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Gurdip S. Bakshi 
University of New Orleans 

Zhiwu Chen 
University of Wisconsin-Madison 

Baby Boom, Population Aging, 
and Capital Markets* 

I. Introduction 

Demographic changes can affect economic dy- 
namics in various ways. While economists have 
studied their impact on aggregate consumption, 
savings, labor supply, and social programs,1 little 
work has been done on whether and how demo- 
graphic fluctuations influence the capital mar- 
kets. Casual economics suggests that if demo- 
graphic changes affect such macroeconomic 
variables, they can also, directly or indirectly, 
cause price fluctuations in the capital markets. 
Thus, it is important to understand how, and to 
what extent, stock price movements are attribut- 
able to variations in the population age structure, 
particularly given the fact that the fraction of per- 
sons 65 and older in the U.S. population is ex- 

* This article is based on chapter 3 of Zhiwu Chen's disser- 
tation written at Yale University. He is especially grateful to 
his dissertation committee members, Professors Stephen 
Ross (chairman), Jonathan Ingersoll, and Rick Antle, for 
their advice and suggestions. The authors have benefited 
from comments by William Brock, Werner De Bondt, Doug- 
las Diamond (editor), William Goetzmann, Stephen Heston, 
David Mauer, Alex Triantis, Ken West, and particularly Rob- 
ert Shiller. The referee's comments and suggestions helped 
improve the article substantially. We would also like to thank 
the seminar participants at the Universities of Michigan and 
Wisconsin. Zhiwu Chen acknowledges research funding from 
the University of Wisconsin Graduate School. All remaining 
errors are ours alone. 

This article tests how 
demographic changes 
affect capital markets. 
The life-cycle invest- 
ment hypothesis states 
that at an early stage 
an investor allocates 
more wealth in housing 
and then switches to 
financial assets at a 
later stage. Conse- 
quently, the stock mar- 
ket should rise but the 
housing market should 
decline with the aver- 
age age, a prediction 
supported in the post- 
1945 period. The sec- 
ond hypothesis that an 
investor's risk aversion 
increases with age is 
tested by estimating 
the resulting Euler 
equation and supported 
in the post-1945 period. 
A rise in average age is 
found to predict a rise 
in risk premiums. 

(Journal of Business, 1994, vol. 67, no. 2) 
? 1994 by The University of Chicago. All rights reserved. 
0021-9398/94/6702-0001$01 .50 
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1. See Clark, Kreps, and Spengler (1978); Hurd (1989); 
and Lumsdaine and Wise (1990) for surveys and references 
on the economics of aging. 
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pected to rise from its current level of about one-fifth to as high as 
two-fifths by the year 2040 (Lumsdaine and Wise 1990). 

This topic is important also because older age groups are major 
market participants. Indeed, Sheshinski and Tanzi (1989) find that in 
1985 the group of people aged 65 and older received about 53% of all 
interest, dividend, and estate incomes in the United States and close 
to one-third of all capital gains, as reported to the Internal Revenue 
Service. Prior to 1985, the percentage of total interest and dividend 
incomes received by this age group had steadily risen (44.1% in 1970, 
44.3% in 1974, 46.6% in 1978, 47.0% in 1980, and 50.9% in 1982). The 
fraction of persons 65 and older in the U.S. population was rising at 
the same time. It is quite clear that an increasingly larger portion of 
the nation's wealth is held by this older age group. Therefore, if the 
investment behavior of the older group is different from that of the 
younger group, changes in the age distribution will have a significant 
impact on capital market prices. 

This article explores the relations between demographic changes and 
capital market prices. Specifically, we examine two hypotheses: the 
life-cycle investment hypothesis, and the life-cycle risk aversion hy- 
pothesis. The first hypothesis essentially states that at different stages 
of an investor's life cycle, the investment needs in terms of types of 
assets to hold are different. When investors are in their 20s and 30s, 
housing is a desirable investment. Thus, at this family-building stage, 
one will probably allocate a higher proportion of wealth to housing 
and other durables. However, as the investor grows older, the demand 
for housing will stabilize or decrease and the demand for financial 
assets will rise. This is the case since, as one grows older, the number 
of remaining paychecks (human capital) declines and the need to invest 
for retirement increases. This need is made even stronger by the ever- 
increasing life expectancy. If this hypothesis is also true in a time- 
series sense, its implications are immediate: as the population ages, 
the aggregate demand (as a proportion of aggregate wealth) for housing 
decreases, which, ceteris paribus, depresses housing prices, while 
that for financial investments increases, which drives up financial 
prices. 

The life-cycle risk aversion hypothesis asserts that an investor's 
relative risk aversion increases with age. If this is true (both cross- 
sectionally for all investors and time sequentially for each investor), 
then equilibrium market risk premiums should be correlated with de- 
mographic changes. In particular, market risk premiums should be 
positively correlated with changes in the age of the "average" or "rep- 
resentative" investor. 

There are other ways that demographic changes can influence capital 
markets. For instance, an aging population may mean higher pressure 
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on Social Security, Medicare, and other social programs.2 To meet 
such increased obligations, the federal, state, and local governments 
have to either raise more taxes or issue more debt, and business firms 
have to put aside more revenues to fulfill pension obligations instead 
of undertaking more capital investments. The overall effect is that 
there will be more people who draw down rather than build up their 
assets, which reduces the aggregate supply of capital and raises the 
cost of capital for productive investments. 

In this article, we focus on the empirical implications of the two 
hypotheses. For this purpose, a demographic variable is necessary that 
reflects changes in the entire age distribution (not just changes in one 
or a few age groups). Since average age appears to satisfy this crite- 
rion, we use the average age of the U.S. population of persons 20 and 
older as a measurement of the age distribution, with the understanding 
that persons younger than 20 may not play much of a role in economic 
decision making. We treat average age as the representative investor's 
age in a representative-agent pricing model. In this context, changes 
in average age reflect changes in the population age distribution. From 
now on, we mean "a rising average age" by "an aging population." 
In other words, the fraction of persons 65 and older can increase, but 
this does not necessarily mean "the population is aging" because the 
fraction of young persons may increase at the same time.3 

We start with an informal examination of the life-cycle investment 
hypothesis in Section II. This part of the analysis is based on the 
time-series paths of the average age, the real Standard and Poor's 
(S&P) 500 index (indicator of stock market price level), and the real 
price of housing. It turns out that the post-1945 U.S. economy was 
particularly supportive of the hypothesis: when the population aged, 
housing prices went down and stock prices went up, and the reverse 
is also true. We attribute this finding to the joint workings of the baby 
boom and the increasing life expectancy. Our reasoning is as follows. 
While the fraction of persons 65 and older was steadily rising from 
1900 to 1990 (due to the increasing life expectancy), there does not 
appear to be a clear relation between the average age and the stock 
market price until about 1945 when the baby boom started. From 1945 
to 1965, with the baby boom children growing up, parents had to invest 

2. To get a sense of the relative importance of Social Security obligations, Feldstein 
(1978) estimated that in 1955, Social Security "wealth" was 88% of the U.S. GNP. It 
rose to 133% of GNP in 1965; by 1977, it was as high as 200% of GNP. 

3. Note that average age is related to, but different from, life expectancy. The latter 
reflects the expected remaining lifetime for an age group, while the former is an aggregate 
measure of the current age distribution. See Sec. II for further discussion. We would 
like to thank the referee for pointing out the connection, and the distinction, between 
the two variables. 
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for their children's education, which boosted financial market prices 
and depressed housing prices. In the period 1965-80, the baby boom- 
ers started to build their own families and invested heavily in housing 
and less in financial assets. Thus, during this time, stock prices were 
declining and housing prices were rising. In the 1980s, the baby boom- 
ers entered their late 30s and early 40s and began to invest for both 
their own children's education and their retirement, while, at the same 
time, the increasing fraction of persons 65 and older also generated a 
higher demand for financial investments. The result is that stock prices 
were going up and the real price of housing was going down in the 
1980s. 

To examine the implications of the life-cycle risk aversion hypothe- 
sis, we consider in Section III a representative-agent model in which 
the representative agent has an age given by the average age of the 
population. Since the average age fluctuates randomly, so does his 
age. This abstraction allows us to see the possible relations between 
demographic changes and asset prices in a simple, straightforward 
way. As a result, the representative agent's intertemporal marginal 
rate of substitution (IMRS) in the Euler equation becomes a function 
of both aggregate consumption and average age. The Euler equation 
is then tested using the Hansen (1982) generalized method of moments 
(GMM). We find that for the period 1926-90, the Euler equation is not 
rejected, with the coefficient on average age significantly consistent 
with the predictions of the life-cycle risk aversion hypothesis. 

Based on the Euler equation, we follow the standard steps to arrive 
at a pricing equation in which the risk premium for an asset is deter- 
mined by both consumption and demographic risks. This relation sug- 
gests that we can use information concerning aggregate consumption 
and demographic fluctuations to forecast future risk premiums. We 
conduct this forecasting exercise by including, in addition to past con- 
sumption growth and change in average age, dividend yields as a third 
predicting variable, since some existing studies have demonstrated the 
ability of dividend yields to predict future returns (see, e.g., Campbell 
and Shiller 1988a, 1988b; and Fama and French 1988b, 1989). The 
results suggest a role for the life-cycle variables for the years from 
1900 to 1990: both the change-in-average-age and dividend yield vari- 
ables are statistically significant predictors of future stock returns and 
risk premiums. In particular, the coefficient on the change-in-average- 
age variable is persistently positive in the forecasting equations, mean- 
ing that an increase in the average age predicts an increase in the risk 
premium. 

