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Abstract: The Matérn class is an important class of covariance functions in spatial

statistics. With the recent flourishing trend in modelling spatio-temporal data, in-

depth theoretical development of spatio-temporal covariograms is needed. In this

paper, theories under the infill asymptotic framework concerning estimation issues

of a generally non-separable Matérn class of spatio-temporal covariance function is

presented. It is found that not all parameters can be estimated consistently while

quantities that can be estimated consistently are found based on equivalence and

orthogonality of Gaussian measures. The micro-ergodic parameters are found to be

different when the degrees of separability between the space and time components

are different. For the computation, an easy-to-implement estimation procedure is

given. Simulation studies are conducted to show how well the asymptotic results

apply when the sample size is moderate. A set of air pollution data is used to

demonstrate the usefulness of the estimation procedure suggested.

Key words and phrases: Gaussian measures, infill asymptotics, micro-ergodic pa-

rameters, space-time data.

1. Introduction

Let X (s) , s ∈ Rd be a second-order stationary Gaussian process with mean

zero and the Matérn class covariogram (Matérn (1986)) such that

Cov (X (s1) , X (s2)) = σ2Mν (h|α) = σ2 (αh)ν

Γ (ν) 2ν−1
Kν (αh) , (1.1)

where Kν is the modified Bessel function of the second kind (see Abramowitz and

Stegun (1972)), ν is the smoothness parameter, and the scale parameter α gov-

erns the rate of decay in correlation of the process. The Matérn class is attractive

due to its high flexibility (Stein (1999)), see also Guttorp and Gneiting (2006) for

the historical account. Here (1.1) reduces to the exponential covariogram when

ν = 1/2. Meanwhile, the process is k times differentiable if ν > k, which is a

desirable property in some cases. Given the parameters, the covariogram (1.1) is

a function of the Euclidean distance between s1 and s2, h = ∥s1 − s2∥, only, so
is translational and rotational invariant. Estimation of the parameters in (1.1)
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have been studied over the past 30 years or so and it has been found that esti-

mators perform very differently under different asymptotic frameworks. In the

literature, there are mainly two kinds of asymptotic frameworks: the increasing-

domain asymptotics and the infill or fixed-domain asymptotics. For more details

on this, see Cressie (1993, Chap. 5) and Stein (1999, Chap. 3). Our results are

based on the infill asymptotic framework.

Under some regularity conditions, Mardia and Marshall (1984) showed that

the maximum likelihood estimators of model parameters are consistent under

the increasing-domain asymptotic framework. However, under the fixed-domain

asymptotic framework, Zhang (2004) showed that both σ2 and α of (1.1) cannot

be estimated consistently for d ≤ 3. Rather, the quantity σ2α2ν can be esti-

mated consistently. In addition, if α1 is a fixed quantity and σ̂2 is the maximum

likelihood estimator (MLE) estimated through fixing α = α1, then the quan-

tity σ̂2α2ν
1 converges to the true quantity σ2

0α
2ν
0 almost surely. Similar results

were obtained by Ying (1991, 1993) when ν = 0.5 and d = 1. Wang and Loh

(2011) showed that, for fixed α1,
√
n
(
σ̂2α2ν

1 − σ2
0α

2ν
0

)
→ N

(
0, 2

(
σ2
0α

2ν
0

)2)
for

any d ≤ 3 as the sample size n → ∞. As an extension, Kaufman and Shaby

(2013) showed that if α̂ is a quantity estimated from maximizing the profile like-

lihood function using the spatial correlation matrix and σ̂2 is the MLE estimated

through fixing α = α̂, then the result
√
n
(
σ̂2α̂2ν − σ2

0α
2ν
0

)
→ N

(
0, 2

(
σ2
0α

2ν
0

)2)

also holds for d ≤ 3. For higher dimensions, Anderes (2010) showed that both

σ2 and α can be estimated consistently for d ≥ 5. Recently, Zhang and Cai

(2015) provided conditions which lead to equivalence of Gaussian measures for

a bivariate Matérn model. Although the estimation issues regarding Gaussian

random fields in the purely spatial framework are quite well understood, the es-

timation issues regarding spatio-temporal random fields are rarely discussed in

the literature. We aim to extend the results from the purely spatial framework to

the spatio-temporal framework. Specifically, we consider the mean-zero Gaussian

process
{
X (s, t) , s ∈ Rd, t ∈ R

}
with the Matérn class covariogram generated by

the spectral density of the form

f (ω, τ) = γ
(
α2β2 + β2ω2 + α2τ2 + ε2ω2τ2

)−ν
, (1.2)

where τ ∈ R, ω = ∥ω∥ with ω ∈ Rd. This class of covariogram was introduced

by Fuentes, Chen and Davis (2008). In (1.2), the scale parameters α > 0 and

β > 0 govern the rates of decay in the spatial and temporal correlations, respec-

tively. The greater the values of α and β, the faster the decay in correlations.

The parameter ν governs the degree of smoothness of the process while ε ∈ [0, 1]

measures the degree of separability between the spatial and temporal compo-

nents. In addition, the parameter γ > 0 is related to the total variance of the

process X (s, t) through σ2 = Var (X (s, t)) = γ
{∫

R
∫
Rd [f (ω, τ) /γ] dωdτ

}
.

SPACE-TIME MATÉRN CLASS COVARIOGRAM 3

Let u = |t1 − t2| and h = ∥s1 − s2∥. The covariogram can be obtained via a

Fourier transform,

Cov (X (s1, t1) , X (s2, t2)) =

∫

R

∫

Rd

exp
(
iω⊤h+ iτu

)
f (ω, τ) dωdτ

△
= σ2M ε

ν (h, u|α, β) . (1.3)

For notational convenience, when there is no chance of confusion, we write

σ2M ε
ν (α, β) = σ2M ε

ν (h, u|α, β). When ε = 1, by direct integration, the covari-

ance function Cov (X (s1, t1) , X (s2, t2)) can be shown to be

σ2M1
ν (α, β) =

σ222−2ν+ d+1
2

Γ
(
ν − d

2

)
Γ
(
ν − 1

2

) (αh)ν− d
2 (βu)ν−

1
2 Kν− d

2
(αh)Kν− 1

2
(βu)

= σ2Mν−d/2(h|α)Mν−1/2(u|β), (1.4)

which is separable as a product of a spatial and a temporal covariance function

where both functions are in the Matérn class. When ε = 1, one requires ν > d/2.

When ε = 0, the covariance function Cov (X (s1, t1) , X (s2, t2)) is given as

σ2M0
ν (α, β) =

σ221−ν+ d+1
2

Γ
(
ν − d+1

2

)
(√

α2h2 + β2u2
)ν− d+1

2 Kν− d+1
2

(√
α2h2 + β2u2

)
,

(1.5)

a the non-separable model. In this case, it is required that ν > (d+ 1) /2. How-

ever, the model is separable when ν → ∞. The covariogram (1.5) can be regarded

as a variant of (1.1) by considering time as an extra axis that allows the rates of

decay in correlations to be different in the spatial domain and in the time domain.

