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Abstract

In this paper, we introduce valid parametric covariance models for univariate

and multivariate spatio-temporal random fields. In contrast to the traditional

models, we allow the model parameters to vary over time. Since variables in

applications usually exhibit seasonality or changes in dependency structures,

the allowance of varying parameters would be beneficial in terms of improv-

ing model flexibility. Conditions in constructing valid covariance models and

discussions on practical implementation will be provided. As an application,

a set of air pollution data observed from a monitoring network will be mod-

eled. It is found that the time varying model performs better in prediction

compared with the traditional models.
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1. Introduction

Spatial or spatio-temporal models have been proven to be useful in a va-

riety of fields including environmetrics, hydrology, economics, among many

others. One of the most important parts in spatial and spatio-temporal anal-

ysis is the modeling of the covariance function. A function is said to be a

covariance function if the matrix defined by the covariance function is valid

for all finite sets of locations and times. A covariance matrix is said to be

valid if and only if it is positive semi-definite (p.s.d.). Recall that a matrix A

is said to be p.s.d. if and only if a>Aa ≥ 0 for all vectors a of comfortable

dimensions. One way to guarantee the positive semi-definiteness is to define

the covariance matrix based on some positive definite functions and make

use of the celebrated Bochner’s theorem (Bochner, 1955), see also Chilès and

Delfiner (1999, Ch. 2). Over the past few decades, many authors introduced

different kinds of valid parametric covariance models. For spatial models,

the covariance is usually modeled in the form of Cov(X(s1), X(s2)) where s

is the location where X is observed. Interested readers may consult Cressie

(1993) and Finkenstädt et al. (2007) for further details. For spatio-temporal

models, the situation is more challenging. Traditionally, scholars built valid

spatio-temporal covariance models based on the assumption that the spatial

and time components are separable. Recall that a spatio-temporal covari-

ance model is called separable if Cov(X(s1, t1), X(s2, t2)) can be written as

CS(s1, s2)CT (t1, t2), a product of a purely spatial covariance function CS

and a purely temporal covariance function CT . A review regarding separable

models can be found in Kyriakidis and Journel (1999) and an application of

separable model can be found in Rodŕıguez-Iturbe and Mej́ıa (1974). The

2



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

main drawback of separable models is the disallowance of the space-time

interaction which leads to undesirable properties in some occasion. Hence,

literature concerning non-separable covariance models appeared. Cressie and

Huang (1999) introduced some classes of valid non-separable spatio-temporal

covariance models. Based on the results of Cressie and Huang (1999), Gneit-

ing (2002) introduced other classes of valid models based on completely

monotonic functions. Other works include De Iaco et al. (2002), Stein (2005)

and Fuentes et al. (2008), among many others. For non-separable anisotropic

(depending on the directions) spatio-temporal models, see Porcu et al. (2006).

We note that under our approach, the resulting spatio-temporal covariance

is non-separable in general.

In the above works, in order to achieve validity, covariance parameters

were assumed to be fixed both spatially and temporally. But such an assump-

tion is clearly unnecessarily restrictive. Relaxation of the constant parameter

assumption will surely be beneficial since it enhances the model flexibility.

Under the purely spatial setting, Gelfand et al. (2003) attempted to include

spatially varying coefficients in their models under the Bayesian framework.

For the multivariate spatial settings, some details can be found in Gelfand

et al. (2003), Gelfand et al. (2004) and Kleiber and Genton (2013). Our

work is closely related to Kleiber and Genton (2013). In Kleiber and Gen-

ton (2013), they introduced the spatial covariance models for multivariate

spatial processes which are spatial varying. Analogously, one could consider

spatio-temporal processes as multivariate spatial processes, with each time

point regarded as a component from the multivariate process. The temporal

correlation in our work can be analogous to the cross-covariance correlation

3
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in their work. Nevertheless, we must emphasize the difference between our

work and Kleiber and Genton (2013). First, forecasting in time, which can-

not be done in their models, can be easily done under our proposed models.

Second, in Kleiber and Genton (2013), estimation of parameters were done

under non-parametric methods. In our work, full parametric methods will

be employed. Under full parametric methods, predictions can be done using

classical methods. In later parts, we will compare the time varying models

with an ordinary separable model in terms of the predictive powers.