The article is organized as follows. Section II discusses the life-cycle 
investment hypothesis. Section III introduces a pricing model based 
on the life-cycle risk aversion hypothesis. In Section IV, we describe 
the data used in our empirical work. Section V presents the results 

This content downloaded from 147.8.230.147 on Mon, 11 Jan 2016 08:07:53 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Baby Boom 169 

from testing the Euler equation via the GMM. In Section VI we test 
the Euler equation using the Hansen-Jagannathan (1991) bounds and 
find that it holds only with high parameter values. Section VII reports 
the results from the forecasting exercise. Concluding remarks are given 
in Section VIII. 

II. The Life-Cycle Investment Hypothesis 

A. The Hypothesis 

The life-cycle theory of savings, pioneered by Modigliani and Brum- 
berg (1954), asserts that the objective of a consumer's consumption- 
saving decision is to smooth consumption over time so as to maximize 
his overall lifetime utility. Consequently, his savings rate should follow 
a life-cycle pattern. Later empirical studies in the macroeconomics 
literature have found that a typical life-cycle savings pattern is "hump- 
shaped," with an investor's wealth holdings generally increasing with 
age (e.g., Modigliani 1986). However, this literature on life-cycle sav- 
ings does not address how the composition of an investor's savings 
portfolio may change over the life cycle. 

We hypothesize that when allocating savings between financial 
assets and housing, an investor will put relatively more savings in 
housing during the first part of the life cycle. At a young and family- 
building age, the investor spends most of his limited savings on a 
house. However, as he grows older, he has probably acquired suffi- 
cient housing, and at the same time the urgency to cope with the 
uncertainty of remaining lifetime income becomes more prominent. 
This generates a stronger need to invest for retirement, which in turn 
requires the aging investor to put an increasing proportion of savings 
into financial assets. In particular, due to medical advances, life expec- 
tancy has been increasing steadily, which makes it more necessary 
than ever to invest for retirement. Thus, the demand for financial 
assets increases with age while that for housing decreases. 

At a cross-sectional level, there is some existing empirical evidence 
supporting the life-cycle investment hypothesis. Most notably, based 
on the 1970 and 1980 U.S. census data, Mankiw and Weil (1989) report 
that there is a jump in the demand for housing between the ages of 20 
and 30, whereas after the age 40 the demand appears to drop by about 
1% per year. In the 1962 consumer finance survey, Bossons (1973) 
finds that the average percentage of total wealth investeu in housing 
and other durables was 50.2% for the age group 25-34, 51.1% for the 
age group 35-44, 46.7% for the age group 45-54, 35.8% for the age 
group 55-64, and 31.0% for persons 65 and older. These findings are 
consistent with our hypothesis, at least in a cross-sectional sense. 
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B. Time-Series Evidence 

Suppose that the life-cycle investment hypothesis also holds time se- 
quentially. Then an aging population will imply a declining housing 
price and a rising stock market price. We choose the S&P 500 index 
as an indicator for stock market prices and follow Mankiw and Weil 
(1989) by using the residential investment deflator relative to the gross 
national product (GNP) deflator as the housing price indicator. Our 
purpose is to compare the real S&P 500 index and the real price of 
housing with the average age of the population of persons 20 and 
older.4 Since we do not expect demographic changes to affect high- 
frequency price changes, we concentrate on annual observations. Fig- 
ure 1 displays the two time series of average age and real S&P 500 
index level from 1900 to 1990. Since these two series did not appear 
to move together before 1945, we redisplay their post-1945 behavior 
in figure 2 for a better visual effect. Figure 3 shows the time series of 
real housing price together with that of the average age for the post- 
1945 period.5 Figures 4, 5, and 6 present, respectively, life expec- 
tancy,6 the fraction of persons 65 and older, and the number of live 
births in the United States. For more detailed descriptions of the data 
sources, see Section IV. 

For the discussion, we divide the entire period into four subperiods: 
1900-1945, 1946-66, 1967-80, and 1981-90. Each subperiod exhibits 
certain unique demographic features. Consider the pre-1945 period, 
which experienced a stable birth process, a rising life expectancy, and 

4. In Mankiw and Weil (1989), they compare the real price of housing with a "demo- 
graphic housing demand variable." More specifically, they first obtain from the 1970 
census data the age structure of housing demand, denoted by the coefficients {bo, 
bl, . . ., bgg}, where ba indicates the amount of housing demanded by a person of age 
a. Suppose the population size is I. Then, their demographic housing demand variable 
is defined as 

I I I 

D-bo * DUMMYOi + b, * DUMMYli + + bgg * DUMMY99i, 
i=1 i=1 i=1 

where DUMMYOi = 1 if investor i is of age 0, DUMMY1i = 1 if investor i is of age 1, 
and so on; that is, for each investor, the dummy variables are zero except for one of 
them. Clearly, this housing demand variable can be viewed as a "generalized weighted 
average age" of the population. (Divide each term by the population size I and treat 
each ba as an "age.") In our case, we use the simple average age of the population as 
a proxy for the unobserved aggregate housing demand variable. 

5. We could not obtain the real housing prices for the years before 1946. 
6. For the years 1900-1954, we could obtain the life expectancy data only for aggre- 

gate age groups, such as the age group of ages 65 and over. However, for the period 
1955-90, we could obtain data only for groups of each age, such as the group of age 60. 
Without knowing the exact way the average life expectancy is calculated for each aggre- 
gate age group, we chose to report in fig. 4 the life expectancy path from 1955 to 1990 
for the group of age 60. Though not reported, the life expectancy path for the years 
1900-1954 also increased, as demonstrated in the data (not shown here) for the various 
aggregate age groups. 
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2.5-' 

-1.5- -0.5- ~~~~~~~~~Real S&P 500 Index 

| Average Age 

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 
Time 

FIG. 1.-Real S&P 500 index and average age. "Average Age" equals the 
average age of the population 20 years and over minus 41.50 and divided by 
1.50. Real S&P 500 index level is the January value of the nominal index 
divided by the January producer price index. Source: Shiller (1989) and Barsky 
and DeLong (1990). 

consequently a rising average age. For the years between 1900 and 
1920, the real S&P 500 level and the average age do not seem to 
move together, and from 1920 to 1945 there is a slight, but identifiable, 
co-moving trend. That is, even though life expectancy was increasing, 
this subperiod was not accompanied by a rising stock market, at least 
for the years 1900-1920. As we do not have the real housing price for 
the pre-1945 years, we cannot say much about the possible relation 
between the average age and the real price of housing for this period. 

From 1946 to 1966, both life expectancy and the fraction of persons 
65 and older were rising (figs. 4 and 5), while the fraction of persons 
in the age groups 20-25 and 26-30 was stable.7 As a result, the average 
age was increasing as was the stock market (fig. 2). At the same time, 
the real price of housing was declining (fig. 3). This is consistent with 
the predictions of the life-cycle investment hypothesis. For this baby 
boom period (fig. 6), there is another reason that the stock market 
should be rising. Parents had to invest for the education of their baby 
boom children, which increased the demand for financial assets. 

7. As we focus on the population of persons 20 and older, the baby boomers are not 
in our sample yet for this subperiod. 
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3 

2.5- Average Age 

2- 

1.5- 

46 50 54 58 62 66 70 74 78 82 86 6 90 
Time 

FIG. 2.-Real S&P 500 index and average age. "Average Age" equals the 
average age of the population 20 years and over minus 41.50 and divided by 
1.50. Real S&P 500 index level is the January value of the nominal index 
divided by the January producer price index. Source: Shiller (1989) and Barsky 
and DeLong (1990). 

For the next subperiod 1966-80, the baby boomers entered our sam- 
ple population and started building families. Even though both life 
expectancy and the fraction of persons 65 and older were still increas- 
ing during this period, the sudden entry of the baby boomers into the 
20-35 age group marked a dramatic change in the demographic struc- 
ture. In particular, their impact on the housing and the stock markets 
more than offset the impact caused by the higher fraction of persons 
65 and older. While the growing elderly population led to a drop in 
housing demand, the much larger increase in the population of ages 
20-35 generated a rise in housing demand that was much higher than 
the drop induced by the growing elderly population. This net increase 
in housing demand raised the price of housing for this subperiod. Fig- 
ure 3 confirms this prediction of the life-cycle investment hypothesis. 
In contrast, as figure 2 shows, the stock market was rising in this 
subperiod, which is again consistent with our hypothesis. 

During the last subperiod 1981-90, the baby boomers joined the 
35-45 age group, and those who were born in the baby bust years 
(fig. 6) began to enter the 20-30 age group. This subperiod can be 
characterized as follows. First, the baby boomers started to invest for 
both their children's education and their own retirement, and their 
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0.05- 
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-0.05- 

-0.15- / | Real Housing Price 

-0.2- 

-0.25- Average Age 

-0.3- , I...................... 
48 54 60 66 72 78 84 90 

Time 

FIG. 3.-Real housing price and average age. "Average Age" equals the 
average age of the U.S. population 20 years and over minus 44.50 and divided 
by 5.00. Real housing price is the residential investment deflator divided by 
the gross national product deflator minus 0.96. Source: CITIBASE (1992). 

