

Suman Basnet

Interaction with Images Using Hand Gestures

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Electronics Engineering

Thesis

31 May 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Theseus

https://core.ac.uk/display/45600977?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Abstract

Author(s)
Title

Number of Pages
Date

Suman Basnet
Interaction with images using hand gestures

24 pages + 2 appendices
31 May 2016

Degree Bachelor of Engineering

Degree Programme Electronics

Specialisation option

Instructor(s)

Janne Mäntykoski, Senior Lecturer, Helsinki Metropolia AMK

The main objective of this Final Year Project (FYP) is to achieve prototype of an embedded
system where any user can control the flow of the images in the Graphical User Interface
(GUI).

This report starts with working mechanism of the sensors where gesture recognition pattern
of the sensors is discussed. Then, the hardware and software requirements are enlisted with
their features’ description in the system specifications heading. Eventually, stepwise elabo-
ration of two different phases of the system is discussed in the methodology heading.

The main constituents of this FYP are Arduino Nano, Ultrasonic sensors and Python Pro-
gramming Language. The whole system activates when ultrasonic sensors connected to the
Arduino Nano follow the hand gestures of the user. After that the Arduino Nano forward the
information about the hand movements to the serial port of the computer and Python Pro-
gramming language executes the commands indicated by the hand movement, changing
the images in the Graphical User Interface (GUI) accordingly.

Finally; challenges, limitations and possible upgrade in the system design are discussed in
the conclusion part of this report.

Keywords Ultrasonic sensors, Arduino Nano, Interaction with images us-
ing hand gesture

Contents

1 Introduction 1

 1.1 Thesis structure 1

2 Theoretical background 2

 2.1 Gesture recognition 3

 2.1.1 Gesture recognition by Arduino with the help of Ultrasonic sensors 3

 2.1.2 Gesture recognition by Python Programming Language 5

3 System specifications 8

 3.1 Primary Components 8

 3.1.1 Ultrasonic Sensors 8

 3.1.2 Arduino Nano 10

 3.1.2.1 Arduino Software 10

 3.1.2.2 Arduino Hardware 11

 3.1.3 Python Programming Language 13

 3.2 Secondary Components 13

4 Methodology 14

 4.1 Phase I 14

 4.2 Phase II 17

 4.2.1 GTK toolkit 18

 4.2.2 PyGTK 18

 4.2.3 Cairo Graphics Library 18

 4.2.4 PySerial 18

 4.2.5 GObject 19

5 Review 20

6 Conclusion 22

References 23

Appendices

Appendix 1. Determination of hand movement by Arduino

Appendix 2. Changing images in GUI with Python

Abbreviations

GUI Graphical User Interface

CLI Command Line Interface

PPL Python Programming Language

GTL Gimp Toolkit

HCI Human Computer Interaction

FYP Final Year Project

SONAR Sound Navigation and Ranging

LED Light Emitting Diode

1

1 Introduction

Indulging more onto the complexity of an embedded system design, we find CLI and

GUI interacting between user and system functions. For instance, if you click Mozilla

icon in a personal computer, Mozilla web-browser opens where you can plug and

play with websites of different domain names. Till some years back, if anybody would

want to establish a communication in any embedded systems, CLI and GUI would

always come in tandem. Due to the continuous innovation and upgrade in technol-

ogy, CLI’s function has been limited to some extent. Recent development has given

options like hand gesture for end-user to interact with the GUI.

From the beginning of time, hand related gestures has always been fundamental part

of communication and it used in expressing variety of emotions These emotions are

as diverse as taunting, disapproval, joy and affection, to commands and invocations.

In other words, other than verbal communication, hand gestures are the most natural

way for humans to communicate with the environment and fellow human. From the

technological perspective, application of gestures can be seen in surfing images in

Samsung phones, remotely controlling television and many more. Hence, we can

state that the use of hand gestures provides an attractive alternative to cornerstone

for HCI.

This objective of this FYP is to create a prototype where any user can control the

flow or animation of images in the GUI with the help of hand gesture. It deals with

the use of components like ultrasonic sensors, Arduino gadgets and other less so-

phisticated components like resistors, LEDs.

1.1 Thesis Structure

This thesis report starts with the introduction of the thesis topic with a brief information

about its objective.

The second part is titled working mechanism where the theoretical background of the

thesis is discussed.

2

System specifications is the third part where the components used in the develop-

ment of prototype are enlisted along with their functionalities.

In the fourth part, the methodology used in the creation of final product is described

in two different phases.

The FYP is reviewed in the fifth part. It summarises the project with key parts cov-

ered.

The sixth part discusses the conclusion about the project, challenges incurred and

the possible upgrade of the prototype.

