temperature.
The average energy density of the system contains the ex-
change energy, the anisotropy energy, the applied field (Zee-
man) energy, the DMI energy, and the magnetostatic (demag-
netization) energy terms.

In the simulation, we consider a 1-nm-thick FM nanodisk
with a diameter of 150 nm, which is attached to a heavy-metal
substrate. The material parameters used by the simulation pro-
gram are adopted from Refs. 9 and 10: the Gilbert damping
coefficient α = 0.01, the gyromagnetic ratio γ = −2.211 ×
105 m A−1 s−1, the saturation magnetization MS = 580 kA
m−1, the exchange stiffness J = 15 pJ m−1, the interface-

induced DMI constant D = 0 ∼ 3 mJ m−2, and the PMA
constant K = 0.8 MJ m−3. The polarization rate of the verti-
cal spin current applied in the simulation is fixed at P = 0.4.
The simulated model is discretized into tetragonal cells with
the optimum cell size of 1.5 nm× 1.5 nm× 1 nm, which gives
a good trade-off between the computational accuracy and effi-
ciency. The finite-temperature simulation is performed with a
fixed time step of 1×10−14 s, while the time step in the simu-
lation with zero temperature is adaptive (∼ 6× 10−14 s). The
seed value in the finite temperature simulation is fixed at 100.
The output is made with an interval of 1×10−13 ∼ 1×10−11

s. The initial magnetization distribution of the FM nanodisk is
relaxed along the +z-direction, except for the tilted magneti-
zation on the edge due to the DMI. The external magnetic field
is applied perpendicular to the FM nanodisk pointing along
the +z-direction with an amplitude of Bz = 0 ∼ 500 mT.
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