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Abstract—Superpixel over-segment image into meaningful
clusters so that pixels in each cluster belong to one object.
Many state-of-art superpixel algorithms have to make trade-
offs between different concerns. As a result, algorithms that
can produce good result in some situations fail in another. In
order to take advantage of different algorithms and at the same
time avoid their limitation, we propose a new fusion approach
based on an efficient lazy greedy optimization. It incorporates
two different superpixel algorithms as its ancestors and produces
a hybrid result. The result is then refined based on a novel
energy function that consists of two terms. The region term uses
histogram diffusion distance and enforces intra-region similarity
from an overall perspective; the boundary term models inter-
region dissimilarity from a local perspective. In experiments,
the result of proposed algorithm matches the best superpixel
algorithm and shows outstanding performance over its ancestor
algorithms in all the standard evaluation metrics.

I. INTRODUCTION

Superpixel algorithm clusters pixels into over-segmented
regions, which focuses on intra-region similarity. The goal of
superpixel is to generate over-segmented regions that adhere
well to image boundaries and have good compactness. Super-
pixel is a successful approach to compress the information. It
has become a basis for many computer vision tasks, such as
body model estimation [1] [2], segmentation [3] and image
labeling [4].

There is a large amount of approaches about generating
superpixel. Each method makes its own trade-offs. As a
result, different algorithms have different natural advantages
and inherent limitation. Broadly superpixel algorithms can be
categorized into three families, seed-based, graph-based and
grid-based. We will evaluate the advantage and disadvantage
of each family.

Seed-based family. The essential idea of seed-based super-
pixel is to grow superpixel from some pre-assigned centroid.
Since the initial centroid location is pre-defined, the structure
relationship between neighboring superpixels is naturally good,
few scatted tiny superpixel. Turbopixel [5] grows region using
geometric flow techniques. SLIC [6], one of he most famous
superpixel algorithms, adopts a k-means clustering approach.

Graph-based family. These algorithms take pixels as
vertex and the similarity between pixels as the edge weight.
The graph is then partitioned into several sub-graph to form
final superpixel. Efficient graph based method (FH) [7] merges
vertices in a dynamic programming manner such that each re-
gion is minimum spanning tree. Entropy rate superpixel (ERS)
[8] gradually adds edge between two vertices to maximize the
energy function that incorporates the entropy rate of the sub-
graph and uniform size balancing term.

Grid-based family. Michael Van den et al. [9] try another
way. They first segment an image in to uniformly distributed
square box and then the refine it by exchanging pixels on
the boundary between two superpixel region. The refinement
process is based on an energy function that encourages homo-
geneous color distribution and smooth superpixel boundary.

Fig. 1 shows superpixel results of representative algorithms
from three families. Graph-based algorithm depends on the
feature of local information. As a result, even if inconspicuous
object boundary can be segmented. However, graph-based
algorithm always produces irregular structure relationship be-
tween superpixels. See the FH result in Fig. 1.

Seed-based and grid-based algorithms start from an initial
state and continue refining the result.The advantage is that
initial state can form good structure relationship constraints
but some edges can not be segmented. In Fig. 1, there is no
way to segment the balcony pillars if there is only one seed
or grid placed in that image region.

Intuitively, if we can combine the advantages of graph-
based and seed-based method, we will get superpixels that
have good boundary adherence and also structure relationship.
In this paper, we proposed a new superpixel algorithm by
combining two former superpixel algorithm with a merging
process. The proposed hybrid superpixel successfully segments
balcony pillars in Fig. 1.

The paper is organized as follows. The preliminary knowl-
edge of merging process is introduced in Section II. The
algorithm and corresponding optimization is in Section III.
Section IV presents the performance comparison in benchmark
and practical use between proposed algorithm and the state-
of-art. Section V is the conclusion.

II. PRELIMINARY

A. Regions Adjacency Graph

The regions adjacency graph (RAG) uses region as graph
vertex. The edge represents the neighbor relationship of re-
gions [10]. Formally, let G = (V,E) be an undirected graph,
the vertices v ∈ V are the regions R ∈ RAG in the image. In
the following part, RAG vertices and image regions are used
interchangeably.