20.5- 
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19.5- 

19- 

18.5- 

18- 

17.5 ^ i |*Life Expectancy at Age 60 

17 
55 60 65 io 75 80 85 90 

Time 

FIG. 4.-Life expectancy at age 60. Source: Bureau of the Census (various 
years). 
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0.18- 

0.16f 

0.14- 

0.12- 

0.1 

0.08_ Fraction of Persons 65 and Older 

0.0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 
Time 

FIG. 5.-Fraction of persons 65 and older. This is the fraction of persons 
65 and older in the U.S. population of ages 20 years and over. 

4500, 
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3500- 

3000 _ 

2500- _ _i_\ 
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9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 

Time 

FIG. 6.-Number of live births in the United States. Source: Bureau of the 
Census (1975). 
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demand for housing began to stabilize. Second, the large drop in the 
population of ages 20-30 (due to the baby bust) generated a corre- 
spondingly lower demand for new housing, but the impact on the de- 
mand for financial investments was not as significant. Finally, the con- 
tinued increase in the fraction of persons 65 and older (fig. 5) further 
reduced the demand for housing and led to a higher demand for stocks 
and other financial investments. Thus, the overall effect of the demo- 
graphic changes in this subperiod was that the aggregate demand for 
housing gradually declined and the aggregate demand for financial 
investments rose. This implies that the stock market price should 
have increased and the price of housing should have decreased. This 
is how the two markets actually behaved in the 1980s, as seen in figures 
2 and 3. 

In summary, we demonstrated that the post-1945 period is remark- 
ably supportive of the life-cycle investment hypothesis. An aging popu- 
lation, as measured by the average age, implies rising stock market 
prices and declining housing prices. One might argue that the capital 
market fluctuations in the entire period were unrelated to demographic 
changes and that they were caused by other economic factors such as 
productivity and aggregate savings. However, if this were true, we 
should have observed co-moving housing and stock prices in figures 2 
and 3, because changes in aggregate savings or productivity should 
then have had the same effect on the supply of capital in both the 
stock and the housing markets. No matter how the age distribution 
changed, stock market and housing prices should have moved more 
or less in the same direction. But, this is not what was observed. 

It is worth mentioning that the increased life expectancy is the driv- 
ing force behind the increased fraction of persons 65 and older. Over 
the years, this factor has played a crucial role in increasing the amount 
of financial investments demanded by each older age group. However, 
life expectancy alone cannot be used as an aggregate variable to ex- 
plain the observed fluctuations in housing and stock market prices in 
figures 2 and 3, because, while it can indicate how much more financial 
investment each individual age group may demand, it does not capture 
the fluctuations in the entire age distribution and hence it cannot be 
utilized to fully reflect changes in aggregate asset demand. As dis- 
cussed above, the sudden entry of a large cohort into the population 
may more than offset the effect of an increase in life expectancy. In 
contrast, the average age variable captures most structural changes in 
the population age composition, including an increase in life expec- 
tancy, and, thus, fluctuations in aggregate asset demand. 

III. Population Aging and Asset Price Processes 

We now examine the pricing implications of the life-cycle risk aversion 
hypothesis. Following Lucas (1978) and Cox, Ingersoll, and Ross 
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(1985), we consider a multiperiod economy and assume the existence 
of a representative investor. In particular, the representative investor 
has an age given by the average age of the population. This assumption 
simplifies the theoretical discussion and draws more attention to the 
empirical implications examined in later sections. 

A. The Life-Cycle Risk Aversion Hypothesis 
We hypothesize that an investor's relative risk aversion increases with 
age. This hypothesis can be justified from different perspectives. For 
example, we can think of an investor's human capital as an approxi- 
mately decreasing function of age: when one gets older, the number 
of remaining paychecks declines. If it is also true that relative risk 
aversion decreases in human capital, then the former becomes an in- 
creasing function of age. Intuitively, with fewer paychecks in the fu- 
ture, one may be less willing to take on a lot of financial risk since 
there will be fewer opportunities to use labor income to cover potential 
losses. In addition, as life expectancy continues increasing and one's 
remaining lifetime becomes more uncertain, a typical investor cannot 
afford to have his risk aversion decreasing with age. This view is also 
long held by psychologists. For instance, Botwinick (1978) states: 
"Both older men and women seemed to be especially cautious in deci- 
sions involving financial matters. Not surprisingly, perhaps, for them 
the lure of substantial financial gains was not worth the possible loss 
of money-in-hand" (pp. 129-30). Among other arguments, Rubin and 
Paul (1979) use an evolutionary model to show that the young are more 
willing to take risk than the old. Brown (1990) demonstrates that in 
the presence of illiquid assets, the middle-aged will be endogenously 
less risk averse than the retired. 

At a cross-sectional level, there is strong empirical evidence that 
supports our hypothesis. Based on the 1962 Survey of Consumer Fi- 
nances in the United States, Bossons (1973) finds that for all individu- 
als in different wealth classes, the average percentage of wealth in- 
vested in cash and bonds was 4.6% for the age group 25-34, 7.0% for 
the age group 35-44, 8.6% for the age group 45-54, 12.9% for the age 
group 55-64, and 17.6% for persons 65 and older. (See table V-7 of 
Bossons 1973). In a study on the 1953 Survey of Consumer Finances, 
Lampman (1962) uncovers a similar pattern: if we take the wealth class 
of $200,000-$300,000 as an example, the average percentage of money 
in cash and bonds was 11.4% for the age group 30-40, 15.3% for the 
age group 55-60, and 20.7% for persons of ages 75-80. To quote an- 
other piece of evidence, the surveyed asset holdings of Canadian 
households lead Morin and Suarez (1983) to conclude that the "in- 
vestor's life-cycle plays a prominent role in portfolio selection behav- 
ior, with relative risk aversion increasing uniformly with age" (p. 
1201). 
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B. The Euler Equation 

We now begin to build a discrete-time model in which the representa- 
tive investor makes his consumption-portfolio decisions from time 0 
to T, at time intervals of length At. Assume for simplicity that there 
are N + 1 traded securities, one risk-free (the 0th asset) and the others 
risky. The risk-free asset has a constant return ro, and the price of the 
nth risky asset at time t is Pn, t. Since each individual investor's utility 
of consumption is a function of his age, the representative investor's 
utility of consumption depends on the average age of the population 
and is given by u(Ct, At), if his consumption flow and average age 
are, respectively, Ct and At at t, where u(, ) is assumed to be twice 
continuously differentiable in both arguments and strictly increasing 
and concave in consumption. With initial endowment WO, the repre- 
sentative investor solves at each decision time t 

J(Wt, At, t) max u(Ct, At) + e-KAtEt[J(Wt+At, At+At, t + At)], (1) 
ct,Ott 

subject to 

W+t= Wt[I + r0At + >~an,( t + I - 1 roAt) C , At, (2) 

where J(, At, t) is, given age At, the indirect utility of wealth; xn, t 

is the fraction of wealth invested in the nth risky asset from time t to 
t + At; Et(-) is the expectation operator conditional on time t informa- 
tion; and K iS the time preference parameter of the investor. 

This is a standard problem whose first-order condition yields the 
following Euler equation: 

E [e-K^' c( '(C' A')^ ']= 1 foreachn, (3) 

where uc(,) stands for the partial derivative with respect to consump- 
tion C. Note that when the population age distribution is constant over 
time, it will be true that At = At+ At for any time t and the intertemporal 
marginal rate of substitution in consumption (IMRS) will be solely 
determined by the consumption growth process. This is the case that 
is assumed and studied by the existing literature on consumption-based 
asset pricing. However, in an economy with a fluctuating age structure, 
the IMRS will depend on both the aggregate consumption and the 
demographic processes. 

To test the above Euler equation and the life-cycle risk aversion 
hypothesis, we need to specify a functional form for u( , ). In the 
existing literature on asset pricing, it is common to assume a power 
utility function, partly because it offers mathematical convenience and 
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makes interpretations intuitive. We follow this tradition and adjust the 
relative risk aversion coefficient in the power utility function to reflect 
our hypothesis. That is, the following utility function is assumed for 
the representative investor: 

Cl -(+X-At) 

u(Ct,At), A,))4 

of which the Arrow-Pratt relative risk aversion is given by -y + X At. 
In other words, the representative investor's relative risk aversion is 
linear in average age. This choice is admittedly ad hoc, but it serves 
as a convenient first-order approximation of our hypothesis, and it is 
also consistent with the findings by, among others, Morin and Suarez 
(1983). According to the life-cycle risk aversion hypothesis, it should 
hold that A > 0, which is a testable restriction. Substituting the utility 
function in (4) into (3) yields 

- -( + A *A, , p - 

E[e-KAt Cn(~xt+t f,t+At]=1 (5) Et C - (-y+C*At) p =( 

which forms the basis for some of our empirical tests in the later 
sections. 

Testing the various versions of the Euler equation has been a focal 
point in the empirical asset pricing literature. For example, Hansen 
and Singleton (1982) test a version of equation (5) with A = 0 and 
find evidence unsupportive of the standard consumption-based pricing 
theory.8 In this article, we seek to address whether change in risk 
aversion induced by demographic changes is a significant factor in 
determining asset returns. 