In general, when ε ∈ (0, 1), a closed form of f (ω, τ) after Fourier transform does

not exist and one must rely on a numerical Fourier transformation. We put our

emphasis on the cases ε = 0 and ε = 1, mainly due to the existence of closed

form expressions under Fourier transform. We show here that, under certain

conditions, two Matérn class spatio-temporal covariograms define an equivalent

Gaussian measure. Subsequently, the individual parameters are not consistently

estimable. Nevertheless, there exist quantities which are consistent, and we show

that, these quantities depend on the degree of space-time separability.

Although we focus on the spatio-temporal case, our results can be analo-

gously applied to the anisotropic spatial case where the rate of decay in corre-

lation in one coordinate is different from that of the remaining d coordinates.

Here we assume that there are K (possibly unevenly spaced) locations and T

time points. We focus on the estimation issue because any serious attempt at

inference and prediction requires proper estimation of the model parameters,

especially when the sample size is finite.
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The rest of this paper is organized as follows. Section 2 provides the main

results and discusses the parameter estimation issues. Simulation results are

reported in Section 3. In Section 4, the models discussed in this paper are

applied to a set of air pollution data. Conclusions and discussions are in Section

5. Supplementary material is provided online that contains all proofs and detailed

simulation results.

2. Main Results

2.1. Preliminary

When ν is fixed and d ≤ 3, Zhang (2004) showed that the two Gaus-

sian probability measures P0 and P1 defined by the corresponding covariogram

σ2
iMν (h|αi) , i = 0, 1, are equivalent if and only if σ2

0α
2ν
0 = σ2

1α
2ν
1 . Under the

equivalence of the Gaussian probability measures, only the quantity σ2α2ν is

consistently estimable. It is called the micro-ergodic parameter, see Stein (1999,

p. 162). The concept of equivalence can be referred to Gikhman and Skorokhod

(1974, Chapter VII), for example. Sufficient conditions for equivalence of Gaus-

sian measures were discussed in Skorokhod and Yadrenko (1973), Ibragimov and

Rozanov (1978, p. 104–107), Yadrenko (1983, p. 156), Stein (1999, p. 120),

Stein (2004, Theorem A.1), and Zhang (2004). For more general discussion of

Gaussian measures, see to Bogachev (1998). In particular, consider a spatial pro-

cess X (s) , s ∈ Rd which is stationary Gaussian with mean zero and an isotropic

covariogram with a spectral density f (ω). Denote by Pi, i = 0, 1, two probability

measures such that under Pi, X (s) has the isotropic spectral density fi (ω) (see

Zhang (2004, p. 251)). It has been showed that if f0 (ω)ω
δ is bounded away

from zero and infinity for some δ > 0 as ω → ∞ and, for some finite c, if∫ ∞

c
ωd−1

{
f1 (ω)− f0 (ω)

f0 (ω)

}2

dω < ∞, (2.1)

then P0 ≡ P1. Now, let X (s, t) be a Gaussian process with mean zero and

a covariogram with a spectral density f (ω, τ). If f0 (ω, τ) ∥ω, τ∥δ is bounded

away from zero and infinity for some δ > 0 as ∥ω, τ∥ → ∞, where ∥ω, τ∥ is the

Euclidean norm defined by (ω1, . . . , ωd, τ), and, for some finite c, if
∫∫

∥ω,τ∥>c

{
f1 (ω, τ)− f0 (ω, τ)

f0 (ω, τ)

}2

dωdτ < ∞ (2.2)

then P0 ≡ P1. Hence, for isotropic (in both space and time domain) spectral

density f such that f (ω, τ) = f (ω, τ), Lemma 1 given in the supplementary

material shows that (2.2) can be expressed as
∫∫

A
ωd−1

{
f1 (ω, τ)− f0 (ω, τ)

f0 (ω, τ)

}2

dωdτ < ∞. (2.3)

SPACE-TIME MATÉRN CLASS COVARIOGRAM 5

2.2 Equivalence of Gaussian probability measures

Based on (2.3), we provide conditions under which two Gaussian probability

measures defined by (1.3) are equivalent under different values of ε. It is assumed

that limω,τ→∞ ω/τ = k < ∞. In addition, we assume the true values of ε and ν

are known.

Theorem 1. Let Pi, i = 0, 1, be probability measures so that, under Pi, the pro-

cess X (s, t) , s ∈ Rd, t ∈ R, is stationary Gaussian with mean zero and covariance

function σ2
iM

εi
ν (αi, βi) with ν fixed, 0 ≤ εi ≤ 1, and d = 1, 2. If ri = βi/αi, for

any bounded infinite set DS ×DT ⊂ Rd × R, we have

(a) when εi = 1, P0 ≡ P1 if and only if σ2
0α

2ν−d
0 β2ν−1

0 = σ2
1α

2ν−d
1 β2ν−1

1 ;

(b) when 0 < εi < 1, P0 ≡ P1 if γ0/ε
2ν
0 = γ1/ε

2ν
1 ;

(c) when εi = 0, P0 ≡ P1 if and only if σ2
0α

−d
0 β2ν−1

0 = σ2
1α

−d
1 β2ν−1

1 and r0 = r1.

Thus two Matérn covariograms define the same Gaussian measure. This

result extends Theorem 2 of Zhang (2004) to the spatio-temporal framework.

The condition 0 < d ≤ 2 coincides with the result in Zhang (2004), where the

results hold for d ≤ 3 under the purely spatial framework.

Comparing parts (a) and (c) of Theorem 1, there exists an additional condi-

tion r0 = r1 for the equivalence of P0 and P1 to hold when ε = 0. The condition

signifies the non-separability of the spatial and temporal components. Mean-

while, if we combine the two conditions σ2
0α

−d
0 β2ν−1

0 = σ2
1α

−d
1 β2ν−1

1 and r0 = r1,

we have σ2
0r

d
0β

2ν−d−1
0 = σ2

1r
d
1β

2ν−d−1
1 .

For ε ∈ (0, 1), the quantity γ depends heavily on ε, ν and d. There appears

no general form. As an example, when d = 1 and ν = 1.5, γ takes the form

σ2αβ2ε2/4 2F1

(
0.5, 1, 1.5, 1− ε−2

)
where 2F1 is the Hypergeometric2F1 func-

tion. Then the condition γ0/ε
2ν
0 = γ1/ε

2ν
1 is σ2

0α0β
2
0/ε

2ν−2
0 2F1

(
0.5, 1, 1.5, 1− ε−2

0

)
=

σ2
1α1β

2
1/ε

2ν−2
1 2F1

(
0.5, 1, 1.5, 1− ε−2

1

)
.