2 THEORETICAL BACKGROUND

In our circuitry, three ultrasonic sensors are connected with Arduino Nano. Simulta-

neously, Arduino Nano is connected to the serial port of computer. As soon as ultra-

sonic sensors achieve the operating voltage from the Arduino Nano, the TRIG pin of

sensors are activated and its transmitter start to generate the ultrasonic waves of 40

KHz at regular intervals [1]. When these wave strikes upon any obstacle (hand ges-

ture in our case) in its proximity of 20 cm, it sends back the input signal back to

Arduino Nano using SONAR technology. SONAR refers to the feature of sensor

which uses acoustic signal or sound waves to navigate, communicate or detect ob-

ject lying in its proximity.

The receiver in the ultrasonic module receives the input signal at the pin connected

to ECHO of sensor. These received waves are buffered and stored in the microcon-

troller. The Arduino Nano analyses the signal for a pattern. If the pattern matches a

gesture in the database (encoded into Arduino), it follows the command associated

with the gesture. Subsequently, Arduino Nano sent the matched commands back to

the serial port of the computer in the form of logic HIGH or LOW [1].

Eventually, the GUI window (filled with images) created by the Python Programming

Language reacts with respect to the gesture command sent by the Arduino Nano.

3

2.1 Gesture Recognition

Over the past few years, gesture recognition has become a commonplace technol-

ogy and it has enabled humans and machines to interface more easily in the home

[2]. Just like verbal communication, hand gestures has always been a communication

tool in any culture. Moreover, it has become an innovative tool in HCI. Figure 1 illus-

trates the creation of gesture (by who performs gesture).It also shows how a speci-

fied gesture is co-related to the observer and the related information along with it.

The representation of this mechanism is depicted in Figure 1. According to the model,

gesturer’s mental status define the creation of gesture which is eventually expressed

through the motion of hands. In this FYP, user and observer perceives gesture as an

input for stream of visual images in GUI. The production and perception model of

gestures is summarised in Figure 1 [3].

Figure 1 Copied from Huang, Pavlovic, Sharma [3]. Production and perception of

gestures. Hand gestures originate as a mental concept G, are expressed (Thg)

through arm and hand motion H, and are perceived (Tvh) as visual images V.

2.1.1 Gesture recognition by Arduino with the help of Ultrasonic sensors

The three ultrasonic sensors are aligned horizontally in the breadboard to make pro-

ject comprehensive from visual as well as programming side. The alignment can be

seen in Figure 2.

4

 Figure 2. Three Ultrasonic sensors aligned in the breadboard

Depending on the movement of hand either from left to right or right to left, the sensors

are triggered and returns the true or false values in the loop with respect to each sensor

at its range of 20cm. Two gesture recognition functions are defined for the forward and

backward movement of the images from the directory. If the user moves hand starting

from left sensor toward right sensor (in the backward direction), the Arduino sends a ‘B’

slide command to the serial port. Similarly, if gesture is read by the sensors from right to

left (in the forward direction), the Arduino sends an ‘F’ slide command to the serial port.

The code for this algorithm is given in Listing 1.

Listing 1 Function for determining the direction of hand movement [4]

//if user moves hand left to right

 if (slide >= SLIDENONE) { // only if we are not already in

opposite move

 if ((left) && (!right))

 slide = SLIDE_FROM_RIGHT_SENSOR;

 if (center && (slide == SLIDE_FROM_RIGHT_SENSOR))

 slide = RIGHT_TO_CENTER;

 if (right && (slide == RIGHT_TO_CENTER))

 slideNow('T');

 }

 if (slide <= SLIDENONE) {

 if (right && (!left))

5

 slide = SLIDE_FROM_LEFT_SENSOR;

 if (center && slide == SLIDE_FROM_LEFT_SENSOR)

 slide = LEFT_TO_CENTER;

 if (left && slide == LEFT_TO_CENTER) {

 slideNow('G');

 }

2.1.2 Gesture recognition by PPL

Initially, PPL reads the command from the Arduino Nano using serial library. After that,

it creates a window using GUI libraries gtk and gobject. This window is the interface

which pop up the images supposed to be animated. In the following step, PPL stretches

the images in the window to the full screen mode to make the GUI more user friendly.

Ultimately, with respect to the command received in serial port regarding the hand ges-

ture, PPL starts animating these images. As shown in Listing 1, when Arduino sends ‘F’

command, the images saved in the directory starts moving from first to last (in the forward

direction). Similarly, if Arduino sends ‘B’ command, the images starts to move from last

to first (in the backward direction). The synopsis for these PPL tasks is shown in Listing

2.