C. The Equilibrium Asset Price Process 

This subsection provides a suggestive basis for the forecasting exercise 
in the later sections. For this purpose, we take the discrete-time model 
to its continuous-time limit. As is usually the case, using a continuous- 
time framework improves clarity and technical simplicity. 

Note that when the nth asset is substituted by the risk-free asset, 
equation (3) still holds. Subtracting the corresponding equation for the 
risk-free asset from (3) gives 

Eu{uc(Ct+At tAt). [t+At - (1 + roAt)]} =0. (6) 
P t 

8. For tests of other formulations of the Euler equation, see, among many others, 
Epstein and Zin (1991); Ferson and Constantinides (1991); Hansen and Jagannathan 
(1991); and Ferson and Harvey (1992). 
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As is standard in the literature, assume that the price process {Pt,: t E 
[0, oo)} and the equilibrium consumption process are determined ac- 
cording to, respectively, 

Pn,t+At Pn,t 
= 1n,tAt + (r,tn V for eachasset n, 

and 

Ct+A, Ct= A t + N/A--t, 
t 

where Xn, t and Xct are unit normal random variables and the other 
parameters are interpreted in the usual way. 

In addition, we need to specify the law of motion for the average 
age process. To do this, observe that fluctuations in the population 
age structure are generally due to such random events as births, 
deaths, and immigration. Let us concentrate on the effect of random 
deaths. Assume that at time t, any investor i with age A' will survive 
the next time interval (t, t + At) with probability 0(A') At, where 
O(Ai) is the expected number of survival events per unit of time for 
investors of age Ai. On death, the investor is replaced by another 
(newly born heir) of age 0, which results in a decrease in age of A'. 
This is essentially how a family is continued or how an investor lives 
infinitely. Otherwise, if the investor survives, his age increases by At. 
Survival is independent across investors and across time.9 In Chen 
(1990), it is shown that when the survival process for each investor 
follows such a Poisson process, the central limit theorem implies that 
for a large population, its average age process is approximately gov- 
erned by the following difference equation: 

At+ At -At 
=_' 

tla, t 'At i\t + 
(Ja,t 'At XA t (7) 

where la, t and 9a,t, which can be functions of At, are, respectively, 
the conditional expected value and standard deviation of change in 
average age per unit time, and XA,t is a unit normal random variable. 
In reality, we expect ra, to be small. However, this does not mean 
that demographic risk cannot have a significant impact on asset prices. 

Having specified the stochastic processes for the economic vari- 
ables, we can take At -O 0 in (6) and rely on Ito's lemma. After simpli- 
fication by using the standard steps, equation (6) becomes 

n,t rO = 1C,t (nc, t + %, t 0*na,t' (8) 

9. It is standard to model the survival process by a Poisson process. See, e.g., Con- 
stantinides and Duffie (1992). Implicit in the above assumption is also that the population 
size is stable over time, and only the age distribution fluctuates. This can be easily 
relaxed by allowing random births, but the basic conclusion will not be affected. 
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where 

C,ucc A,U CA 
TIC, t- A, t UC 

1 'dPn, t dCt\d1n(dP dA \ 
nc, t dt ' 

t( p ct 
na,t t % ?VtX Pf" A,,1' 

with ucc and UcA being second-order partial derivatives and covt(,) 
being the covariance operator conditional on time t information. Thus, 
when the age structure fluctuates stochastically, the conditionally ex- 
pected risk premium will be determined by its covariation with two 
risk factors: the consumption risk and the demographic risk. Clearly, 
the Breeden (1979) consumption-based capital asset pricing model 
(CAPM) obtains when the age distribution does not change stochas- 
tically. 

To express (8) in a more useful form, assume, as in Breeden (1979), 
that there exist two portfolios, (xc and cLa, that, respectively, mimic 
aggregate consumption growth and percentage change in average age 
perfectly. Substitute the two portfolios separately for asset n in (8) and 
solve the resulting two simultaneous equations for q C, t and TA, t' which 
are then substituted back into equation (8). The final version of the 
equilibrium expected excess return for asset n is given as 

[In,-t rO 03nc,t GLc,t rO) + Ina,t (IJGa,t r0) (9) 

where 
2 
a, t nc,t - ca,tcna,t 

Pnc, t 2 2 2 

(c2 tc2 t - (c2a t 

and 
2 
c, t na,t - rca,tcnc,t 

Pna,t 2 2 2 
c,tCa,t Cca, t 

with uca t being the conditional covariance between consumption 
growth and the percentage change in average age. Equation (9) formal- 
izes the idea that the conditional expected risk premium depends on 
the consumption beta and the demographic beta of the asset. 

To see what may determine the sign of PIna,tg consider the special 
case in which crca, = 0. Since rC c2t - (2at > 0, the sign of P na,t iS 

then the same as that of una,t. That is, assets that are positively corre- 
lated with demographic changes have positive demographic betas, 
whereas those that are negatively correlated with the latter have nega- 
tive demographic betas. Note that in equilibrium, it must hold that Pla t - 

ro > 0. Thus, the expected risk premium of an asset is increasing in 
its demographic beta, I na, t 
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IV. Data Description 

The continuous time-based pricing relation in (9) is suggestive and 
provides guidelines for our forecasting exercise to follow. However, 
as in the case of testing Breeden's (1979) consumption CAPM, we can 
only conduct empirical tests with discrete, low-frequency data. Our 
choice of low-frequency data is also due to the fact that the population 
age structure fluctuates slowly and hence should not have much impact 
on high-frequency market prices. In addition, as Ferson and Harvey 
(1992) point out, test results may depend on whether one uses season- 
ally adjusted or non-seasonally adjusted consumption data when an 
asset pricing model is tested on monthly and quarterly data. To avoid 
problems arising from seasonality in consumption and dividends and 
to explain long swings in asset prices, we use annual economic data 
for the period 1900-1990. For our tests, the following variables are 
required: 

C, = real per capita consumption of nondurables and 
services in year (t - 1). It is equal to the nominal 
per capita consumption deflated by the January 
producer price index of year t. The source of data 
for this variable is Shiller (1989) for the years 
1900-1987 and CITIBASE for the years 1988-90. 

DCONN, = percentage change in real consumption of 
nondurables and services from year (t - 1) to 
year t. 

RETURNt = real rate of return on the S&P 500 with dividends 
included. The real S&P 500 index is the January 
value of the nominal S&P 500 index, deflated by the 
January producer price index. The dividends are the 
most recent year's dividends on the S&P 500 stocks. 
The data source for the S&P 500 index and 
dividends is Shiller (1989) for the years 1900-1987 
and Barsky and DeLong (1990) for the remaining 
years. 

DIVYLDt = dividend yield on the S&P 500. As in Campbell and 
Shiller (1988a) and Fama and French (1989), the 
dividend yield on the S&P 500 equals the sum 
of dividends on all S&P 500 stocks over year (t - 1) 
divided by the January S&P 500 index of year t. 

TBILLt real rate of return to investing for 6 months, first in 
January at the January 4-6-month prime commercial 
paper rate and then continuing for another 6 months 
at the July 4-6-month prime commercial paper rate, 
as reported in Shiller (1989) for the years 1900-1987. 
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For the years 1988-90, the real interest rate is from 
Ibbotson Associates (1992).1o 

RPREMt = the excess return on the S&P 500 index, with 
dividends included, over the nominal interest rate. 
Sources: Shiller (1989) for the years 1900-1987 and 
Ibbotson Associates (1992) for 1987-90. 

DEFt = default premium, which is the yield spread between 
Baa-rated corporate bonds and Aaa-rated corporate 
bonds. This variable is available only for the 
post-1945 period. Source: CITIBASE (1992). 

TERMt = term premium. It is the difference between the yield 
on a portfolio of Aaa-rated bonds and the nominal 
interest rate. This variable is available for the 
post-1945 period. Source: CITIBASE (1992) for the 
bond yields. 

AGEt = the year t average age of the adult population. It is 
constructed as 

12 
N., 

AGEt- Ai * N" 

where Nt is the year t total population of ages 20 and 
over; Ni,t is the year t population of persons in the 
ith age group; and Ai is the middle age of the ith age 
group. For instance, the middle age is 22 for the age 
group 20-24 and 27 for the age group 25-29. A total 
of 12 age groups are used, and they are age groups 
20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 
55-59, 60-64, 65-69, 70-74, and 75 and over. The 
population estimates for each year are based on July 
1 samples. The population data by age groups come 
from the book Historical Statistics of the United 
States: Colonial Times to 1970 (Bureau of the 
Census 1975) for the years 1900-1945. The data 
source is CITIBASE (1992) for the period 1946-90. 

DAGEt = percentage change in average age from year (t - 1) 
to year t. 

AGE65t = fraction of persons 65 and older in our sample 
population of ages 20 and over. The percentage 
change in AGE65t from year (t - 1) to t is denoted 
by DAGE65t. 

10. Note that the Lbbotson Associates database does not include prices before 1926. 
To maintain consistency, we try to use as much data from Shiller's database as possible. 

This content downloaded from 147.8.230.147 on Mon, 11 Jan 2016 08:07:53 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Baby Boom 183 

DHOUS, = percentage change in the real price of housing from 
year (t - 1) to year t. As in Mankiw and Weil 
(1989), we use the ratio of the residential investment 
deflator to the GNP deflator as the real price of 
housing. CITIBASE (1992) is the data source for this 
variable. 

In addition, to construct figure 1 for the life expectancy variable, 
we used Current Population Reports (Bureau of the Census, various 
years). 