The rest of this paper is organized as follows. In Section 2, details for

the univariate case are provided while the results for the multivariate case

are given in Section 3. In Section 4, the empirical coverage rates of confi-

dence intervals are assessed via a simulation study. In Section 5, we applied

the models to a set of trivariate air pollution data recorded in California.

Conclusions and discussions are provided in the last section.

2. Univariate Time Varying Spatio-Temporal Covariance Models

2.1. Main Results

Consider the spatio-temporal random process

X = (X (s1, t1) , X (s2, t1) , . . . , X (sm, t1) , . . . , X (s1, tT ) , . . . , X (sm, tT ))>

containing time series of length T at each of the m locations. In practice the

sites si ∈ Rd for d ≤ 3. We focus on the modeling of the covariance of X

and therefore, throughout the whole work, it is assumed that the mean of

X is 0. Note that the assumption is not restrictive since in practice one can

always subtract the original data by the sample mean to remove the mean

4
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component. The main objective here is to introduce valid temporally varying

spatio-temporal covariance models which are computationally estimable. Let

Var (X) = Σ =




C11 C12 · · · C1T

C22
...

. . .
...

CTT



. (1)

In (1), m×m block matrices Ck` constitute the large matrix Σ of dimen-

sion mT×mT . When k = ` (i.e., the diagonal blocks), eachCkk is a (possibly

different) spatial covariance matrix governing the spatial dependency struc-

ture of the random process at time k. When k 6= ` (i.e., the off-diagonal

blocks), Ckl are covariance matrices capturing the temporal association of

the process between different time points k and `. Under classical approaches,

Σ is modeled using a parametric spatio-temporal covariance model with the

assumption that C11 = C22 = · · · = CTT and all the Ck` are the same

when the differences between k and ` are equal. However, empirical evidence

(see Section 5) reveals that it maybe sometimes restrictive to assume con-

stant parameters over time, especially when the variables on hand, such as

environmental quantities, vary with time.

Under the new proposed approach, the only requirement posed on the

diagonal blocks Ckk is the p.s.d. requirement. However, it should be noted

that, in general, for k 6= `, the parametric forms of Ckk and C`` can be

different from each other. For example, Ckk can be in the Matérn class while

C`` can be in the Cauchy class. In addition, even they are in the same class,

the parameters can be different from each other. For instance, the decaying

parameter can be time varying. It is easy to see that if one assumes zero

5
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correlations across time, i.e., Ck` = 0 when k 6= `, then Σ is always valid as

long as all the diagonal blocks are p.s.d. (Horn and Johnson, 1990, Ch. 7).

Hence, it remains to find the conditions for the off-diagonal blocks such that

Σ is valid. In the following, for any square matrix M , define M 1/2 to be a

square root matrix such that M 1/2M 1/2 = M . The following Lemma will

be useful for further development of our proposed model.

Lemma 1. Let I be the m×m identity matrix, for diagonal matrices Dij =

diag (dij1, . . . , dijm), i, j = 1, . . . , T , the matrix



I D12 · · · D1T

I
...

. . .
...

I




(2)

is p.s.d. if all matrices of the form

Dk =




1 d12k · · · d1Tk

1
...

. . .
...

1




(3)

for k = 1, . . . ,m are p.s.d..

Proof. By rearranging the rows and columns, (2) can be written in the block

diagonal form as 


D1 0 · · · 0

0 D2
. . . 0

...
. . . . . .

...

0 0 · · · Dm



.

Therefore, if all Dk, k = 1, . . . ,m, are p.s.d., (2) is p.s.d..

6
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The time varying spatio-temporal covariance models can be developed as

specified in the theorem below.

Theorem 1. Let K be an mT ×mT block matrix with T × T blocks Kk`,

k, ` = 1, . . . , T , such that Kkk = I and Kk` = C
−1/2
kk Ck`C

−1/2
`` for k 6= `.

Then Σ is p.s.d. if and only if K is p.s.d..

Proof. Denoted matrix congruence by ∼, using proposition 1.3.2 of Bhatia

(2007), it can be shown that

Σ =




C11 C12 · · · C1T

C22
...

. . .
...

CTT




∼




I C
−1/2
11 C12C

−1/2
22 · · · C−1/2

11 C11C
−1/2
TT

I
...

. . .
...

I




= K. (4)

Hence, Σ is p.s.d. if and only if K is p.s.d..

Recall that two matrices A and B are said to be congruent if there exists

another matrix C such that B = C>AC, more details can be found in

Bhatia (2007). Congruent matrices are equivalent in certain aspects. In

particular, if a matrix is p.s.d., its congruent matrices are p.s.d. as well.