Listing 2 Creation of window to load the images to be animated [4]

//reading serial port and creating GUI

import serial, gtk, gobject, sys

ser = serial.Serial('COM3', 9600)

def pollSerial():

sys.stdout.write(ser.read(1))

sys.stdout.flush()

return True

if (ser):

print("Serial port " + ser.portstr + " opened.")

gobject.timeout_add(100, pollSerial)

gtk.main()

//Controlling images stored in GUI using hand gesture

def main():

6

global bg, image, ser

bg=newPix(gtk.gdk.screen_width(), gtk.gdk.screen_height())

loadImages()

image=gtk.image_new_from_pixbuf(pixbufs[pos])

ser = serial.Serial('COM3', 9600, timeout=0)

gobject.timeout_add(100, pollSerial)

window = gtk.Window()

window.connect("destroy", gtk.main_quit)

window.connect("key-press-event", keyEvent)

window.fullscreen()

window.add(image)

window.show_all()

gtk.main()

The representation of the whole system can reviewed in the flow chart as stated in the

Figure 3. It discusses the stepwise task processed in the project.

7

 Figure 3. Flow chart of the system design

8

.

3 System Specifications

In order to make the whole system functional, different components are used. They are

categorised into primary and secondary subgroups depending on their essence in the

FYP.

3.1 Primary components

The primary components of this FYP are Ultrasonic sensors, Arduino Nano and PPL.

These components, their features and functionalities are discussed in the following sub-

headings.

3.1.1 Ultrasonic sensors

An ultrasonic sensor is a transceiver which propagates electrical energy as sound energy

and upon sensing the echo, determines the attribute of targets. It works on the same

principles as radar or sonar systems; meaning that it transmits high frequency signal and

determines the proximity of an object with corresponding reflection.

 Figure 4. HC-SR04 module ultrasonic sensor

9

As mentioned above, the notable trait of an ultrasonic senor is determination and dis-

tance measurement of an object lying within its range. Similarly, light has no effect on it

which makes it function in absolute darkness. Contrarily, its functionality is limited de-

pending on the surface of reflection. It may not detect objects on a steep angle as very

little or no sound wave is reflected back to the sensor.

In this project, HC-SR04 modelled ultrasonic sensor is used. This ultrasonic module

comes with 4 pins namely Vcc, trigger, echo and ground as seen in Figure 4. Its electrical

parameters are enlisted in the Table 1.

Table 1 gathered from [5; 6]. Electric parameters of HC-SR04 module

Operating voltage 5 V (DC)

Operating current 15 mA

Working frequency 40 kHz

Maximum range 4m

Minimum range 2cm

Measuring angle 15 degree

Trigger input signal 10µs TTL pulse

Echo output signal Input TTL lever signal and range in

proportion

Dimension 45X20X15mm

For the operation of this module, a short pulse of 10 µs is supplied to the trigger the

ultrasonic waves. As soon as the trigger pin receives the pulse bursts, it generates 8

cycles of 40 KHz ultrasonic waves regularly. This phenomenon will raise the echo and

bring the echo pin to high state. If the ultrasonic sensor senses any object in its proximity

(2cm to 400cm), it returns back the burst and echo pin goes back to low state. Thus, the

period of echo line (between the high and low state) is used for distance calculation. In

our case, the sensors will be triggered only if user waves hand 20 cm or less from sen-

sors. It is elaborated in Figure 5 [5; 6.]

10

 Figure 5. Timing diagram of HC-SR04 module

3.1.2 Arduino

Arduino is an open source physical computing platform used in the creation of interactive

objects that either stand alone or collaborate with software in the computer. It consists

of two different sections; hardware and software [7].

3.1.2.1 Arduino Software

In Arduino, software programs are called sketches. They are created on the computer

using Integrated Development Environment (IDE) as shown in Figure 6. The sketches

written on the IDE instructs the Arduino board to perform the functionalities [7; 8.]

11

Figure 6. IDE environment of Arduino

3.1.2.2 Arduino Hardware

The code written on the IDE is executed in the Arduino board. The communication be-

tween board and IDE is established using an USB cable. Figure 7 shows the top view of

Arduino Nano.

 Figure 7. Top view of Arduino Nano V3.0

12

Arduino Nano V3.0 is used in this project as hardware component and Arduino 1.6.7 is

used as IDE. Arduino Nano 3.0 is an open source platform based on ATmega168 micro-

controller. It is powered by PC using retractable USB cable. The pin layout of Arduino

Nano is outlined Figure 9.

Figure 8. Pin layout of Arduino Nano as extracted from its official manual [Reprinted from

9]

The details about the pin configurations of Arduino Nano are provided in the table 2.

Along with that the specific functions of the pins are also explained in the same table.