Tables 1 and 2 report the summary statistics and correlation matrices 
for the variables. Most of the stylized facts on annual financial vari- 
ables are well known (e.g., Mehra and Prescott 1985; Fama 1990; 
Schwert 1990; and Chen 1991). For example, consumption growth is 
much less volatile than stock returns. However, two patterns are worth 
noting. First, in table 1, consumption growth and stock returns are 
positively autocorrelated in the post-1945 period. In the same period, 
risk premiums are mildly negatively autocorrelated, whereas, over the 
longer period from 1900 to 1990, they are positively autocorrelated. 

Second, the mean of the average age of the adult population was 
44.51 and that of the fraction of persons 65 and older was 15% in the 
post-1945 period, while the mean of the average age was 42.54 and 
that of the fraction of persons 65 years and older was 11.8% over the 
longer 1900-1990 period. This further confirms the basic conclusion 
from Section II, that the demographic changes in the post-1945 period 
are quite different from those in the pre-1945 years. In the early years, 
it is mainly the increasing life expectancy that was driving the move- 
ments in the age structure (i.e., AGE65t was steadily rising), whereas 
in the later years the baby boom and the baby bust generations became 
a more dominant driving force behind the demographic fluctuations. 
In tables 1 and 2 both the AGEt and AGE65t series are highly autocor- 
related. In the post-1945 period, the percentage change in average age, 
DAGEt, is positively correlated with real stock returns, real interest 
rate, risk premiums, and dividend yields. A similar pattern exists be- 
tween financial variables and DAGE65t,. Over the longer period from 
1900 to 1990, the signs of the correlations remain essentially un- 
changed. However, their magnitudes are much lower than in the post- 
1945 subperiod. A negative correlation between DAGEt and DHOUSt 
is recorded in the data, consistent with the discussion in Section II. 

V. Testing the Euler Equation 

In this section, we apply Hansen's (1982) generalized method of mo- 
ments to test the Euler equation given in (5). Choosing At to be a year 

This content downloaded from 147.8.230.147 on Mon, 11 Jan 2016 08:07:53 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


184 Journal of Business 

TABLE 1 Summary Statistics 

Sample Period 
and Variable Mean SD p(l) p(2) p(3) p(4) 

1946-90: 
AGEt 44.510 .670 .90 .80 .69 .59 
AGE65, .150 .020 .91 .83 .74 .66 
DAGE, .001 .002 .91 .85 .77 .73 
DAGE65, .009 .007 .91 .84 .77 .71 
DCONN, .016 .013 .26 .05 .11 .16 
RETURN, .086 .180 .10 - .16 .16 .25 
TBILL, .014 .070 .35 .04 .10 .26 
RPREM, .063 .160 - .02 - .21 .21 .31 
TERM, .007 .013 .34 - .10 - .12 - .13 
DEFt .010 .004 .79 .59 .45 .46 
DIVYLD, .043 .013 .83 .66 .54 .38 
DHOUS, - .0003 .021 .25 .16 .10 .09 

1900-1990: 
AGEt 42.540 2.164 .97 .95 .95 .90 
AGE65, .118 .036 .97 .95 .92 .90 
DAGE, .001 .002 .60 .52 .54 .54 
DAGE65, .009 .008 .48 .42 .46 .46 
DCONN, .017 .032 - .05 .07 .04 - .21 
RETURN, .085 .193 .06 - .15 .10 - .01 
TBILL, .015 .097 .34 .02 .03 - .10 
RPREM, .064 .195 .01 -.22 .11 - .05 
DIVYLD, .048 .012 .81 .63 .53 .43 

NOTE.-AGE, is the average age of the population of age 20 and over. DAGE, is the percentage 
change in average age from year (t - 1) to year t. AGE65, is the fraction of persons 65 and older 
in the adult population, and DAGE65, is the percentage change in AGE65,. DCONN, is the growth 
rate of per capita nondurable and services consumption. RETURN, is the real rate of return on the 
S&P 500 index, including dividends. TBILL, is the annual real interest rate, obtained by investing 
for 6 months in January and then in July at the 4-6-month commercial paper rate (Shiller 1989). The 
risk premium, RPREM,, is the excess return on the S&P 500 index (including dividends) over the 
annual interest rate. TERM, (term premium) is the difference between the yield on a portfolio of 
AAA-rated bonds and the annual interest rate. DEF, is the default premium, which is the yield 
spread between BAA-rated and AAA-rated corporate bonds. The dividend yield, DIVYLD,, is the 
sum of the year (t - 1)'s dividends on S&P 500 stocks, divided by the January S&P 500 price index 
of year t. DHOUS, is the percentage change in the real price of housing, which is the ratio of the 
residential deflator to the GNP deflator. p(L) is the autocorrelation coefficient at lag L. 

and treating C, as annual per capita consumption, we rewrite equation 
(5) as 

+c-(X+X AGEt+i) 
0 = E8. C-(y+X AGEt) . (1 + RETURNt+1) - lI (10) 

-E{Et+ I Z}, 

with 8 = e -K where Zt stands for time t information and the parame- 
ters -y and A measure the risk-taking attitude of the representative 
agent. In particular, given the agent's age AGEt at time t, his relative 
risk aversion is -y + A * AGEt, which should, according to the life-cycle 
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hypothesis of risk aversion, increase with average age. Thus, our testa- 
ble hypothesis is 

x > 0. 

Under the null hypothesis that equation (10) is true, we have 
E{JE+ I |Zt} = 0; that is, the expected value of the disturbance is zero 
The GMM estimations are based on minimizing the quadratic form, 
JT - gjTWTgT, where gT is the sample analog of the process {EtZt} 

defined in (10) and WT is a positive-definite symmetric weighting ma- 
trix. The minimized value of the quadratic form, called the J(df) statis- 
tic, is x2-distributed under the null hypothesis that the model is true 
with degrees of freedom, df, equal to the number of orthogonality 
conditions net of the number of parameters to be estimated. The J(df) 
statistic provides a goodness-of-fit test for the model, and a high value 
for it implies that the model is misspecified. 

The next issue concerns the choice of information instruments to be 
contained in Zt. In this regard, theory has little guidance (Hansen and 
Singleton 1982). Like Epstein and Zin (1991), Ferson and Constantin- 
ides (1991), and Ferson and Harvey (1992), we replicate our results 
using different sets of instruments. We base the selection of instru- 
ments on earlier studies that document the ability of the instruments 
to forecast future consumption growth and stock returns. The sets of 
instruments, Z1 and Z2, consist of a constant and, respectively, two 
and three lags each of the real consumption growth and the real stock 
returns. Fama and French (1989) show that term premiums track busi- 
ness conditions. However, when we included the term premium and 
the default premium as instruments, the results were similar to what 
we report in table 3. To save space, we chose to focus on the sets Z1 
and Z2. Having additional lags helps reduce the effect of both time 
aggregation and mismatching of time periods with planning horizons 
(e.g., Epstein and Zin 1991; Braun, Constantinides, and Ferson 1994). 
For this reason, Z1 and Z2 are different only in the number of lags of 
the instruments. 

To test for robustness and stability of the estimates, we report in 
table 3 estimation results of the parameters {8, y, X} for four different 
time periods: 1946-90, 1926-90, 1900-1990, and 1900-1945. The stan- 
dard errors in parentheses are calculated using the method outlined in 
Newey and West (1987) with a lag length of 2. The p-values in brackets 
below the standard errors test the null hypothesis that the estimated 
parameter equals zero. While the GMM is a powerful test of the Euler 
equation restriction, the parameter estimates and hypothesis testing 
using the GMM are only justified through asymptotic distribution the- 
ory. However, Tauchen (1986) found that the GMM test statistic per- 
forms well with as few as 50 annual observations. The p-value reported 
below the J(df) statistic indicates the probability that a x2 variate ex- 
ceeds the minimized sample value of the GMM criterion function. 
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TABLE 3 The GMM-based Euler Equation Tests 
A. Sample Period: 1946-90 

Set of 
Information J(df) 
Instruments a y df [p-value] NOBS 

Z, 1.23 -43.24 1.29 2 1.87 45 
(.25) (18.27) (.63) [.391 
[.00] [.00] [.03] 

Z2 1.27 -42.80 1.31 4 2.62 45 
(.13) (13.07) (.36) [.621 
[.00] [.00] [.00] 

Z* .995 - 32.61 .81 3 8.07 45 
(8.16) (.17) [.05] 

[.00] [.00] 
Z2 .995 - 28.35 .72 5 7.93 45 

(8.24) (.18) [.16] 
[.00] [.00] 

B. Other Sample Periods 

Sample Period 
and Set of 
Information J(df) 
Instruments ay X df [p-value] NOBS 

1926-90: 
Z2 .98 - 8.35 .25 4 3.95 65 

(.06) (18.79) (.47) [.41] 
[.00] [.66] [.59] 

Z2 .995 - 13.20 .37 5 4.00 65 
(8.16) (.18) [.54] 

[.10] [.04] 
1900-1990: 

Z2 .87 10.81 - .29 4 3.12 91 
(.12) (36.59) (.97) [.53] 
[.00] [.76] [.76] 

Z2 .995 -24.61 .65 5 5.81 91 
(11.32) (.26) [.32] 

[.02] [.01] 
1900-1945: 