Using Theorem 1, the following corollaries hold.

Corollary 1. For k 6= `, let Ck` = C
1/2
kk Dk`C

1/2
`` where Dk` are diagonal

7
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matrices with positive entries, Σ is p.s.d. if



I D12 · · · D1T

I
...

. . .
...

I




is p.s.d..

Proof. Corollary 1 follows directly from Corollary 2 of Kleiber and Genton

(2013).

Under the construction of Corollary 1, the ij-th element of Ck`, denoted

by [Ck`]ij, can be expressed as

[Ck`]ij =
m∑

r=1

cirkkdk`rc
rj
``

where cuvst denotes the uv-th element of C
1/2
st and dk`r denotes the r-th diag-

onal element of Dk`. It is essentially a weighted sum of the products of the

elements from the square root matrices. Under Corollary 2 below, when dk`r

represents temporal correlations, [Ck`]ij is a mixture of temporal correlation

and spatial covariances at different times.

Corollary 2. For k 6= `, let Dk` as defined in Corollary 1 and let dk`n be

the n-th diagonal element of Dk` for n = 1, . . . ,m. If dk`n = g (k, `) where

g (·, ·) is a valid purely temporal correlation function, then Σ is p.s.d..

Proof. When dk`n = g (k, `), Dk` = diag (g (k, `) , . . . , g (k, `)). Hence, from

(3), D1 = · · · = Dm. Since g is a valid correlation function, it implies that

all Di, i = 1, . . . ,m are p.s.d.. Therefore, Corollary 2 follows from Lemma 1

and Corollary 1.

8
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Remark 1. The purely temporal function g in Corollary 2 need not be isotropic

or stationary. Indeed, any valid positive definite functions can be used. In

particular, a valid stationary purely temporal positive definite function sat-

isfies fω =
∫

R e
−iuωg (u) du ≥ 0 for all values of u = |k − `| ∈ R, see Bochner

(1955).

2.2. Estimation

Before proceeding to parameter estimation, one has to choose the spatial

as well as the temporal covariance/ correlation models. For instance, one can

choose the Matérn covariance model (Matérn, 1986) as the spatial covariance

model, i.e., the ij-th element of the matrix Ckk, i, j = 1, . . . ,m, k = 1, . . . , T

is given by

σ2
k

(αk ‖si − sj‖)νk

Γ (νk) 2νk−1
Kνk

(αk ‖si − sj‖) , νk, αk, σ
2
k > 0 (5)

where Kνk
is the modified Bessel function of the second kind, see Stein (1999)

and Abramowitz and Stegun (1972) for further details about the Matérn

model. The Matérn model has been used and discussed extensively in spa-

tial and spatio-temporal literature, examples include Fernández-Casal et al.

(2003); Christakos (2000); Cressie and Wikle (2011); Matheron (1962). Note

that under the current setting, the parameters are allowed to be varying in

time. For the temporal correlation models, one can, for example, choose the

third entry in Table 1 of Gneiting (2002), i.e., the diagonal elements of Dk`

are given by

(1 + a|k − `|γ)−b , a, b > 0, 0 < γ ≤ 1. (6)

If the time varying spatio-temporal covariance model was built using (5)

and (6), then the spatial parameters are θS = (α1, . . . , αT , σ
2
1, . . . , σ

2
T ) and

9
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the temporal parameters are θT = (a, b).

In general, following the results given in the last section, any valid spatial

covariance functions together with valid temporal correlation functions can

be used to construct valid time varying spatio-temporal covariance functions.

More examples can be found in Cressie and Huang (1999), Gneiting (2002)

and Sherman (2011), among many others.

To estimate the model parameters, when distributional assumptions are

imposed, likelihood methods are suggested. In Section 5 of this work, we

have assumed that the data follow the normal distribution. If one does not

impose any distributional assumption, least squares methods can be used.

It is noted that estimation using full likelihood methods can lead to heavy

computational burden when the dimensionality is high. Concerning the com-

putational burden, one may use approximate likelihood methods as provided

in Varin and Vidoni (2005) and Bevilacqua et al. (2012). It is suggested to

estimate the spatial parameters at each time point first. Hence, fixing the

spatial parameters, one can estimate the temporal parameters.