Corollary 1. Under the conditions of Theorem 1 with a bounded subset of DS ×
DT ⊂ Rd × R for d ≤ 2, if the process X (s, t) , s ∈ Rd, t ∈ R, is stationary

Gaussian with mean zero with and covariance function σ2M ε
ν (α, β), ε ∈ [0, 1],

given observations X (sj , tj) , j = 1, 2, . . . , n, for n = KT , there exist no weakly

consistent estimators σ2
n, αn, and βn.

Under different values of ε, micro-ergodic parameters do exist and it can be

shown that these quantities are consistently estimable. Let ℓn
(
σ2, α, β; ε

)
be the

log-likelihood function, explicitly

ℓn
(
σ2, α, β; ε

)
= −KT

2
log 2π − KT

2
log σ2 − 1

2
log detΓα,β;ε −

1

2σ2
X⊤

n Γ−1
α,β;εXn,

(2.4)
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tion r0 = r1 for the equivalence of P0 and P1 to hold when ε = 0. The condition

signifies the non-separability of the spatial and temporal components. Mean-

while, if we combine the two conditions σ2
0α

−d
0 β2ν−1

0 = σ2
1α

−d
1 β2ν−1

1 and r0 = r1,

we have σ2
0r

d
0β

2ν−d−1
0 = σ2

1r
d
1β

2ν−d−1
1 .

For ε ∈ (0, 1), the quantity γ depends heavily on ε, ν and d. There appears

no general form. As an example, when d = 1 and ν = 1.5, γ takes the form

σ2αβ2ε2/4 2F1

(
0.5, 1, 1.5, 1− ε−2

)
where 2F1 is the Hypergeometric2F1 func-

tion. Then the condition γ0/ε
2ν
0 = γ1/ε

2ν
1 is σ2

0α0β
2
0/ε

2ν−2
0 2F1

(
0.5, 1, 1.5, 1− ε−2

0

)
=

σ2
1α1β

2
1/ε

2ν−2
1 2F1

(
0.5, 1, 1.5, 1− ε−2

1

)
.

Corollary 1. Under the conditions of Theorem 1 with a bounded subset of DS ×
DT ⊂ Rd × R for d ≤ 2, if the process X (s, t) , s ∈ Rd, t ∈ R, is stationary

Gaussian with mean zero with and covariance function σ2M ε
ν (α, β), ε ∈ [0, 1],

given observations X (sj , tj) , j = 1, 2, . . . , n, for n = KT , there exist no weakly

consistent estimators σ2
n, αn, and βn.

Under different values of ε, micro-ergodic parameters do exist and it can be

shown that these quantities are consistently estimable. Let ℓn
(
σ2, α, β; ε

)
be the

log-likelihood function, explicitly

ℓn
(
σ2, α, β; ε

)
= −KT

2
log 2π − KT

2
log σ2 − 1

2
log detΓα,β;ε −

1

2σ2
X⊤

n Γ−1
α,β;εXn,

(2.4)
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where Xn is the data vector containing all observations X (sj , tj) , j = 1, . . . , n

and Γα,β;ε is the correlation matrix independent of σ2. With ε fixed, by profiling

out σ2, the profile log-likelihood function of (α, β) is

ℓ̃n(α, β; ε) = −KT

2
log 2π− KT

2
log

(
1

KT
X⊤

n Γ−1
α,β;εXn

)
− 1

2
log detΓα,β;ε−

KT

2
(2.5)

and the MLE of σ2 is

σ̂2
n =

1

KT
X⊤

n Γ−1
α,β;εXn. (2.6)

2.3. Asymptotic theory under the separable model

We first consider the case of ε = 1.

Theorem 2. Under the conditions of Theorem 1 with ε = 1, and a bounded

region Dn ⊂ DS×DT ⊂ Rd×R for d ≤ 2, for any fixed constants α1 > 0 and β1 >

0, if σ̂2
n is obtained from (2.6) with Γ−1

α,β replaced by Γ−1
α1,β1

, then σ̂2
nα

2ν−d
1 β2ν−1

1 →
σ2
0α

2ν−d
0 β2ν−1

0 almost surely as K,T → ∞ under P0, the Gaussian probability

measure defined by the covariogram σ2
0M

1
ν (α0, β0).

When ε = 1, the covariogram is indeed separable, so Theorem 2 can be con-

sidered as an extension of Theorem 3 of Zhang (2004). Although mis-specifying

model parameters may have little impact in the asymptotic sense, Kaufman and

Shaby (2013) noticed that this idea is not readily transferable to the finite sample

case. They also found that although α cannot be estimated consistently, the es-

timates are usually fairly close to the true value in simulation studies. A similar

result can also be obtained under the spatio-temporal setting. Direct maximiza-

tion of the profile likelihood (2.5) can present a large computational burden owing

to the large number of observations and the low efficiency in searching the maxi-

mum of a bivariate function. Suggested estimation procedures for different values

of ε are given below. They require maximizing functions of a single parameter

only, and hence effectively reduce the computational burden.

While estimators of individual parameters are not consistent, the data still

contain information about the model parameters. If computational burden is

not a concern, one could directly maximize the profile likelihood function (2.5)

to obtain α̂ and β̂ jointly. If computational power is limited, one could estimate

α and β in the spirit of composite likelihood methods (Varin, Reid and Firth

(2011)). Assuming there is no temporal dependence, α can be estimated from

α̂ = argmax
α∈[αL,αU ]

T∑
t=1

ℓ̃n,t(α), (2.7)

SPACE-TIME MATÉRN CLASS COVARIOGRAM 7

where 0 < αL < αU < ∞, and

ℓ̃n,t(α) = −K

2
log 2π − K

2
log

(
1

K
X⊤

n,tΓ̃
−1
α Xn,t

)
− 1

2
log det Γ̃α − K

2
. (2.8)

In (2.8), Xn,t contains observations of Xn at time t only and Γ̃α is the spatial

correlation matrix with elements Mν (h|α) that do not involve β. Estimation of

β can be done similarly. Given no spatial dependence, β can be estimated from

β̂ = argmax
β∈[βL,βU ]

K∑
k=1

ℓ̃n,k(β), (2.9)

where 0 < βL < βU < ∞ and

ℓ̃n,k(β) = −T

2
log 2π − T

2
log

(
1

T
X⊤

n,kΓ̃
−1
β Xn,k

)
− 1

2
log det Γ̃β − T

2
. (2.10)

In (2.10), Xn,k contains those observations of Xn at location sk only, and Γ̃β is

the temporal correlation matrix with elements Mν (u|β) that do not depend on

α.

Although the estimates from (2.7) and (2.9) are inconsistent, they are usually

fairly close to their true values, as we show in Section 3. With α̂ and β̂, the MLE

σ̂2
n can be obtained from (2.6) with Γ−1

α,β replaced by Γ−1

α̂,β̂
. Let

ζ1α,β = σ̂2
nα

2ν−dβ2ν−1 =
α2ν−dβ2ν−1

KT
X⊤

n Γ−1
α,βXn. (2.11)

Lemma 2 given in the supplementary material shows that ζ1α,β is monotonically

decreasing in both α and β and this property leads to the following.