Z2 .93 - 18.99 .47 4 2.14 46 
(.09) (90.97) (2.26) [.71] 
[.00] [.83] [.83] 

Z2 .995 - 55.25 1.39 5 3.72 46 
(43.90) (1.07) [.58] 

[.21] [.19] 

NOTE.-Estimation of the Euler equation is based on Hansen's (1982) generalized method of 
moments (GMM), 

c X-( +X AGEt+ 1) 

E 8. +AAGEt) [1 + RETURNl]- Z = 0, 

where C is the per capita consumption and Z is the set of time t information variables. All the other 
variables are explained in table 1. Standard errors, calculated using the method outlined in Newey 
and West (1987) with a lag length of 2, are in parentheses, and p-values are in brackets. The set of 
information instruments, Z1 and Z2, contain a constant and, respectively, two and three lags each 
of DCONN,, and RETURN,. We tried other instrumental variables, but the results are similar to 
the ones reported here. df is the number of instruments minus the number of parameters to be 
estimated. The statistic, J(df), is asymptotically X2(df) distributed and tests whether the overidentify- 
ing restrictions of the model are true with degrees of freedom equal to df. An asterisk on Z indicates 
that, for that row, the GMM estimation is performed under the restriction 8 = 0.995. NOBS is the 
number of observations. 
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Panel A of table 3. reports the results for the sample period from 
1946 to 1990. The point estimates of y and A are stable across the two 
sets of instrument variables. While y is negative and in the range from 
-42.80 to -43.24, A is significantly positive and in the 1.29-1.31 
range. Here, a negative y does not imply risk loving because the risk 
aversion parameter is y + A * AGE,. For instance, with y = -43, A 
= 1.30, and AGEt = 44 (the time-series mean of AGE,), the relative 
risk aversion coefficient is 14.2. A positive value for A is consistent 
with the life-cycle hypothesis of risk aversion. Standard errors for y 
and A are typically small, and their estimates are many standard errors 
away from zero. The null hypotheses that y = 0 and A = 0 are rejected 
with p-values less than 3%. The discount factor parameter, 8, is esti- 
mated to be between 1.23 and 1.27. The null hypothesis that 8 = 1 
is rejected in both cases using the candidate instrumental variables, 
although this result is not reported in table 3. The overidentifying re- 
strictions of the model with time-varying, demographic-driven risk 
aversion are not rejected using either of the instrument sets, with p- 
values exceeding 39%. 

At the first glance, the result that 8 > 1 seems odd, but Constantin- 
ides (1990) shows that habit formation resolves the equity premium 
puzzle with a discount factor greater than one. Based on annual data, 
Ferson and Constantinides (1991) also obtain a discount factor greater 
than 1 in estimating both the time-separable expected utility model 
and the time-nonseparable habit-forming utility model. To assess the 
stability of our results to a value of 8 less than 1, we reestimated the 
Euler equation in (10) subject to the restriction that 8 = 0.995. The 
corresponding estimation results are reported in the rows denoted by 
asterisks of table 3 and are similar in spirit to those obtained without 
this restriction, except that the magnitudes of y and A are smaller. 
Both of the estimated parameters are many standard errors away from 
zero. The model is again not rejected, with the lowest p-value ex- 
ceeding 10%. 

Panel B of table 3 presents mixed results for the other time periods: 
1900-1990, 1926-90, and 1900-1946. Since the average age increased 
almost linearly while stock returns fluctuated randomly from 1900 to 
1945, it may not come as a surprise that the coefficient A is insignifi- 
cantly different from zero for certain sample periods. With the instru- 
mental variables Z2, the point estimates of A are insignificant for all 
the three periods. However, with the instrument set Z*,11 the parame- 
ter A is positive and statistically significant for the two periods 1926-90 
and 1900-1990. The coefficient y is negative and statistically significant 
as well for the same two periods. The overidentifying restrictions are 

11. An asterisk on the instrument set Z2 means that the corresponding row represents 
estimation results obtained under the restriction 8 = 0.995. 
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not rejected, with p-values in excess of 32%. The inclusion of average 
age as a determinant of the representative investor's IMRS, therefore, 
improves the fit of the expected utility model. 

Next, we plot in figure 7 the time-series path of the implied risk 
aversion, y + A * AGE,, where the parameters are taken from the 
sample estimates for the period 1900-1990: y = - 24.61 and A = 0.65. 
Given the linear specification of the relative risk aversion function, the 
implied risk aversion shares the same shape with AGE,. Its mean is 
3.04. The lowest risk aversion level for the representative investor is 
0.87, and the highest is 4.91, achieved around year 1965.12 

We can also relate the demographics-determined risk aversion to 
the Merton (1980) reward-to-risk ratio. For this purpose, we obtained 
the monthly excess returns on the S&P 500 stocks (including divi- 
dends) over the Treasury-bill rate from Ibbotson Associates (1992). 
The period covers the years from 1926 to 1990. To implement Merton's 
procedure, we divide the period into 3-year intervals, where, for each 
interval, the reward-to-risk ratio is assumed to be constant. Then, 
using the monthly excess returns for each 36-month interval, we esti- 
mate the reward-to-risk ratio for the subperiod according to Merton's 
model 1.13 Here, we only report the estimation results in figure 7, 
where the reward-to-risk ratio is plotted together with the age-implied 
risk aversion. From 1929 to 1956, the reward-to-risk ratio was increas- 
ing, and so was the age-implied risk aversion. Then, both measures 
went down from 1960 to 1970 and up from 1980 to 1990. Therefore, 
the Merton reward-to-risk ratio and the age-implied risk aversion are 
two consistent measures of the representative investor's attitudes to- 
ward risk taking. To put it differently, changes in the representative 
investor's risk aversion over time are at least partly attributable to 
demographic fluctuations. 

12. In addition to the estimation reported here, we tried to estimate the Euler equation 
with the relative risk aversion parameter given by a quadratic function of age. But, the 
GMM procedure failed to converge. 

13. Following Merton's (1980) model 1, we use a two-step procedure to estimate the 
reward-to-risk ratio. First, for each 3-year interval, take the sum of all monthly excess 
returns on the S&P 500 stocks over the Treasury bills and divide it by 36, which gives 
the mean excess return. Second, for the same 3-year interval, add together the squares 
of monthly returns on the S&P 500 stocks and divide it by 36, which produces a risk 
measure. The reward-to-risk ratio is then given by 

36 

Z (RETURN, - TBILLt) 
t=l 

36 

E RETURNt 
t=1 

For details on the underlying assumptions, see Merton (1980). 
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FIG. 7.-Risk aversion versus reward-to-risk ratio. The reward-to-risk ratio 
has been calculated using model 1 of Merton (1980) with a time interval of 36 
months (data source: Lbbotson Associates 1992) and divided by 1.50. The 
implied risk aversion is given by RRA, = y + A *A avalueofy= 
- 24.61 and A = 0.65. 

VI. The Hansen-Jagannathan Bound Tests 

In addition to the tests reported in the previous section, we can apply 
the Hansen-Jagannathan (1991) diagnostic method to check whether 
the LMRS implied by (5) satisfies the mean-variance bounds for every 
admissible LMRS or stochastic discount factor. To briefly see the logic 
behind their method, take a single-period economy from time t to t + 
1 as an example and suppose there are N traded securities at t, with 
their time (t + 1) gross returns given by me Then, when the law 
of one price holds at time t, any admissible IMRS mt+1 must satisfy 

E{mt+I Rn,t+IIZt} = 1 foreachn = 1,< ,N, (11) 

where Zt is the time t information. By the law of iterated expectations, 
equation (11) implies 

E{mt+I Rn t+}= 1 foreachn= 1, ,N. (12) 

Different asset pricing models may propose different forms for mt+1, 
but all of them have to satisfy the above equation for each asset n. 
According to the least squares regression theory, this means there 
must exist a benchmark portfolio return mt*1 such that 
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1. E{mt*1Rt+1} = N' where Rt+1 is a column vector stacked with 
the N gross returns Rn?t+1 and 1N is an N vector of ones; and 

2. for every admissible IMRS, mt?1, it holds that mt?1 = mI*1 + 
Et+1' where Et+I is the projection error or residual, uncorrelated 
with mt*+1 

Clearly, if E(mt+? ) = E(m* 1), the above argument implies that 
var(mt+1) 2 var(mt*1), where var() stands for the unconditional vari- 
ance operator. Thus, the variance of the benchmark mt*1 provides a 
lower bound for the variance of every admissible IMRS. Hansen and 
Jagannathan (1991) use this bound as an informal diagnostic test for 
any asset pricing model: if an asset pricing model is to fit the asset 
price data, a necessary condition is that its proposed IMRS have a 
variance at least as large as that of the corresponding benchmark 

* 
t1 l 
To save space, we simply write down the Hansen-Jagannathan 

bound formula below and refer the reader to their paper (or Ferson 
and Harvey 1992) for a detailed derivation (time subscripts are dropped 
here): 

var(m) 2 [I1 - E(m)E(R)]'J(R)-1[1N - E(m)E(R)], (13) 

where E(m) is the unconditional mean of the candidate IMRS, and 
E(R) is the unconditional variance-covariance matrix of the returns in 
R. The variance bound is clearly easy to estimate. 