2.3. Prediction

Suppose one wishes to do interpolation, that is, predicting the value of

X at an unobserved location s0 and time t0 where t0 ∈ {1, . . . , T}, the

interpolation can be done following the steps below:

1. Insert {X (s0, tj)}j=1,...,T into X, call the new augmented observation

vector X∗, so that

X∗ = (X (s1, t1) , . . . , X (sm, t1) , X (s0, t1) , . . . ,

X (s1, tT ) , . . . , X (sm, tT ) , X (s0, tT ))> .

10
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2. Denote by θ̂S and θ̂T the estimated spatial and temporal parameters

respectively, compute Σ̂ = Σ
(
θ̂S, θ̂T

)
as in (1). Similarly, compute

Σ̂∗ = V̂ar (X∗).

3. Denote by k the position of X (s0, t0) in X∗ and define c∗ to be the

mT vector with elements ˆCov (X (s0, t0) , X (si, tj)), i = 1, . . . ,m and

j = 1, . . . , T , extracted from the k-th row of Σ̂∗, then the predicted

value of X (s0, t0) is given by X̂ (s0, t0) = λ>X where

λ> =

(
c∗ + 1

1− 1>Σ̂
−1
c∗

1>Σ̂
−1

1

)>
Σ̂
−1

(7)

and 1 is the column vector of 1’s (Cressie and Wikle, 2011, p. 324).

Following Cressie and Wikle (2011), the squared prediction error can be

computed as

e2p(s0, t0) = ˆCov (X (s0, t0) , X (s0, t0))− λ>c∗ +
1− 1Σ̂

−1
c∗

1Σ̂
−1

1
. (8)

If Gaussianity is assumed, the 95% prediction interval can be constructed as

(
X̂ (s0, t0)− 1.96ep(s0, t0), X̂ (s0, t0) + 1.96ep(s0, t0)

)
. (9)

Suppose instead of interpolation, one wishes to do forecasting at station

s0 and time t0 = T + q for some q > 0. Without loss of generality, fix q = 1,

the predicted value of X (s0, t0) can be obtained by some minor modification

of the above steps:

1(a). Define a augmented observation vector X∗∗, so that

X∗∗ = (X (s1, t1) , . . . , X (s0, t1) , . . . , X (s1, tT+1) , . . . , X (s0, tT+1))
> .

11
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2(a). Predict the spatial parameters at time T + 1 (see Remark 2, compute

Σ̂ = Σ
(
θ̂S, θ̂T

)
and Σ̂∗∗ = V̂ar (X∗∗).

3(a). Extract c∗∗ from the last row of Σ̂∗∗ and X̂ (s0, t0) is given by (7) with

c∗ replaced by c∗∗.

Remark 2. In Step 2(a), researchers can treat the estimated spatial param-

eters at different time points, θ̂S,k, k = 1, . . . , T , as a time series and use

various time series models such as autoregressive moving-average (ARMA)

models (see, for example, Wei (2006, Ch. 5) and Brockwell and Davis (2009,

Ch. 9)) to do the prediction.

3. Multivariate Time Varying Spatio-Temporal Covariance Models

In practice, researchers often consider more than one variable at a time.

In this section, we aimed to construct the multivariate time varying spatio-

temporal covariance models using similar techniques as given in section 2.

3.1. Main Results

Assume there are p variables on hand such that the multivariate spatio-

temporal data set is X
˜

=
(
X>1 ,X

>
2 , . . . ,X

>
p

)>
where

Xj = (Xj (s1, t1) , Xj (s2, t1) , . . . , Xj (sm, t1) , . . . , Xj (sm, tT ))>

is an m × T vector representing the j-th variable of interest. The variance

covariance matrix of X
˜

, Var
(
X
˜
)
, consists of p2 large block matrices. For

each block matrix, the dimension is mT × mT , as given in (1). In matrix
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form, write

Var
(
X
˜
)

= Σ
˜

=




Σ11 Σ12 · · · Σ1p

Σ22
...

. . .
...

Σpp




where the diagonal blocks Σjj denotes the spatio-temporal covariance matrix

of the j-th variable, i.e., Σjj = Var (Xj), as defined in the (1). The off-

diagonal block matrices Σij are the cross-covariance matrices between X i

and Xj for i 6= j. Using similar techniques as in the previous section,

valid multivariate time varying spatio-temporal covariance models can be

constructed.