Theorem 3. Under the conditions in Theorem 1 and ε=1, if α̂ and β̂ are ob-

tained via (2.7) and (2.9), then ζ1
α̂,β̂

→σ2
0α

2ν−d
0 β2ν−1

0 almost surely as K,T →∞.

Theorem 3 extends Theorem 2 by allowing the model parameters to be es-

timated rather than fixed. As argued in Kaufman and Shaby (2013), the data

contain information about the model parameters although the estimates are in-

consistent. Simulation studies in Section 3 reveal that α̂ and β̂ are often close to

the true values and their use could prevent arbitrarily fixing these parameters.

2.4. Asymptotic theory under the non-separable model

When ε = 0 an additional condition is needed to establish the consistency

of the micro-ergodic parameter.
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where Xn is the data vector containing all observations X (sj , tj) , j = 1, . . . , n

and Γα,β;ε is the correlation matrix independent of σ2. With ε fixed, by profiling

out σ2, the profile log-likelihood function of (α, β) is

ℓ̃n(α, β; ε) = −KT
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log 2π− KT

2
log

(
1

KT
X⊤

n Γ−1
α,β;εXn

)
− 1

2
log detΓα,β;ε−

KT

2
(2.5)

and the MLE of σ2 is

σ̂2
n =

1

KT
X⊤

n Γ−1
α,β;εXn. (2.6)
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We first consider the case of ε = 1.
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α,β replaced by Γ−1
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, then σ̂2
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0 almost surely as K,T → ∞ under P0, the Gaussian probability

measure defined by the covariogram σ2
0M

1
ν (α0, β0).

When ε = 1, the covariogram is indeed separable, so Theorem 2 can be con-

sidered as an extension of Theorem 3 of Zhang (2004). Although mis-specifying

model parameters may have little impact in the asymptotic sense, Kaufman and

Shaby (2013) noticed that this idea is not readily transferable to the finite sample

case. They also found that although α cannot be estimated consistently, the es-

timates are usually fairly close to the true value in simulation studies. A similar

result can also be obtained under the spatio-temporal setting. Direct maximiza-

tion of the profile likelihood (2.5) can present a large computational burden owing

to the large number of observations and the low efficiency in searching the maxi-

mum of a bivariate function. Suggested estimation procedures for different values

of ε are given below. They require maximizing functions of a single parameter

only, and hence effectively reduce the computational burden.

While estimators of individual parameters are not consistent, the data still

contain information about the model parameters. If computational burden is

not a concern, one could directly maximize the profile likelihood function (2.5)

to obtain α̂ and β̂ jointly. If computational power is limited, one could estimate

α and β in the spirit of composite likelihood methods (Varin, Reid and Firth

(2011)). Assuming there is no temporal dependence, α can be estimated from

α̂ = argmax
α∈[αL,αU ]

T∑
t=1

ℓ̃n,t(α), (2.7)

SPACE-TIME MATÉRN CLASS COVARIOGRAM 7

where 0 < αL < αU < ∞, and

ℓ̃n,t(α) = −K

2
log 2π − K

2
log

(
1

K
X⊤

n,tΓ̃
−1
α Xn,t

)
− 1

2
log det Γ̃α − K

2
. (2.8)

In (2.8), Xn,t contains observations of Xn at time t only and Γ̃α is the spatial

correlation matrix with elements Mν (h|α) that do not involve β. Estimation of

β can be done similarly. Given no spatial dependence, β can be estimated from

β̂ = argmax
β∈[βL,βU ]

K∑
k=1

ℓ̃n,k(β), (2.9)

where 0 < βL < βU < ∞ and

ℓ̃n,k(β) = −T

2
log 2π − T

2
log

(
1

T
X⊤

n,kΓ̃
−1
β Xn,k

)
− 1

2
log det Γ̃β − T

2
. (2.10)

In (2.10), Xn,k contains those observations of Xn at location sk only, and Γ̃β is

the temporal correlation matrix with elements Mν (u|β) that do not depend on

α.

Although the estimates from (2.7) and (2.9) are inconsistent, they are usually

fairly close to their true values, as we show in Section 3. With α̂ and β̂, the MLE

σ̂2
n can be obtained from (2.6) with Γ−1

α,β replaced by Γ−1

α̂,β̂
. Let

ζ1α,β = σ̂2
nα

2ν−dβ2ν−1 =
α2ν−dβ2ν−1

KT
X⊤

n Γ−1
α,βXn. (2.11)

Lemma 2 given in the supplementary material shows that ζ1α,β is monotonically

decreasing in both α and β and this property leads to the following.

Theorem 3. Under the conditions in Theorem 1 and ε=1, if α̂ and β̂ are ob-

tained via (2.7) and (2.9), then ζ1
α̂,β̂

→σ2
0α

2ν−d
0 β2ν−1

0 almost surely as K,T →∞.

Theorem 3 extends Theorem 2 by allowing the model parameters to be es-

timated rather than fixed. As argued in Kaufman and Shaby (2013), the data

contain information about the model parameters although the estimates are in-

consistent. Simulation studies in Section 3 reveal that α̂ and β̂ are often close to

the true values and their use could prevent arbitrarily fixing these parameters.

2.4. Asymptotic theory under the non-separable model

When ε = 0 an additional condition is needed to establish the consistency

of the micro-ergodic parameter.
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Theorem 4. Under the conditions in Theorem 1 and ε = 0, for any fixed con-

stants α1 > 0 and β1 > 0, if β1/α1 = β0/α0 = r and σ̂2
n is obtained from (2.6)

with Γ−1
α,β replaced by Γ−1

α1,β1
, then σ̂2

n (β1/α1)
d β2ν−d−1

1 → σ2
0 (β0/α0)

d β2ν−d−1
0

almost surely as K,T → ∞ under P0, the Gaussian probability measure defined

by the covariogram σ2
0M

0
ν (α0, β0).

We will show that Theorem 4 continues to hold when the model parameters

are estimated rather than fixed arbitrarily. Assume α (or, equivalently, β) is

fixed as α2, then r can be estimated through

r̂n=argmax
r∈R+

ℓ̃n (α2, rα2; 0) (2.12)

=argmax
r∈R+

{
−KT

2
log 2π − KT

2
log

(
X⊤

n Γ−1
α2,rα2

Xn

KT

)
− 1

2
log detΓα2,rα2−

KT

2

}
,

where α2 > 0 can be any value. In (2.12), r̂n can be considered as the maximum

profile likelihood estimator of r maximized over the positive real line. Hence, the

MLE σ̂2
n can be obtained from (2.6) with Γ−1

α,β replaced by Γ−1
α2,r̂nα2

. Let

ζ0α,r = σ̂2
n

(
β

α

)d

β2ν−d−1 =
r2ν−1α2ν−d−1

KT
X⊤

n Γ−1
α,rαXn. (2.13)

Theorem 5. Under the conditions in Theorem 1 and ε = 0, if r̂n is the maxi-

mizer of (2.12) for α2 > 0 fixed, and if σ̂2
n is obtained from (2.6), then ζ0α2,r̂n

→
σ2
0 (β0/α0)

d β2ν−d−1
0 = σ2

0r
d
0β

2ν−d−1
0 almost surely as K,T → ∞.