With the effect of demographic changes taken into account, we have 
specified a candidate IMRS given by 

C-(-y+(XAGEt+1) 
IMRS = i C7(Y?xAGEt) (14) 

Figure 8 presents the Hansen-Jagannathan bounds, constructed ftom 
the annual S&P 500 index and the annual interest rate, and the mean- 
standard deviation pairs of our candidate IMRS corresponding to dif- 
ferent parameter values for y and X. For most parameter values that 
are close to the point estimates in table 3, the candidate IMRS lies 
outside the Hansen-Jagannathan bounds. Only for relatively large val- 
ues for I yI and X can the candidate IMRS lie within the Hansen- 
Jagannathan bounds. For example, the IMRS is within the bounds for 
the following parameter value pairs: (-y, X) = ( - 50.00, 5.50), (-y, X) = 
(105.00, 1.29), (-y, X) = (110.00, 1.29), where 8 = 0.995. Therefore, 
unless the mean relative risk aversion coefficient (= y + X E(AGEd)) 
is very high, the Hansen-Jagannathan bounds will be violated by the 
candidate IMRS given in (14). This conclusion is consistent with what 
is known in the literature on time-separable expected utility (e.g., Han- 
sen and Jagannathan 1991; and Ferson and Harvey 1992). 
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FIG. 8.-Hansen-Jagannathan bounds. The Hansen-Jagannathan bounds, il- 
lustrated by the LI-curve, are constructed from the annual S&P 500 stock., 
returns (including dividends) and the annual interest rate (see Hansen and 
Jagannathan 1991). The candidate intertemporal marginal rate of substitution 
(LMRS) is given by 

C-('Y+XAGEt+1) 
IMRS = C7(+xAEt 

The A-curve stands for the mean-standard deviation pairs of the IMRS ob- 
tained by fixing 8 = 0.995 and A = 0.995. The O-curve is obtained by fixing 
8 = 0.995 and y = 50.00. 
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Note that the Euler equation in (10) is rejected in the Hansen- 
Jagannathan bound test but not in the GMM test reported in the previ- 
ous subsection. This seemingly puzzling finding is due to the fact that 
the Hansen-Jagannathan bounds on the second moment of an admissi- 
ble IMRS are based on the unconditional version of the Euler equation 
in (10). Thus, the Hansen-Jagannathan bound test can be understood as 
a test of the unconditional Euler equation. In the previous subsection, 
however, we used instrumental information variables in the GMM esti- 
mation and effectively tested a conditional version of the Euler equa- 
tion. Based on the test results, we conclude that a conditional version 
of the Euler equation in (10) performs better than its unconditional 
counterpart. 

VII. Predictability of Risk Premiums 

According to the discussion in Section III, expected excess returns 
should, in equilibrium, be determined by both an asset's sensitivity to 
such systematic factors as aggregate consumption and demographic 
fluctuations and the risk premiums earned by those factors (see, e.g., 
Breeden 1979; and Cox, Ingersoll, and Ross 1985 for other models). 
This conclusion is suggestive. When translated into our sample frame- 
work, it means that for the S&P 500 portfolio, 

E{RPREMt+IlZt} = E{Ima(DAGEt+1-ro) (-5) 

+ I3mc(DCONNt+l - rO)IZt}, 

where the coefficients Ima and 1mC are measurable with respect to 
time t information. According to this equation, any time t information 
variables that either determine the factor betas, Ima and 3mc, or are 
predictors of future consumption growth and demographic fluctuations 
will help forecast future market risk premium. Then, the question 4s 
what information variables should be included in Zt in our forecasting 
exercise? To answer this question, note that Ferson and Harvey (1991) 
find most predictability of market risk premium is driven by time- 
varying economic risk premiums and not by time-varying betas. There- 
fore, we can limit our attention to those variables that help predict 
future consumption and/or demographic premiums. 

Since both the consumption and the demographic variables, 
DCONNt+ I and DAGEt+ 1, are serially correlated over time, we should 
clearly include their time t values, DCONNt and DAGEt, in Zt. In the 
existing literature, dividend yields, the growth rate of real activity, and 
various term structure variables have been found to be predictors of 
future variations in risk premiums (see, among others, Chen, Roll, and 
Ross 1986; Keim and Stambaugh 1986; Fama and French 1988b, 1989; 
Fama 1990, 1991; Schwert 1990; Chen 1991; Ferson and Harvey 1991; 
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Harvey 1991). To understand whether the demographic variable offers 
any additional power in predicting future risk premiums, we include 
in our exercise the following information variables as well: DIVYLDt, 
and TERMt. As in previous work, we assume a linear forecasting 
specification: 

RPREMt+1 = bo + b, DAGEt + b2 DCONNt (16) 

+ b3 DIVYLDt + b4 TERMt + Et+l. 

This equation incorporates both predicting variables that are known 
to be significant in the existing literature and our newly introduced 
variable DAGEt. It is the basis for the ordinary least squares (OLS) 
regressions to follow. 

Before we discuss the test results, it is interesting to observe figure 
9, which depicts the time series for RPREMt and DAGEt. While there 
does not appear to be a relation between the risk premium and the 
change in average age for the years before 1940, there is a clear relation 
for the post-1940 period: both RPREMt and DAGEt moved upward in 
the years 1940-55, downward in the years 1956-75, and then upward 
again in the period 1976-90. Given this visual impression, we should 
expect DAGEt to be significant in predicting future risk premiums, at 
least for the post-1940 years. 

In running the forecasting regressions, we use the method outlined 
in Newey and West (1987) with a lag length of 2 to calculate the stan- 
dard errors for the coefficient estimates. Panel A of table 4 presents 
the results for the period 1946-90. First, the variable DAGEt is signifi- 
cantly and positively related to future risk premiums. In all the cases, 
its coefficient estimates are positive and more than 2 standard errors 
away from zero, with p-values constantly below 5%. Thus, a rise in 
average age means a higher risk premium in the future, which is consis- 
tent with the prediction of the life-cycle hypothesis of risk aversion. 
Second, the coefficient estimate for DCONNt is not statistically sig- 
nificant, with t-statistics below 2 and p-values at or above 10%. Con- 
sumption growth does not appear to possess much power in predicting 
future risk premium. Third, as expected from the existing literature, 
dividend yield, DIVYLDt, has significant predictive power of future 
risk premium. The coefficient estimates of b3 are positive and statisti- 
cally significant, with p-values equal to .00 in each case. At the same 
time, the coefficient estimates for TERMt have the right sign but they 
are all less than 1 standard error away from zero. In addition, with the 
multivariate forecasting, the adjusted R2 values are above 33%, mean- 
ing that the predictability of annual market risk premium by the in- 
cluded variables is about 33%. 

Since consumption growth and term premium do not have significant 
predictive power, we exclude them from the estimation equation and 
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FIG. 9.-Risk premium and growth of average age. Risk premium is the 
difference between returns on the S&P 500 index (including dividends) and 
the annual interest rate. Growth of average age is the arithmetic growth rate 
multiplied by 50. Source: Shiller (1989) and Barsky and DeLong (1990). 

TABLE 4 Predictability of Risk Premiums 
A. Sample Period: 1946-90 

No. bo b, b2 b3 b4 R2 D-W NOBS 

1 -.05 16.48 - 2.84 3.87 -1.18 .35 2.22 45 
(.06) (7.81) (1.77) (1.04) (.96) 
[.37] [.03] [.11] [.00] [.12] 

2 - .07 13.81 -3.01 4.16 .33 2.29 45 
(.06) (6.83) (1.83) (1.01) 
[.25] [.04] [.10] [.00] 

3 - .17 18.06 5.40 .28 2.33 45 
(.06) (5.78) (1.36) 
[.00] [.00] [.00] 

4 .04 25.07 .15 2.41 45 
(.02) (6.45) 
[.00] [.00] 

5 .15 - 5.49 .07 2.22 45 
(.03) (1.68) 
[.00] [.00] 

6 -.20 6.41 .20 2.03 45 
(.06) (1.48) 
[.00] [.00] 

This content downloaded from 147.8.230.147 on Mon, 11 Jan 2016 08:07:53 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


196 Journal of Business 

TABLE 4 (Continued) 
B. Other Sample Periods 

Sample 
Periods 
and No. bo b, b2 b3 R2 D-W NOBS 

1926-90: 
1 .26 18.47 -.31 2.19 .08 1.93 65 

(1.01) (6.49) (1.00) (1.67) 
[.79] [.00] [.75] [.18] 

2 -.06 18.77 2.38 .08 1.94 65 
(.07) (6.29) (1.87) 
[.37] [.00] [.20] 

3 .04 23.46 .06 2.03 65 
(.02) (6.99) 
[.06] [.00] 

4 1.00 -.92 .01 1.89 65 
(1.08) (1.06) 

[.35] [.38] 

5 -.07 3.21 .05 1.83 65 
(.07) (1.97) 
[.34] [.10] 

1900-1990: 
6 .43 16.54 -.47 1.75 .08 1.96 91 

(.69) (5.28) (.68) (1.26) 
[.53] [.00] [.49] [.16] 

7 -.06 16.92 1.98 .08 1.96 91 
(.05) (5.40) (1.29) 
[.29] [.00] [.12] 

1900-1945: 
8 .14 18.10 - .16 .94 .06 1.79 46 

(.77) (8.12) (.75) (1.51) 
[.86] [.02] [.83] [.53] 

9 -.03 18.29 1.05 .03 1.79 46 
(.08) (2.26) (1.58) 
[.73] [.02] [.51] 

NOTE.-Estimation of the equation is based on OLS regressions, 

RPREMt+1 = bo + b, . DAGE, + b2 * DCONN, + b3 * DIVYLD, + b4 TERM, + 1,+l, 

where the variables are as defined in table 1. Standard errors, calculated using the method outlined 
in Newey and West (1987) with a lag length of 2, are in parentheses, and p-values are in brackets. 
D-W is the Durbin-Watson statistic for the error term. The reported R2 is the adjusted R2 statistic. 
NOBS is the number of observations. 

find that the statistical significance of both DAGEt and DIVYLD stays 
the same. The fourth and fifth rows in panel A of table 4 report the 
corresponding results. In order to evaluate the individual predictive 
power of each ex ante variable, we conduct a univariate forecasting 
test for each of DAGEt, DCONNt, and DIVYLD t. The last three rows 
in panel A of table 4 show the results. As can be seen, all three vari- 
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ables in the univariate regressions are statistically significant in fore- 
casting future risk premiums. However, it is worth noting that the 
coefficient estimate for DCONNt is negative, while in the multivariate 
cases the estimates for b2 are positive. The adjusted R2 is 20% when 
DIVYLDt is the predicting variable and 15% when DAGEt is used, 
which indicates the former may be a slightly more significant predictor. 