Theorem 2. Let K
˜

be a pmT×pmT block matrix with p2 blocks,
{
K
˜ij

}p
ij=1

,

such thatK
˜ii = I where I denotes the identity matrix andK

˜ij = Σ
−1/2
ii ΣijΣ

−1/2
jj

for i 6= j. Then Σ
˜

is p.s.d. if and only if K
˜

is p.s.d..

Proof. Similar to Theorem 1, by matrix congruence, denoted by ∼, and

proposition 1.3.2 of Bhatia (2007), it can be shown that

Σ
˜

=




Σ11 Σ12 · · · Σ1p

Σ22
...

. . .
...

Σpp




∼




I Σ
−1/2
11 Σ12Σ

−1/2
22 · · · Σ

−1/2
11 Σ1pΣ

−1/2
pp

I
...

. . .
...

I




= K
˜
.

Hence, Σ
˜

is p.s.d. if and only if K
˜

is p.s.d..

13
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Remark 3. In fact, the multivariate covariance matrix K
˜

defined in Theorem

2 is very flexible in the sense that no particular form is imposed on each

marginal covariance matrix Σii. In particular, one can construct Σii using

Theorem 1 and then construct Σ
˜

using Theorem 2. Under this construction,

the resulting multivariate covariance matrix is also time varying. In addition,

similar to the univariate case, we can construct Σij using some specially

designed diagonal matrices as follows.

Corollary 3. For i 6= j, let Σij = Σ
1/2
ii SijΣ

1/2
jj where Sij are diagonal

matrices for i, j = 1, . . . , p, Σ
˜

is p.s.d. if




I S12 · · · S1p

I
...

. . .
...

I




is p.s.d..

Proof. Similar to the proof of Corollary 1.

Corollary 4. Let Sij as defined in Corollary 3 and Sijn be the n-th diagonal

element of Sij, i, j = 1, . . . , p, n = 1, . . . ,mT , where |Sijn| ≤ 1 such that all

matrices of the form

Sn =




1 S12n · · · S1pn

1
...

. . .
...

1




are p.s.d., then Σ
˜

is p.s.d..
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Proof. Similar to the proof of Corollary 2.

Remark 4. For p = 2, it requires all |S12n| ≤ 1, n = 1, . . . ,mT . For p = 3, it

requires all matrices of the form




1 S12n S13n

1 S23n

1




are p.s.d. which may be difficult to check in practice, especially when mT

is large. However, if we assume Sijn = ρij where |ρij| ≤ 1 represents the

cross-correlation coefficient, then the validity of Σ
˜

can be guaranteed. Yet,

under such a specification, the model would be simplified to a proportional

coregionalization model (Wackernagel, 2003, Ch. 26).

3.2. Estimation

To estimate the multivariate model, it is suggested to first estimate the

marginal covariance models Σii, i = 1, . . . p, using the procedures as de-

scribed in Section 2.2. The cross-variable parameters can be estimated using

likelihood or least squares methods similarly as in the univariate case. In

the next section, we estimated the multivariate model using the method as

described in Remark 4, i.e., we set Sijn = ρij where |ρij| ≤ 1.

4. Simulation Study

In this section, the empirical coverage of the confidence intervals, arising

from Equations (8) and (9), are assessed. In (9), although the nominal

coverage is 95%, the empirical coverage could be quite different when the true

15
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Figure 1: Sampling locations used in the simulation study (circles). Alphabetical letters

represent locations used for interpolation.

parameters are replaced by the estimated ones, as suggested in Zimmerman

and Cressie (1992).

In this simulation study, the spatial domain is set to be a two-dimensional

regular grid in [0, 1]2, as shown in Figure 1. Four sites (named as A, B, C

and D) are reserved for the purpose of interpolation. The number of sites

used in the modelling stage is therefore 26. The number of time points is 30.

Throughout the simulation study, the Matérn model (5) is used as the

spatial covariance function Ckk and the temporal correlation model (6) is

employed to construct the off-diagonal blocks Ck` following Corollary 2. The

16
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parameters are fixed as ν = 1.5, a = 0.3 and γ = 1. Both α and σ are allowed

to vary with time. The time series models are respectively:

αk = 2 + 0.5αk−1 + εk

σ2
k = 4 + 0.8σ2

k−1 − 0.5σ2
k−2 + εk

where εk are independent standard normal random variables representing the

white noise series. In order to compare the effect of temporal correlation on

the empirical coverage of confidence intervals, b takes the values 50 and 200.