The edges e(vi, vj) ∈ E represent pairs of neighboring
region. It shows the location relationship between two regions.
Removing one edge in RAG represents merging two vertices
(regions) connected by this edge.

We adopt RAG to represent our image as it has some
interesting characteristic about the neighboring relationship
changes during the merging process. As shown in Fig. 2, after



(a) SLIC (b) FH (c) SEEDS (d) Hybrid

Fig. 1: Results of representative algorithm from three families: (a) SLIC [6] from seeds-based familiy;(b) FH [7] from graph-based
family; (c) SEEDS [9] from graph-based family; (d) Hybrid superpixel proposed in this paper.

(a) before merging vertex 2 and 3 (b) after merging vertex 2 and 3

Fig. 2: Simplification of RAG after merging two vertices

merging vertex 2 and 3, the original five edges are reduced
to three edges but the neighborhood relationship remains
consistent. To set theory models, this process using following
formula:

D = (A ∪B) \ C (1)

D denotes the edge set after merging. A and B are the edge
sets of the first vertex and the second vertex. C represents the
edges which connect the first vertex and second vertex.

B. Energy Function

The proposed algorithm merges the image regions by
following the Eq. (1), therefore, we determine the merging
order via the energy between vertices in RAG. The energy
is distributed in the edges of RAG. Each edge e(vi, vj) ∈ E
has a weight W (e), which is the dissimilarity between two
neighboring vertices vi and vj . We model weight W (e) from
two levels. The first term is region term R(e), which is based
on the color distribution of each region. From an overall
perspective, it describes the dissimilarity between regions.
The second term is boundary term B(e). It focuses on local
gradient change along the boundary between regions and
models the dissimilarity from a local perspective. The weight
value is the product of two terms:

W (e) = R(e)B(e) (2)

And the total energy of one RAG is:

H(E) =
∑
e∈E

W (e) (3)

Our goal is to maximize the energy function of RAG G =
(V,E) by merging a subset of vertices, while the resulting

RAG G′ = (V ′, E′) remains no more than N vertices, Eq. (4)
is the mathematical expression of two constraints:

H(E′) is maximized

|V ′| ≤ N (4)

Where |V ′| denotes the total number of vertices in the RAG.
This constraint enforces merging process to produce exactly
N superpixel.

C. Region Term

Region Term is used to describe the color dissimilarity of
each vertex in RAG. Comparing with other Distance methods,
such as L2 norm, use bin-to-bin manner are very sensitive
to histogram distortion, Histogram is an effective method
to capture information of local region. Thus, the similarity
between two regions is defined by histogram diffusion distance
[11]. It models the difference between two histogram as a
diffusion process. The histogram diffusion distance allows
cross-bin comparison and is robust to noise and distortion. To
the best of our knowledge, histogram diffusion distance has
never been used as metric in superpixel.

We exploit histogram diffusion distance K(h1, h2) to
define the similarity between two second-order superpixel
regions:

K(h1, h2) =

∫ t

0

|d(x, t)|dt (5)

d(x, t) = [h1(x)− h2(x)] ∗ φ(x, t) (6)

φ(x, t) =
1

t(2π)
1
2

exp(− x
2

2t2
) (7)

Where x is the RGB value of pixel, φ(x, t) is the Gaussian
filter, d(x, t) is the convolution of Gaussian filter and histogram
difference, which models the diffusion process as time t
increase. The histogram diffusion distance is the integration of
convolution result, where t is the upper bound of integration.

Considering two one-Dimension histogram h1, h2 and
their bin-to-bin distance d. As we can see in the Fig. 3,
bin-to-bin distance does not take histogram distribution into
consideration. However, during the diffusion process, the his-
togram distribution also plays essential roles. Fig. 3 shows the
diffusion process d(x, t) when the time t equals 2 and 8. We
can find the left bin of h3 is decrease to zero faster than right



bin of h3 since the left bin of h3 is only ∆ away from h1.
Consequently, |d12(x, t)| < |d13(x, t)| and it is reasonable that
K(h1, h2) < K(h1, h3).