Panel B of table 4 displays the forecasting results for the other time 
periods. In the sample period 1926-90, which is the period extensively 
analyzed in Fama and French (1988a, 1988b, 1989) and Hodrick (1992), 
the collective predictive power of DAGEt, DCONNt, and DIVYLDt 
is substantially weaker than in the post-1945 period just discussed, 
with the adjusted R2 being only 8%. The demographic variable, 
DAGEt, turns out to be the only one with a coefficient estimate being 
2 standard errors away from zero. DIVYLD(t) is no longer statistically 
significant, and its p-value is in excess of 10%, which is consistent 
with the findings by Fama and French (1988b), that dividend yield is 
not a significant predictor of stock returns for the overall period 
1926-87. For this period, the univariate regressions confirm the multi- 
variate result: DAGEt is significant and DCONNt and DIVYLDt are 
not in predicting future risk premiums. For the other sample periods, 
1900-1945 and 1900-1990, the same conclusion can, as seen from panel 
B of table 4, be drawn: the demographic variable is the sole significant 
predictor. 

In summary, a change in the average age predicts a change in the 
risk premium during the entire period 1900-1990, and a greater jump 
in average age implies a larger risk premium. However, except for the 
post-1945 period, dividend yield and aggregate consumption growth 
are not significant in predicting risk premiums. In the post-1945 years, 
DAGEt, DIVYLDt, and DCONNt can collectively achieve a 33% fore- 
castability of future risk premium. 

To see how much predictability of future risk premium can be, re- 
spectively attributed to DAGEt and DIVYLDt, we conduct a variance 
decomposition of the predicted values, as in Ferson and Harvey (1991) 
and Ferson and Korajczyk (1992). In the first step, we regress 
RPREMt+1 on DAGEt, DCONNt, DIVYLDt, and TERMt, and calcu- 
late the variance of the fitted values, denoted by VR. In the next step, 
we regress the fitted values obtained in the first step separately on 
DAGEt and DIVYLDt, and calculate the variance of the resulting fitted 
values respectively from each regression. Let VR1 and VR2 be the 
respective variances of the fitted values from the second step. In table 
5, we report the ratios VR1/VR and VR2/VR. The first ratio, VR1/ 
VR, reflects the fraction of the predictable variation in RPREMt+1 
attributable to change in average age, DAGEt, alone. The other ratio 
indicates the fraction due to dividend yields. As table 5 shows, 
DIVYLD seems to capture a higher portion of the predictability of 
future risk premium than DAGEt for the post-1945 period. However, 
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TABLE 5 Variance Decomposition of 
Predicted Market Risk 
Premium 

Percentage 
of Predicted 

Variation due to: 

Sample Period DAGE DIVYLD 

1946-90 42 61 
1926-90 68 57 
1900-1990 69 51 
1900-1945 85 32 

NOTE.-We apply a two-step procedure to de- 
compose the variance of the fitted values for future 
market risk premium, with DAGE,, DCONN,, and 
TERM, as predictors. First, we run the following 
OLS regression, 

RPREM,+I = bo + b, * DAGE, + b2 * DCONN, 
+ b3 * DIVYLD, + b4 * TERM,, 

and calculate the fitted values for RPREM,+1. 
Note that TERM, is present only for the period 
1946-90. Second, we regress the fitted values sep- 
arately on DAGE, and DIVYLD, to determine the 
fraction of predicted variation attributable to each 
one of the two ex ante variables. 

in all other sample periods, 1900-1945, 1900-1990, and 1926-90, the 
reverse is true: DAGEt accounts for a higher portion of the predictabil- 
ity. Intuitively, we can think of dividend yields as carrying information 
about the future productivity of firms (see, e.g., Campbell and Shiller 
1988a, 1988b; and Fama and French 1989), and a change in the average 
age as carrying information about the future attitudes toward risk tak- 
ing as well as future aggregate demand for financial assets. In other 
words, dividend yields reflect information concerning the supply side, 
of the capital markets, whereas the demographic variable carries infor- 
mation about the demand side. Together, they allow one to form ex- 
pectations about future stock returns and risk compensations. 

VIII. Concluding Remarks 

A central message of this article is that demographic fluctuations have 
had significant impact on capital market prices. Given the persistent 
influence of the baby boomers and the increasing life expectancy on 
the general economy, they will continue doing so for decades to come. 
As we have argued, changes in the demographic structure can affect 
the capital markets in various ways. First, according to the life-cycle 
investment hypothesis, an investor's asset mix changes with the life 
cycle. Thus, when the population ages (as indicated by an increase in 
average age), the aggregate demand for financial investments rises and 
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that for housing declines. Likewise, when the population becomes 
younger (as implied by a lower average age), the opposite effect oc- 
curs. Second, by the life-cycle hypothesis of risk aversion, an aging 
population means an increasing average risk aversion, which in turn 
implies higher equilibrium risk premiums. Therefore, demographic 
movements can bring about fluctuations in asset demand on capital 
markets. 

Once it holds that changes in the age structure affect capital market 
prices, it does not seem surprising that demographic changes can pre- 
dict future stock returns and, in particular, a rise in average age tends 
to be followed by a rise in market risk premium. The reason is that 
demographic changes are highly predictable. We have found that of 
the entire 1900-1990 period, the post-1945 subperiod is the most sup- 
portive of our hypotheses. 14 This subperiod is associated with the baby 
boom generation. To some extent, it provides us with an ideal context 
in which to examine the effect of demographic changes on capital 
markets, because it has brought a "much larger than usual" cohort 
into the population. It is thus interesting to see what happens to the 
capital markets at different phases of the baby boomers' life cycle. As 
demonstrated in this paper, both the baby boom and the increased life 
expectancy have generated long swings in stock and housing market 
prices. 

In the existing literature on stock return predictability, some studies 
suggest that low-frequency stock returns seem to be relatively more 
predictable than high-frequency returns (see, e.g., Keim and Stam- 
baugh 1986; Fama and French 1988a, 1988b; Poterba and Summers 
1988; and Goetzmann and Jorion 1992). Of special relevance to our 
results is the work by Ferson and Harvey (1991), in which they find 
that most of the predictable variation in stock returns is due to the 
variation in market risk premiums and not so much to the time-varying 
betas. They also report that risk premiums appear to have distinct 
business-cycle patterns. However, what drives the variation in risk 
premiums is an unresolved issue. While previous work has associated 
the variation with instruments that exhibit business-cycle patterns, we 
have shown that those patterns are at least partly attributable to demo- 
graphic swings. Our findings are also consistent with a result by 
Grandmont (1985), in which he shows that, if the older economic 
agents' risk aversion is higher than the younger agents', there will be 
endogenously generated business cycles. 

Of course, "average age," while measuring the age composition of 
the population, is only a proxy for demographics-determined asset 
demand variables. That is, a change in average age per se will not 

14. Other studies have also found that the pre-1945 and the post-1945 periods seem 
to possess different characteristics. Economic models sometimes "perform better" for 
the post-1945 years than the pre-1945 years. See, e.g., Fama and French (1988a, 1988b, 
1989); and Campbell (1991). 
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induce any changes in asset prices, unless investors' investment deci- 
sions, and their attitudes toward risk, depend on the life cycle. When 
this dependence follows certain patterns, one can then use average 
age to approximate the demographics-driven asset demand functions. 
As mentioned earlier, an increase in life expectancy can only 
strengthen the life-cycle investment patterns. For instance, it will make 
older consumers invest more for retirement. In addition, average age 
is closely related to life expectancy, even though they capture different 
aspects of demographics. Provided that the population in each age 
group stays unchanged, an increase in life expectancy will lead to an 
increase in average age. However, when the population in some age 
groups changes (e.g., the entry of a baby boom generation), a higher 
life expectancy may not imply a higher average age. Thus, average 
age provides a measure of the entire population structure and a proxy 
for both the housing and the investment demand functions at the macro 
level. 

Further work seems necessary in order to fully understand the em- 
pirical evidence documented in this article. Since existing financial 
models do not take into account the effect of demographic changes, it 
may be refreshing to incorporate and examine such features. 
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