The temporal correlation is weaker when b is larger. For each set of param-

eters, 500 independent realizations are simulated using the MASS package

in R (Venables and Ripley, 2002). The realizations are assumed to follow a

mean zero Gaussian process with covariogram defined using Corollary 2.

For each independent replicate, Steps 1 to 3 listed in Section 2.3 are imple-

mented to perform interpolation from time 1 to 30 at the four reserved sites.

Table 1 summarizes the empirical coverages of the confidence intervals and

the mean squared prediction errors. It can be seen that the empirical cover-

age rates are close to the nominal level 95%. Although the empirical coverage

seemed to be closer to 95% when the temporal correlation is weaker, the dif-

ferences are slight. Regarding the prediction errors, comparing the MSPE

under the two values of b, the strengths of temporal correlations seemed to

produce negligible effects.

5. Application

5.1. Data

As an application, we made use of an air pollution dataset recorded by

the California Air Resources Board which is available online. The dataset

17



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Table 1: Empirical coverage rates (ECR) of nominal 95% confidence intervals, expressed

as percentages, and the mean squared prediction errors (MSPE).

b = 50 b = 200

Site ECR MSPE ECR MSPE

A 93.93 0.1728 94.05 0.1694

B 94.03 0.2184 94.15 0.2175

C 93.85 0.2216 93.71 0.2237

D 93.88 0.1711 94.13 0.1697

consists of daily averages of nitrogen dioxide (NO2), nitrogen oxide (NO)

and carbon monoxide (CO) observed from September and October 2010 (61

days). We have removed the stations which contain missing values of at

least one variable. Finally, 31 sites were found to have full record during the

period and were retained in the dataset. In other words, the spatio-temporal

dataset consists of 1891 observations for each variable. Apanasovich and

Genton (2010) and Schmidt and Gelfand (2003) studied a similar air pollution

dataset in the context of multivariate spatial modeling. To investigate the

predictive power of the proposed time varying models, nine extra sites that

contain no missing value over the period of interpolation and forecast are

chosen to compare the performance of prediction under different models.

The 31 sampling sites and the nine extra stations are shown in Figure 2.

In order to achieve approximate normality, logarithm transformation was

made, as suggested by Schmidt and Gelfand (2003). Micro-scale effects were

removed using ANOVA considering each site as a factor. After that, we

standardized each time series at each site with the respective empirical mean

18
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and standard deviation for numerical computational stability. Finally, we

divided the distance between stations and the time lags by their correspond-

ing maximum values so that the sampling region becomes [0, 1]2× [0, 1]. The

estimation procedure can be summarized as follows.

Before proceeding to do estimation for the multivariate process, we esti-

mated the marginal parameters first. For each variable, we assumed that the

observations came from a mean-zero multivariate normal distribution with

covariance matrix Σ as given in (1). For simplicity, we assumed the spatial

covariance functions at each time point are in the same class but the parame-

ters could be different. We used the Matérn covariance function (5) to model

the data set on hand owing to its flexibility. For each time k = 1, . . . , T , we

employed the profile likelihood approach as given in Zhang (2004) to obtain

α̂k and σ̂2
k. Hence, we set Ck` = C

1/2
kk Dk`C

1/2
`` , k, ` = 1, . . . , T , where Dk`

are diagonal matrices defined by the temporal correlation function (6) with

γ = 1. The temporal parameters were estimated through a likelihood ap-

proach with the spatial parameters fixed as described in Section 2.2. With

the estimates of the marginal parameters, we proceeded to do estimation for

the multivariate process. As described in Section 3.2, we fixed the marginal

parameters and estimate ρij, i, j ∈ {NO2,NO,CO}.

5.2. Estimation Results

For the spatial covariance functions, we assume the values of ν are fixed.

For better comparison, we simply use the estimated values of ν under the sep-

arable model as provided in Ip (2015, Ch. 2). The estimates of the spatial

parameters for the three variables are provided in Figure 3. The fluctua-

tions of both α̂ and σ̂2 suggest that constant values of α̂ and σ̂2 may not
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Figure 2: Map of sampling stations (circles) and the nine extra stations (triangles).
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Table 2: Estimated parameters of the temporal correlation models for NO2, NO and CO.

â b̂

NO2 0.1591 300.00

NO 0.3198 192.00

CO 0.1523 295.11

provide accurate inferences, especially during times when jumps occurred.