The next result shows that, similar to the separable case, Theorem 5 con-

tinues to hold if we estimate α through any method and plug α̂ into (2.12) to

obtain r̂n. One way to estimate α is through (2.7), as in the case ε = 1.

Theorem 6. Under the conditions in Theorem 1 and ε = 0, if α̂ is an estimate of

α0 in [αL, αU ] where 0 < αL < αU < ∞, and r̂n is the maximizer of (2.12) with

α̂ plugged in, then if σ̂2
n is obtained from (2.6), ζ0α̂,r̂n → σ2

0 (β0/α0)
d β2ν−d−1

0 =

σ2
0r

d
0β

2ν−d−1
0 almost surely as K,T → ∞.

In the purely spatial setting, Stein (1999), Zhang (2004) and Kaufman and

Shaby (2013) showed that interpolations are asymptotically equal when the

mirco-ergodic parameters are the same, even when the individual parameters

are mis-specified. It is conjectured that the interpolation results will also hold

under the spatio-temporal framework. We consider it as an important problem

and leave it for future study.
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3. Simulations

3.1. Simulation set-up

In this simulation study, we set d = 2 with the set of true parameters

(ν0, α0, β0, σ0) = (2.0, 0.3, 3.0, 1.0). Then the true quantity of ζ1α0,β0
= σ2

0α
2ν−d
0

β2ν−1
0 is 2.43, a benchmark for the separable case. Meanwhile, the true ratio r0

is 10 and ζ0α0,r0 = σ2
0r

d
0β

2ν−d−1
0 is 300, benchmarks for the non-separable case.

We fixed the sampling region as DS ×DT = [0, 1]2 × [0, 1].

The spatial coordinates were set as {(i/
√
K, j/

√
K), i, j = 1, . . . ,

√
K,

√
K ∈

N}, and the time coordinates as {t/T, t=1, . . . , T}. We took T =K={25, 36, 49},
so for each independent replicate there were n = KT = {625, 1,296, 2,401}
observations. The number of simulation replicates was 500. For each simulation

replicate, the observations were generated using the MASS package in R (version

3.2.1) (R Core Team (2015)) developed by Venables and Ripley (2002). The

parameters (α, β) were fixed or estimated as given in 11 scenarios.

Scenario 1: ε = 1, fix (α, β) = (0.3, 3.0).

Scenario 2: ε = 1, fix (α, β) = (0.4, 2.0).

Scenario 3: ε = 1, fix (α, β) = (1.0, 1.0).

Scenario 4: ε = 1, estimate (α, β) from (2.7) and (2.9).

Scenario 5: ε = 0, fix (α, β) = (0.3, 3.0).

Scenario 6: ε = 0, fix (α, β) = (0.1, 1.0) with β/α = r0.

Scenario 7: ε = 0, fix (α, β) = (1.0, 1.0) with β/α ̸= r0.

Scenario 8: ε = 0, fix α = 0.3 and estimate r from (2.12).

Scenario 9: ε = 0, fix α = 0.5 and estimate r from (2.12).

Scenario 10: ε = 0, fix α = 1.0 and estimate r from (2.12).

Scenario 11: ε = 0, estimate α and r, respectively, from (2.7) and (2.12).

Scenarios 1 to 4 focus on the separable model while the others focus on the

non-separable case.

3.2. Simulation results

Figures 1 and 2 report the distributions of ζ̂ under the different scenarios,

via boxplots. The summary statistics of all estimated parameters can be found

in Tables 1 to 3 in the supplementary material. Figure 3 is also provided to show

the distributions of α̂ and r̂ under Scenario 11. In general, the simulation results

show better performance as sample sizes increase.
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Theorem 4. Under the conditions in Theorem 1 and ε = 0, for any fixed con-

stants α1 > 0 and β1 > 0, if β1/α1 = β0/α0 = r and σ̂2
n is obtained from (2.6)

with Γ−1
α,β replaced by Γ−1

α1,β1
, then σ̂2

n (β1/α1)
d β2ν−d−1

1 → σ2
0 (β0/α0)

d β2ν−d−1
0

almost surely as K,T → ∞ under P0, the Gaussian probability measure defined

by the covariogram σ2
0M

0
ν (α0, β0).

We will show that Theorem 4 continues to hold when the model parameters

are estimated rather than fixed arbitrarily. Assume α (or, equivalently, β) is

fixed as α2, then r can be estimated through

r̂n=argmax
r∈R+

ℓ̃n (α2, rα2; 0) (2.12)

=argmax
r∈R+

{
−KT

2
log 2π − KT

2
log

(
X⊤

n Γ−1
α2,rα2

Xn

KT

)
− 1

2
log detΓα2,rα2−

KT

2

}
,

where α2 > 0 can be any value. In (2.12), r̂n can be considered as the maximum

profile likelihood estimator of r maximized over the positive real line. Hence, the

MLE σ̂2
n can be obtained from (2.6) with Γ−1

α,β replaced by Γ−1
α2,r̂nα2

. Let

ζ0α,r = σ̂2
n

(
β

α

)d

β2ν−d−1 =
r2ν−1α2ν−d−1

KT
X⊤

n Γ−1
α,rαXn. (2.13)

Theorem 5. Under the conditions in Theorem 1 and ε = 0, if r̂n is the maxi-

mizer of (2.12) for α2 > 0 fixed, and if σ̂2
n is obtained from (2.6), then ζ0α2,r̂n

→
σ2
0 (β0/α0)

d β2ν−d−1
0 = σ2

0r
d
0β

2ν−d−1
0 almost surely as K,T → ∞.

The next result shows that, similar to the separable case, Theorem 5 con-

tinues to hold if we estimate α through any method and plug α̂ into (2.12) to

obtain r̂n. One way to estimate α is through (2.7), as in the case ε = 1.

Theorem 6. Under the conditions in Theorem 1 and ε = 0, if α̂ is an estimate of

α0 in [αL, αU ] where 0 < αL < αU < ∞, and r̂n is the maximizer of (2.12) with

α̂ plugged in, then if σ̂2
n is obtained from (2.6), ζ0α̂,r̂n → σ2

0 (β0/α0)
d β2ν−d−1

0 =

σ2
0r
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0β

2ν−d−1
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In the purely spatial setting, Stein (1999), Zhang (2004) and Kaufman and

Shaby (2013) showed that interpolations are asymptotically equal when the

mirco-ergodic parameters are the same, even when the individual parameters

are mis-specified. It is conjectured that the interpolation results will also hold

under the spatio-temporal framework. We consider it as an important problem

and leave it for future study.
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(ν0, α0, β0, σ0) = (2.0, 0.3, 3.0, 1.0). Then the true quantity of ζ1α0,β0
= σ2

0α
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β2ν−1
0 is 2.43, a benchmark for the separable case. Meanwhile, the true ratio r0

is 10 and ζ0α0,r0 = σ2
0r

d
0β

2ν−d−1
0 is 300, benchmarks for the non-separable case.