(a) Bin-to-bin distance and diffusion process of d12

(b) Bin-to-bin distance and diffusion process of d13

Fig. 3: Different Bin-to-bin distance and its diffusion process

D. Boundary Term

Histogram is an effective method to capture the information
in the local region of image. However, histogram suffers from
the quantization effect [11].

We derive a new boundary term to counteract the quanti-
zation effect. Firstly in pixel level, we convert original image
into an undirected graph Gp = (Vp, Ep). Vertices represent the
pixels in the image and each edge has a weight, which is the
dissimilarity between neighboring vertex vpi

and vpj
(see Eq.

(8)).

w(ep) =w(vpi , vpj )

=
√

(r2vpi
− r2vpj ) + (g2vpi

− g2vpj
)

+(b2vpi
− b2vpj ) (8)

The RAG is partition of Vp into components such that
each RAG vertex R is one second-order superpixel region and
represents a sub-graph G′

p = (V ′
p , E

′
p). We define the intra-

difference of region R to be the average weight of the sub-
graph:

Intra(R) =

∑
e′p∈(E′

p)
w(e′p)

|E′
p|

(9)

where |E′
p| denotes the total number of edge in the sub-

graph G′
p = (V ′

p , E
′
p). We define the inter-difference between

two second-order superpixel region R1, R2 to be the average
weight along the boundary between R1, R2:

Inter(R1, R2) =

∑
vpi∈R1,vpj

∈R2
w(vpi , vpj )

|B(R1, R2)|
(10)

where B(R1, R2) represents boundary between R1, R2, that
is the set of edge w(vpi

, vpj
) crossing two superpixel region

R1, R2. Second-order superpixel regions segmented by sharp

(a) Original (b) First-order (c) Second-order (d) Final result

Fig. 4: The procedure of SLIC-FH hybrid algorithm: Process
(a) original image using SLIC to get (b) first-order superpixel;
Use FH to further split each first-order superpixel region
and result in (c) second-order superpixel; Merge second-order
superpixel to pre-defined number to get (d) final result.

change of color usually have large inter-difference. Then the
final boundary difference between R1, R2 is:

dif(R1, R2) =
2Inter(R1, R2)

Intra(R1) + Intra(R2)
(11)

III. HYBRID SUPERPIXEL ALGORITHM

Hybrid superpixel algorithm is a fusion framework that
incorporates any two different superpixel algorithms as its
ancestor and produces a hybrid result. The most interesting
part of hybrid superpixel is that it can keep the strength but
discard the inherent limitation of its ancestor. Fig. 4 shows
an overview of SLIC-FH Hybrid superpixel algorithm. The
final result is sensitive to image boundary and maintains good
structure relationship.

A. Algorithm

The image is first processed by SLIC, which is seed-based
method and produce good neighboring relationship. We call
the result first-order superpixel. Then we use the first-order
superpixel as mask and perform FH, graph-based method, in
each region of first order superpixel to get better boundary
adherence. The result is called second-order superpixel.

The second-order superpixel is converted into RAG. Each
graph vertex represents one second-order superpixel region.
Then vertices are merged until number of vertices reaches user-
defined number. Merging process is based on a novel energy
function that consists of two terms. The region term enforces
intra-region similarity from overall perspective while boundary
term models inter-region dissimilarity from local perspective.

Merging process is fast because number of second-order
superpixel has the same order of magnitude of user-specified
final superpixel. The final result is a RAG, in which each vertex
representing one superpixel region.

Algorithm 1 Hybrid Superpixel Segmentation

Input: An image I in RGB space.
Output: A RAG G represents the different regions of input

image.
Run SLIC superpixel algorithm to get I ′
Run FH superpixel algorithm to get I ′′
Get the RAG GI′′ of I ′′
Run Merging process on GI′′ to get G



B. Merging Process

The merging process changes the structure and edge weight
of RAG. It is computationally expensive to update all edges
weight after merging two vertices. However, a key observation
is that the edge weight can never decrease after merging two
vertices.