The estimated parameters â and b̂ of the temporal correlation model are

given in Table 2. For the multivariate models, the estimated parameters are

ρ̂NO2,NO = 0.6618, ρ̂NO2,CO = 0.6253 and ρ̂NO,CO = 0.5965. It can be easily

check that the correlation matrix formed by ρ̂NO2,NO, ρ̂NO2,CO and ρ̂NO,CO is

positive definite, and therefore the multivariate time varying spatio-temporal

covariance model is valid following Corollary 4. Throughout this section, we

have demonstrated that the proposed time varying spatio-temporal covari-

ance model can be applied to real life data. Next, we examine the predictive

performance of the model.

5.3. Performance of Interpolation

To compare the proposed time varying model with ordinary models that

assume fixed parameters, we compare the predictive performances of our

proposed model with the classical approach in which the parameters are as-

sumed to be constants. Under the classical approach, the variance-covariance

matrix Σ is built from the separable spatio-temporal covariance function as

given in Fuentes et al. (2008) and further discussed in Ip (2015, Ch. 2).
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Figure 3: Estimates of α (in log scale, upper row) and σ2 (lower row) from time 1 to time

61 for NO2 (left column), NO (middle column) and CO (right column).
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Specifically, the covariogram is given as

Cov (X (s1, t1) , X (s2, t2))

=
σ222−2ν+ d+1

2

Γ
(
ν − d

2

)
Γ
(
ν − 1

2

) (αh)ν−
d
2 (βu)ν−

1
2 Kν− d

2
(αh)Kν− 1

2
(βu) (10)

where h = ‖s1 − s2‖, u = |t1 − t2|, ν > d/2 and α, β, σ2 > 0. The estimated

parameters of the covariance function (10) can be found in Ip (2015, Ch.

2). Here, we discuss the performance of interpolation in this section and

that of forecasting in the next section. In particular, interpolation was done

using Steps 1 to 3 as described in Section 2.3 for the extra stations from day

24 to 33 (i.e., from 24 September to 3 October). The period was picked to

minimize the number of missing values. Over the period of interpolation (and

the period of forecast described in the next section), there is no missing value

observed for NO2 in these nine stations. Unfortunately, for variables NO and

CO, interpolation was performed only in three among these nine stations,

owing to the presence of missing values in the remaining sites. Figures 4

and 5 show the plots of observed and predicted values of NO2 under the

separable model (10) and time varying models respectively. In these figures,

the solid lines represent the observed values while the dotted lines represent

the interpolated values (from day 24 to 33) and the forecast values (from

day 62 to 66). The prediction intervals (grey area) were calculated using (8)

and (9). Figures 6 and 7 show the corresponding graphs for NO and CO

respectively.

For NO2, as shown in Figure 5, the interpolation matches well with the

observed data when time varying model is used. Compared with Figure 4,

under the time varying models, the predictive intervals are usually narrower
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but are still able to cover most of the observed values. For NO and CO,

it is hard to make judgments due to the limited number of stations. As

a by-product of the time varying models, the predictive intervals are also

temporally varying since the prediction errors (8) vary with time. Under the

separable model (10), the widths of the predictive intervals are always fixed

over time, which may not be sensible in practice.

The left panel of Table 3 summarizes the mean squared prediction error

(MSPE) between the predicted values and the observed values at the extra

stations. The MSPE at station s0i is defined as

1

10

33∑

j=24

[
Xp (s0i, tj)− X̂p (s0i, tj)

]2

where X̂p (s0i, tj) denotes the predicted value of variable p at station s0i and

time tj using either the separable model (10) or the proposed time varying

model.

From the left panel of Table 3, it can be observed that the proposed time

varying model performs better in 6 out of 9 stations in terms of smaller values

of MSPE for NO2. The time varying models perform better in one and two

stations for NO and CO respectively. Across all the variables and sites, the

maximum reduction in MSPE is 79% and the median reduction is 17%.

5.4. Performance of Forecasting

As previously discussed in Section 2.3, it is possible to forecast the values

of X at some unobserved locations. Take NO2 as an example, ARMA models

were first fitted to each of the estimated spatial covariance parameter series

α̂k and σ̂2
k, k = 1, . . . , T . The fitted time series models for αk and σ2

k are
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Figure 4: Plots of observed, interpolated and forecast values of NO2 under the separable

model (10) at different sites. Refer to the text for details.
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Figure 5: Plots of observed, interpolated and forecast values of NO2 under the time varying

model at different sites. Refer to the text for details.
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Figure 6: Plots of observed, interpolated and forecast values of NO at different sites.