We fixed the sampling region as DS ×DT = [0, 1]2 × [0, 1].

The spatial coordinates were set as {(i/
√
K, j/

√
K), i, j = 1, . . . ,

√
K,

√
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N}, and the time coordinates as {t/T, t=1, . . . , T}. We took T =K={25, 36, 49},
so for each independent replicate there were n = KT = {625, 1,296, 2,401}
observations. The number of simulation replicates was 500. For each simulation

replicate, the observations were generated using the MASS package in R (version

3.2.1) (R Core Team (2015)) developed by Venables and Ripley (2002). The

parameters (α, β) were fixed or estimated as given in 11 scenarios.

Scenario 1: ε = 1, fix (α, β) = (0.3, 3.0).

Scenario 2: ε = 1, fix (α, β) = (0.4, 2.0).

Scenario 3: ε = 1, fix (α, β) = (1.0, 1.0).

Scenario 4: ε = 1, estimate (α, β) from (2.7) and (2.9).

Scenario 5: ε = 0, fix (α, β) = (0.3, 3.0).

Scenario 6: ε = 0, fix (α, β) = (0.1, 1.0) with β/α = r0.

Scenario 7: ε = 0, fix (α, β) = (1.0, 1.0) with β/α ̸= r0.

Scenario 8: ε = 0, fix α = 0.3 and estimate r from (2.12).

Scenario 9: ε = 0, fix α = 0.5 and estimate r from (2.12).

Scenario 10: ε = 0, fix α = 1.0 and estimate r from (2.12).

Scenario 11: ε = 0, estimate α and r, respectively, from (2.7) and (2.12).

Scenarios 1 to 4 focus on the separable model while the others focus on the

non-separable case.

3.2. Simulation results

Figures 1 and 2 report the distributions of ζ̂ under the different scenarios,

via boxplots. The summary statistics of all estimated parameters can be found

in Tables 1 to 3 in the supplementary material. Figure 3 is also provided to show

the distributions of α̂ and r̂ under Scenario 11. In general, the simulation results

show better performance as sample sizes increase.
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Figure 1. Distributions of ζ̂ under scenarios 1 to 4. For each group of
the boxplots, the values of K are 25, 36 and 49 (from left to right). The
horizontal dashed line indicates the true value σ2

0α
2ν−d
0 β2ν−1

0 = 2.43.

Figure 2. Distributions of ζ̂ under scenarios 5 to 11. For each group of
the boxplots, the values of K are 25, 36 and 49 (from left to right). The
horizontal dashed line indicates the true value σ2

0r
d
0β

2ν−d−1
0 = 300.

For Scenarios 1 to 3, it can be seen from Figure 1 that, even when α and

β were mis-specified, ζ̂ converges to its true value as sample size increases; the

convergence is faster when α and β are closer to the true values. Under Scenario

4, Table 1 in the supplementary material has ζ̂ converging to its true value

although α̂ and β̂ are slightly biased and that all the estimates of α, β and σ2
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Figure 3. Distributions of α̂ (left panel) and r̂ (right panel) under scenario
11. For each group of the boxplots, the values of K are 25, 36 and 49 (from
left to right). The horizontal dashed lines indicate the true values α0 = 0.3
and r0 = 10.

are inconsistent (the standard deviations of α̂, β̂ and σ̂2 show little reductions,

if not increased, when K increases from 25 to 49).

Under scenarios 5 to 7, it can be seen that α and β need not be correctly

specified, but the ratio β/α needs to be correctly specified (compare Scenarios 6

and 7). Comparing Scenarios 5 and 6, it can be seen that if α and β are closer

to the true values, ζ̂ converges more quickly to its true value.

For Scenarios 8 to 10, from Table 3 in the supplementary material, both

r̂ and ζ̂ appear to be converging to their respective true values as sample size

increases. In comparing Scenarios 9 and 10, if α is fixed at a value closer to the

true value, both r̂ and ζ̂ converge faster.

Under Scenario 11, we allowed α to be estimated from the data. We see

from Table 3 in the supplementary material that both r̂ and ζ̂ have decreasing

standard deviations as sample size increases. Here the standard deviations of α̂

remain large as sample size increases. Meanwhile, judging from Figure 3, α̂ tends

to be over-estimated and the standard deviation seems to be non-decreasing. In

practice, unless practitioners have some knowledge regarding the true value of

α, it is still reasonable to use α̂ to proceed to further estimation. From the

right panel of Figure 3, r̂ seems to be converging to its true value as sample size

increases.
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Figure 1. Distributions of ζ̂ under scenarios 1 to 4. For each group of
the boxplots, the values of K are 25, 36 and 49 (from left to right). The
horizontal dashed line indicates the true value σ2
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Figure 2. Distributions of ζ̂ under scenarios 5 to 11. For each group of
the boxplots, the values of K are 25, 36 and 49 (from left to right). The
horizontal dashed line indicates the true value σ2
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For Scenarios 1 to 3, it can be seen from Figure 1 that, even when α and

β were mis-specified, ζ̂ converges to its true value as sample size increases; the

convergence is faster when α and β are closer to the true values. Under Scenario

4, Table 1 in the supplementary material has ζ̂ converging to its true value

although α̂ and β̂ are slightly biased and that all the estimates of α, β and σ2
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Figure 3. Distributions of α̂ (left panel) and r̂ (right panel) under scenario
11. For each group of the boxplots, the values of K are 25, 36 and 49 (from
left to right). The horizontal dashed lines indicate the true values α0 = 0.3
and r0 = 10.

are inconsistent (the standard deviations of α̂, β̂ and σ̂2 show little reductions,

if not increased, when K increases from 25 to 49).

Under scenarios 5 to 7, it can be seen that α and β need not be correctly

specified, but the ratio β/α needs to be correctly specified (compare Scenarios 6

and 7). Comparing Scenarios 5 and 6, it can be seen that if α and β are closer

to the true values, ζ̂ converges more quickly to its true value.

For Scenarios 8 to 10, from Table 3 in the supplementary material, both

r̂ and ζ̂ appear to be converging to their respective true values as sample size

increases. In comparing Scenarios 9 and 10, if α is fixed at a value closer to the

true value, both r̂ and ζ̂ converge faster.