Proposition 1: Let h1, h2 and h3 denote the histogram of
three neighboring region R1, R2 and R3. After merging h1
and h2, the histogram diffusion distance will increase as the
following equation:

K(h1, h3) ≤ K(h1 + h2, h3) (12)

Proof: The 1-norm of a histogram is greater than or equal
to zero and then:

∵Merging process increases the dissimilarity
between adjacent vertices

∴ |h1 − h3| ≤ |h1 + h2 − h3|

∴
∫ t

0
|[h1−h3]∗φ(x, t)|dt ≤

∫ t

0
|[h1 +h2−h3]∗φ(x, t)|dt

∴ K(h1, h3) ≤ K(h1 + h2, h3)

Proposition 2: Boundary term remains nearly constant
during optimization.

Proof: There are two cases of boundary change:

1) vertex i and vertex j have no shared boundaries.The
boundary term of edge is not affected by the merging
process.

2) vertex i and vertex j will merge only if they
have similar histogram, which means Intra(vi) ≈
Intra(vj).. Assuming that it has a vertex k adjacent
to vj , after merging process, we get new vertex vij ,
It is easy to know taht the Inter(vj , vk) will keep
constant, and Intra(vij) ≈ Intra(vi) ≈ Intra(vj).
Therefore, dif(vij , vk) ≈ dif(vj , vk)

Proposition 3: The edge weight will not decrease during
the merging process.

By exploiting these observations, we can achieve an efficient
implementation, called lazy optimization. Supposing N super-
pixel need to be produced, we set max superpixel size to be
2 ∗ S/N , where S is the total pixel number in the image. A
pseudocode is given as follow:

The RAG initialization takes O(|V |) to scan all second-
order superpixels. The optimization algorithm loop O(|E|)
times to merge vertices connected by the RAG edge. In each
iteration, we find minimum edge using heap data structure.
Therefore, the complexity of the algorithm is O(|E| log |E|).
Since we only construct one hop edge in RAG, the complexity
is then O(|V | log |V |). |V | is not the number of pixel in image
but the number of second-order superpixel, which is the same
order of magnitude of final superpixel, usually 200 times less
than image pixel number in the experiment.

Algorithm 2 Merging Process

Input: An RAG GI′′ of second-order superpixel I ′′
Output: A RAG G represents the different regions of input

RAG.
Build min heap using RAG GI′′ edge weight
while vertex number n > preset number N do

if Edge in heap top is merged then
Pop heap
Remove the popped element

end if
Pop edge e(vi, vj) with minimum weight
if size(vi)+size(vj) < 2 ∗ S/N then

Merge two vertices by using Eq. (1)
Update weight and terms related to the new vertex
Update RAG GI′′ structure
Update the min heap

end if
end while

IV. COMPARISION

In this section, We present the comparison result on the
BSDS500 contour detection benchmark [12]. BSDS500 dataset
have 500 images and their ground truth segmentation. For
each image, we run different algorithms on 8 different scale
levels, from 50 to 400 superpixels and compute the average
performance over all images. We compare Hybrid superpixel
with other state-of-art superpixel approaches and use standard
metrics that are commonly used for evaluating the quality
of superpixels: under-segmentation error, boundary recall and
achievable segmentation accuracy. These metrics are exactly
used in [7] and [8].

We use the default parameter set in [6] and [7] in our pre-
processing phase. In the optimization part of hybrid superpixel
algorithm, we set histogram bin number to be 5 in each channel
when computing histogram diffusion distance as the region
term of edge weight. During merging, the max superpixel size
is set to be 2 ∗ S/N . As result, no superpixel will be larger
than this upper bound. All experiments are performed on a
four-core CPU (2.5 GHz Intel Core i7). We will analyze the
effect of these parameter in the latter.