Results from the separable model (10) and time varying models are shown in the top and

bottom panels respectively. Refer to the text for details.
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Figure 7: Plots of observed, interpolated and forecast values of CO at different sites.

Results from the separable model (10) and time varying models are shown in the top and

bottom panels respectively. Refer to the text for details.
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Table 3: Mean squared prediction errors (MSPE) for interpolation from day 24 to 33 and

forecasting from day 62 to 66 under the separable model (10) and time varying models for

NO2, NO and CO at different sites. Bold entries indicate smaller MSPE.

Interpolation Forecasting

Variable Station Separable Time Varying Separable Time Varying

NO2

2123 0.1106 0.1583 1.1335 0.9660

2333 0.0553 0.0223 0.7765 0.7208

2373 0.1843 0.3788 1.1234 1.0696

2485 0.2440 0.1251 0.0706 0.0897

3101 1.6593 1.2997 2.0676 2.0072

3658 0.0828 0.6461 0.9241 0.8085

3683 1.0170 0.4880 1.6479 1.5811

3738 0.2356 0.1077 1.0972 0.9314

3742 0.3102 0.0658 0.5088 0.4665

NO

2333 0.2472 0.2128 0.2315 0.2287

2373 1.3075 2.2165 0.1246 0.1383

3658 0.2317 0.3034 0.0606 0.0621

CO

2485 0.1808 0.0848 0.2293 0.2401

3101 0.0639 0.1156 1.6949 1.5925

3683 1.1813 0.9803 4.1560 4.3041
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both MA(1). Then, the q-step ahead forecast can be done by first predicting

the values of spatial covariance parameters at time T + q, q ∈ Z+ and hence,

X̂p (s0i, T + q) can be computed using steps 1(a) to 3(a) as given in section

2.3. The same procedures were applied to NO and CO. As an illustration,

we performed forecasting from day 62 to 66, i.e., five-step ahead forecast

from 1 to 5 November, 2010. The right panel of Table 3 shows the mean

squared errors of the five-step ahead forecast using different models at the

extra stations. The plots of observed versus forecast values at different sites

can be found in Figures 4 to 7.

As naturally expected, the performances of forecasting for all models

and all variables are poorer than those of interpolation. As shown in Table

3, the MSPE for forecasting are usually larger than that of interpolation.

Nevertheless, comparing the performance of forecasting, the time varying

model produces smaller values of MSPE in general. Overall speaking, across

all variables and sites, the maximum reduction in MSPE is 15.1% and the

median reduction is 4.05%.

From Figures 4 to 7, it can be observed that the forecast values are usually

flat and are often biased from the observed values under the time varying

models. Yet, the situation is also observed under the separable model (10).

Combining both results of interpolation and forecasting, we have shown

that, at least in some cases, it is beneficial to allow the spatio-temporal

models to change with time and therefore the proposed time varying spatio-

temporal covariance model would be useful in practice. Although the time

varying model does not always provide a better fit, it is at least comparable

to the separable model (10). Therefore, the time varying model is worthwhile
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to be considered in practice.

6. Conclusion and Discussions

To summarize, we have introduced univariate and multivariate spatio-

temporal models that the spatial dependency structures are allowed to vary

over time. The models allow the covariance models and parameters to vary

with time, which relax the constant parameter assumption imposed on ordi-

nary spatio-temporal covariance models. The models were demonstrated to

be useful in practice through applying them to a set of air pollution data.

The proposed time varying models often show better performance in terms

of interpolation and forecast. Although the proposed method is not always

a superior one, it is worthy to be considered in practice as an alternative

model.

In Corollaries 1 and 4, the matrices S and D were restricted to be diag-

onal. It is noted that such a restriction reduces the flexibility of the models.

In light of Kleiber and Genton (2013), it is noted that S and D can be

replaced by U>SU and U>DU respectively for some unitary matrices U .

However, the inclusion of U may lead to a huge increase in the number of

parameters which is not desirable in most of the cases. Nevertheless, there

may appear some unitary matrices U with nice structures such that one can

strike a balance between model complexity and flexibility. Similarly, more

flexible multivariate structures are yet to be investigated. We leave these

problems for future research.
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