Under Scenario 11, we allowed α to be estimated from the data. We see

from Table 3 in the supplementary material that both r̂ and ζ̂ have decreasing

standard deviations as sample size increases. Here the standard deviations of α̂

remain large as sample size increases. Meanwhile, judging from Figure 3, α̂ tends

to be over-estimated and the standard deviation seems to be non-decreasing. In

practice, unless practitioners have some knowledge regarding the true value of

α, it is still reasonable to use α̂ to proceed to further estimation. From the

right panel of Figure 3, r̂ seems to be converging to its true value as sample size

increases.
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4. Application

In the previous sections, the smoothness parameter ν is known, but knowl-

edge about ν is usually minimal in practice and researchers must estimate it. Not

only is the estimation of ν difficult (Bai, Song and Raghunathan (2012, p.820)),

the impact on the theoretical results are yet to be investigated if ν was jointly

estimated with other parameters. For use of ν as known, we estimate ν based

on a grid search, as outlined in Section 4.2. As an illustration of the estimation

procedures for the spatio-temporal covariance functions (1.4) and (1.5), we have

fitted the models to an air pollution dataset. Section 4.4 studies the effects on

estimation when the scale parameters are arbitrarily fixed.

4.1. Data

The dataset was recorded by the California Air Resources Board. It consists

of daily averages of nitrogen dioxide (NO2). The dataset, together with other

variables, as recorded on a specific day was studied by Majumdar and Gelfand

(2007) and Schmidt and Gelfand (2003) under the purely spatial framework.

After removing the stations with missing values over the period from September

to October, 2010 (61 days), the final dataset consists of 31 stations (as shown in

Figure 4). The maximum distance between stations is approximately 920 km.

The logarithm of the original values were used, in order to achieve approxi-

mate normality, as suggested by Schmidt and Gelfand (2003). We also removed

the small-scale and monthly effects using a two-way ANOVA model, following

Bai, Song and Raghunathan (2012). The mean values of each location over each

month were subtracted from the original values to achieve a zero-mean assump-

tion. Moreover, for computational stability, we computed the empirical marginal

variance and standardized the variable as suggested by Gneiting, Kleiber and

Schlather (2010). Finally, we divided the distance between stations by the max-

imum distance and the time points by the maximum time point to take the

sampling region as [0, 1]2 × [0, 1].

4.2. Estimation

We fit both separable and non-separable models to the transformed dataset.

For the separable model, (α, β) could be fixed arbitrarily, but we estimated α

and β using (2.7) and (2.9) and then estimated σ2 using (2.6) for fixed values

of ν. For the non-separable model, we first estimated α via (2.7), then the

ratio r and the variance σ2 were estimated via (2.12) and (2.6), respectively.

We relied on grid search in estimating ν, which turned out to work sufficiently

well in our application. We performed grid searches over the interval (1.0, 2.0]

for the separable model and over (1.5, 2.5] for the non-separable model, with an
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Figure 4. Locations of the sampling stations.

increment of 0.05. Then we performed grid searches with an increment of 0.01

around the values of ν that maximized the log-likelihood values. For each fixed

value of ν, α, β, and σ2 were estimated and the corresponding log-likelihood value

was recorded. For each value of ε ∈ {0, 1}, the estimated values of ν were the

ones that maximized the log-likelihood values.

4.3. Estimation results

The estimates of the model parameters are in Table 1, while Figure 5 shows

the plots of empirical and estimated covariance against distance at different time

lags.

From Table 1, the rate of decay in temporal correlation is larger than the rate

of decay in spatial correlation, regardless of the degree of separability. Judging

from the values of the log-likelihood, the separable model is more favourable.

This can also been seen from Figure 5: the separable model (solid line) fits the

empirical covariance better than the non-separable model (broken line). The

difference between the two models is obvious when time lag is 0 and 1. The

difference appeared to be small for higher time lags; we do not show the results

for time lags greater than 3 since both empirical and estimated covariances are

very close to 0.

4.4. Effect on estimation with arbitrarily fixed parameters

Here we demonstrate the effect on the micro-ergodic parameters when the

scale parameters are arbitrarily fixed. The covariance models for NO2 were

refitted. However, instead of estimating α and β, they were fixed arbitrarily.
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For the separable model, (α, β) could be fixed arbitrarily, but we estimated α

and β using (2.7) and (2.9) and then estimated σ2 using (2.6) for fixed values

of ν. For the non-separable model, we first estimated α via (2.7), then the

ratio r and the variance σ2 were estimated via (2.12) and (2.6), respectively.

We relied on grid search in estimating ν, which turned out to work sufficiently

well in our application. We performed grid searches over the interval (1.0, 2.0]

for the separable model and over (1.5, 2.5] for the non-separable model, with an
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increment of 0.05. Then we performed grid searches with an increment of 0.01

around the values of ν that maximized the log-likelihood values. For each fixed

value of ν, α, β, and σ2 were estimated and the corresponding log-likelihood value

was recorded. For each value of ε ∈ {0, 1}, the estimated values of ν were the

ones that maximized the log-likelihood values.

4.3. Estimation results

The estimates of the model parameters are in Table 1, while Figure 5 shows

the plots of empirical and estimated covariance against distance at different time

lags.

From Table 1, the rate of decay in temporal correlation is larger than the rate

of decay in spatial correlation, regardless of the degree of separability. Judging

from the values of the log-likelihood, the separable model is more favourable.

This can also been seen from Figure 5: the separable model (solid line) fits the

empirical covariance better than the non-separable model (broken line). The

difference between the two models is obvious when time lag is 0 and 1. The

difference appeared to be small for higher time lags; we do not show the results

for time lags greater than 3 since both empirical and estimated covariances are

very close to 0.

4.4. Effect on estimation with arbitrarily fixed parameters

Here we demonstrate the effect on the micro-ergodic parameters when the

scale parameters are arbitrarily fixed. The covariance models for NO2 were

refitted. However, instead of estimating α and β, they were fixed arbitrarily.
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Table 1. Estimates of parameters for NO2 under the separable and non-
separable models.

ε α̂ β̂ σ̂2 ν̂ ζ̂ log-likelihood

0 1.0420 16.5036 0.8997 1.71 732.640 -1653.06
1 0.3511 32.3782 1.4471 1.15 97.1548 -1549.73

Figure 5. Plots of empirical (cross) and fitted spatial covariance against

distance at different time lags (solid line: ε = 1, α = α̂, β = β̂; broken line:

ε = 0, α = α̂, β = β̂; square: ε = 1, (α, β) fixed as (0.9, 45); triangle: ε = 0, α
fixed as 2.0).

Optimizations were carried out using the estimated ν’s given in Table 1. Under

the separable model, we fixed α and β arbitrarily. Under the non-separable

model, α was fixed and β was either fixed or estimated via (2.12). Under all

cases, σ2 was estimated via (2.6). The results are summarized in Table 2.

Under the non-separable model, r̂ calculated from Table 1 is 15.838 and

ζ̂ is 732.64. Table 2 shows that ζ̂ is almost unchanged when (α, β) is fixed
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Table 2. Estimates of r, σ2 and ζ with arbitrarily fixed parameters.