A. Benchmark Test

In the first experiment, we compare our results with SLIC
[6], FH [7], ESR [8] and SEED [9] using the evaluation
metrics shown above. The result is shown in Fig. 5. The
hybrid outperforms its ancestor algorithm FH and SLIC in
under-segmentation error and achievable segmentation accu-
racy curve. With 200 superpixels, the under-segmentation error
of hybrid is only 0.11 while SLIC is 0.12 and FH is 0.21. In
achievable segmentation accuracy curve, hybrid is 0.93 while
SLIC is 0.92 and FH is 0.89. Hybrid also matches the boundary
recall of FH, ESR and SEEDS. When the amount of superpixel
is larger than 200, one can barely differentiate the performance
curves of Hybrid, SEEDS and ESR, where the latter two are
regarded as the best superpixel algorithms so far.

In the second experiment, we analyze the parameter effect.
The first one is max superpixel size which guides the merging
process (See Fig. 6) and the second is the bin number in



Fig. 5: Performance metrics: left: Boundary recall; middle: Under-segmentation error; right: achievable segmentation accuracy

Fig. 6: Effect of max superpixel size on the performance metrics

histogram diffusion Distance (See Fig. 7). Competitive results
are achieved within a wide range of parameter selection.

In the third experiment, we compare hybrid with SEEDS,
ERS, SLIC and FH visually. Several examples are shown in
Fig. 8. The image is segmented into 100 superpixel. Hybrid
combines the boundary adherence of FH and the regular
superpixel shape of SLIC. As result, its performance matches
the best superpixel algorithms, ESR and SEEDS.

In Fig. 9, we further compare the details of hybrid and
SLIC and show the reason that hybrid outperform SLIC in
all three metric. SLIC fails to segment the cross on the church
because of its inherent limitation, only one seed planted in that
area. Hybrid does not have this limitation and successfully
segment the cross. It is the same case with statue head
segmentation.

The proposed algorithm has the same run-time with the
state-of art method. The hybrid superpixel takes 0.58 seconds.
For the ancestor algorithm of hybrid superpixel, SLIC runs
0.28 seconds and FH runs 0.21 seconds. The hybrid superpixel
adds only small overhead to its ancestor algorithm but bring
huge performance increase. Hybrid superpixel is also faster
than entropy rate superpixel (1.3 seconds). The SEEDS is still
the fast algorithm (0.12 seconds) however hybrid superpixel

can also achieve this level of speed if it chooses SEEDS as its
ancestor algorithm.

B. Application of Hybrid Superpixel

Superpixel can speed up many existing computer vision
task, and even improve its result in some case [6]. We consider
a typical vision task – multi-object class recognition in this
paper.

We perform our task in MSRC dataset [13] which contains
21 different objects, and adopt the object class recognizing tool
in STAIR [14]. It extracts features for each region class. Then,
boosted classifiers are learned using these features. Finally, a
Conditional Random Field (CRF) model is learned using the
output of boosted classifier as its features. We also segment
each image into about 200 superpixels as the input of classifier.
As shown in Table. I. Hybrid superpixel has increased the
accuracy of classification successfully.

TABLE I: Accuracy of multi-object class recognition for
different superpixel methods (adapted from [15]).

Algorithm FH(GS04 in [15]) SLIC Hybrid
Pixelwise accuracy 74.6% 76.9% 80.1%



Fig. 7: Effect of bin number on the performance metrics

Fig. 8: Superpixel segmentation result. From left to right,
SEEDS, Entropy, SLIC, FH and proposed hybrid

(a) (b) (c) (d)

Fig. 9: SLIC and Hybrid. In each pair SLIC is on the above
and Hybrid on the bottom

V. CONCLUSION

In this paper, we propose a novel fusion algorithm, called
Hybrid superpixel. It has the flexibility to incorporate any
two different superpixels to get better result. We make further
contribution in following aspects:

• We present a novel energy function on Regions Adja-
cency Graph (RAG) which consists of region term and
boundary term for generating superpixels with good
boundary adherence and structure relationship.

• We conduct the evaluation in our novel algorithm
and the state-of-art, Hybrid approach shows better
performance than its ancestor algorithms in all stan-
dard evaluation metrics and the one of the practical
application.
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