Condition r̂ σ̂2 ζ̂

ε = 0

(α, β) fixed as (0.5, 7.919) — 1.2145 726.499
(α, β) fixed as (0.5, 20) — 1.1797 6642.62
α fixed as 0.5 16.3460 1.2120 782.575
α fixed as 2.0 13.8701 0.7068 548.972

ε = 1

(α, β) fixed as (0.2, 28) — 1.9719 92.5749
(α, β) fixed as (0.7, 12) — 3.7402 84.9873
(α, β) fixed as (0.9, 45) — 0.8410 114.885

as (0.5, 7.919), where the ratio r = β/α = 15.838. Yet, when (α, β) is fixed

as (0.5, 20), with r = 40, ζ̂ was changed by a considerable amount. These

observations reflect the conditions required for the convergence of ζ̂ in Theorem

4. Table 2 also shows that when α is fixed arbitrarily, r̂ and ζ̂ are fairly close to

the corresponding values given in Table 1. The fitted covariance when α is fixed

at 2.0 is provided in Figure 5 (triangles). The fitted covariance disagrees with

the empirical covariance by a larger extent, compared with the broken line. This

demonstrates the disadvantages of fixing the scale parameters arbitrarily rather

than estimating it.

Under the separable model, ζ̂ given in Table 1 is 97.1548. From Table 2, it

can be seen that, regardless of the arbitrarily fixed (α, β), ζ̂ remains fairly close

to 97.1548. The fitted covariance when (α, β) is fixed at (0.9, 45) is provided

in Figure 5 (squares). Similar to the non-separable case, the fitted covariance is

poor when compared with the solid line. In practice, it is better to estimate the

parameters instead of fixing them, although the estimators are inconsistent.

5. Conclusions and Discussions

In this paper, a Matérn class covariance model in the spatio-temporal frame-

work is considered. Under different degrees of separability, conditions leading to

equivalent Gaussian measures are found and practical estimation steps are pro-

vided. It is found that not all model parameters can be estimated consistently.

Nevertheless, micro-ergodic parameters which are consistently estimable under

infill asymptotics are reported. Through simulation, it has been shown that the

asymptotic result performs fairly well even when the sample size is moderate.

The estimation procedures are found to be useful in modelling a set of data. It

is worth emphasizing once again that, although we focus on the spatio-temporal

case, the results in this paper can be analogously applied to the anisotropic purely
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(α, β) fixed as (0.9, 45) — 0.8410 114.885

as (0.5, 7.919), where the ratio r = β/α = 15.838. Yet, when (α, β) is fixed

as (0.5, 20), with r = 40, ζ̂ was changed by a considerable amount. These

observations reflect the conditions required for the convergence of ζ̂ in Theorem

4. Table 2 also shows that when α is fixed arbitrarily, r̂ and ζ̂ are fairly close to

the corresponding values given in Table 1. The fitted covariance when α is fixed

at 2.0 is provided in Figure 5 (triangles). The fitted covariance disagrees with

the empirical covariance by a larger extent, compared with the broken line. This

demonstrates the disadvantages of fixing the scale parameters arbitrarily rather

than estimating it.

Under the separable model, ζ̂ given in Table 1 is 97.1548. From Table 2, it

can be seen that, regardless of the arbitrarily fixed (α, β), ζ̂ remains fairly close

to 97.1548. The fitted covariance when (α, β) is fixed at (0.9, 45) is provided

in Figure 5 (squares). Similar to the non-separable case, the fitted covariance is

poor when compared with the solid line. In practice, it is better to estimate the

parameters instead of fixing them, although the estimators are inconsistent.

5. Conclusions and Discussions

In this paper, a Matérn class covariance model in the spatio-temporal frame-

work is considered. Under different degrees of separability, conditions leading to

equivalent Gaussian measures are found and practical estimation steps are pro-

vided. It is found that not all model parameters can be estimated consistently.

Nevertheless, micro-ergodic parameters which are consistently estimable under

infill asymptotics are reported. Through simulation, it has been shown that the

asymptotic result performs fairly well even when the sample size is moderate.

The estimation procedures are found to be useful in modelling a set of data. It

is worth emphasizing once again that, although we focus on the spatio-temporal

case, the results in this paper can be analogously applied to the anisotropic purely
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spatial case where the rate of decay in correlation in one coordinate is different

from the remaining d coordinates.

Although the consistency of micro-ergodic parameters has been proven, the

asymptotic distributions of the estimators under different values of ε remain

open. It is conjectured that the results can be obtained by extending Theorem

3 of Wang and Loh (2011). This will be a potential topic for future research.

Throughout, we have focused on the cases ε = 0 and 1, representing the

completely non-separable and separable cases. The case for ε ∈ (0, 1) should be

practically useful. But, without the closed form expression of the covariance func-

tion, implementation of likelihood methods would be difficult. Further studies

will be conducted for the case ε ∈ (0, 1). We believe that the current results pro-

vide insights for study of asymptotics for the spatio-temporal covariance models

proposed by Gneiting (2002).

We have estimated the parameters through likelihood approaches with Gaus-

sianity assumed. Still, the method is computationally intensive, especially when

K or T is large. The situation worsens when both of them are large. For more effi-

cient computing, one might use the composite or approximate likelihood method

as given in Bai, Song and Raghunathan (2012) and Bevilacqua et al. (2012), Cur-

riero and Lele (1999), Varin, Reid and Firth (2011), and Vecchia (1988). Another

method introduced recently is the “covariance tapering” method of Kaufman,

Schervish and Nychka (2008). Statistical properties of Gaussian random fields

using covariance tapering techniques can be found in Du, Zhang and Mandrekar

(2009), Shaby and Ruppert (2012), and Wang and Loh (2011). It is expected

that similar results can be achieved in the spatio-temporal case. The recent trend

of using hierarchical models could also ease the computational burden, but the

approach is completely different, see Cressie and Wikle (2011) for more details.

When there are strong factors suggesting non-Gaussianity or non-stationarity,

one might consult de Luna and Genton (2005), Wikle and Royle (2005) and

Fonseca and Stell (2011).

Another issue is the estimation of ν. Here ν is assumed known in the theoret-

ical development and is estimated through a grid search method in applications.

As noted by Stein (1999) and Bai, Song and Raghunathan (2012), the estimation

of ν requires dense spatial (and probably spatio-temporal) data which are usually

unavailable in practice. In addition, Handcock and Wallis (1994) noted that it

requires expensive computations if ν is not an integer and hence they resorted to

the use of Bayesian methods. Investigation on efficient methods for estimating ν

is left for future research.

Supplementary Material

The online supplementary material contains the proofs of the theories and

detailed simulation results.
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Fonseca and Stell (2011).

Another issue is the estimation of ν. Here ν is assumed known in the theoret-

ical development and is estimated through a grid search method in applications.

As noted by Stein (1999) and Bai, Song and Raghunathan (2012), the estimation

of ν requires dense spatial (and probably spatio-temporal) data which are usually

unavailable in practice. In addition, Handcock and Wallis (1994) noted that it

requires expensive computations if ν is not an integer and hence they resorted to

the use of Bayesian methods. Investigation on efficient methods for estimating ν

is left for future research.
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The online supplementary material contains the proofs of the theories and

detailed simulation results.
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