 Table 2. Pin configuration of Arduino Nano [Copied from 9]

Pin number Name Type Description

1-2, 5-16 D0-D13 I/O Digital input/out-

put(Port 0-13)

3 and 28 Reset Input Reset(Active low)

4 and 29 GND PWR Supply ground

13

17 3V3 Output +3.3V(from FTDI)

18 AREF Input ADC reference

19-26 A7-A0 Input Analog-input

(channel 0 to 7)

27 +5V Output or input +5V output (from

regulator) or +5V

input (from power

supply)

30 VIN PWR Supply voltage

3.1.3 Python Programming Language

Python Programming language helps us in the graphical window where it animates the

images in full-screen mode. PyGTK (python wrappers), GTK+ library, PyCairo (Python

bindings), PyGObject (Python extension module), PySerial Library and PyWin32 Exten-

sions, are installed along with main Python software. Furthermore, the functionalities of

these libraries are discussed in Methodology heading under Phase II subheading.

 3.2 Secondary Components

Besides the main components like Arduino, sensors and PPL, several other secondary

components are used in the build-up of this FYP.

The circuitry of the prototype is developed in a breadboard modelled EIC-104. All of the

components used in this FYP (except PPL) are mounted in this breadboard.

Three green LEDs (COM-09592) are used to determine the position of user. Ultrasonic

sensors are programmed to be functional within 20 cm. These LEDs will blink if the

user moves hand 20cm or closer from ultrasonic sensors.

Since, LEDs are highly sensitive and require a small amount of current for their opera-

tion, three resistors (260 Ohm, 240 Ohm and 300 Ohm are used) to drop the 5V voltage

on the Arduino’s digital pins to a level safe to connect the LEDs.

14

In order to maintain the circuitry between all of these primary and secondary compo-

nents, basic jumper wires are used

A laptop (produced by ASUS), having Windows 10 installed, is used to carry out the

software part of the project. Along with writing code, the GUI is also created in the

laptop where the images are stretched to full screen with the help of python.

4 Methodology

It is quite evident by now that the whole project comprises of two phases. First phase

determines hand gesture with the help of Ultrasonic sensor and Arduino Nano. Whereas,

Python Programming Language moves the images with respect to the data received in

the first phase . The details concerning the illustration of Phase 1 and Phase 2 are given

in the subheadings below:

4.1 Phase I

As explained by the Figure 9, the trigger pin and echo pin of ultrasonic modules are

connected to the digital input/output pins of Arduino (D2, D3 and D4). Similarly, Vcc

(5V) pins are connected to pin 27 of Arduino, namely +5V. Along with these, the re-

maining ground pins are commonly grounded with ground pin of Arduino.

15

Figure 9. Connection diagram between sensor and Arduino in breadboard

In the following step, the circuitry was tested using inbuilt sensor testing program of Ar-

duino environment called Ping. After the successive testing of all three sensors using

same program, the circuit was tested using LEDs. First of all, each ultrasonic sensor is

connected with a LED. The cathode of LEDs are grounded using resistors and anodes

were connected to Arduino data pins. After that, the program is written in such a way

that if a user moves hand closer than 20cm to any sensor, the LED connected to re-

spective will blink. Figure 10 shows the inactivity of sensors if there is no obstacle in its

proximity.

16

Figure 10. LEDs do not lit on if there is no obstruction

Whereas, Figure 11 clarifies that if there is any obstacle in its proximity as understated

above (20 cm), the LEDs starts to blink.

Figure 11. LEDs blinking when sensor found obstruction less than 20 cm

17

4.2 Phase II

After the completion of first phase, Python 2.0 is installed in the computer. Python is an

open source, object oriented, high level programming language with dynamic

semantics. The primary reasons behind Python being programmer’s goto tool are

outline below:

a) Quality

The readability, coherence, and software quality are the traits which sets it apart
from other tools in the scripting world. Python code is designed to be reusable and
maintainable—much more so than traditional scripting languages [10, 56.]

b) Productivity

If compared to other traditional programming languages like C, C++, and Java, de-
veloper can easily identify that Python boosts up the programming process by ap-
pearing in smaller size. Generally, Python code is three to five times smaller than
equivalent C++ or Java code. That means there is less to lines to code, debug and
maintain. Python programs also run immediately, without the lengthy compile and
link steps required by some other tools [10, 56.]

c) Portability

Python works easily in cross- platform like Linux, Mac and Windows without any
complacency. Likewise, it has functionalities over creation of GUI, database access
and web-based programming [10, 56.]

d) Wide range of libraries and integration

It has large collection of standard library which is helpful in application level pro-
gramming tasks. Similarly, its function can be easily called from other languages
like C, C++, Java and .NET [10, 56.]

e) Pleasure

Due to these aforementioned qualities in terms of ease of use and built-in toolset, it

makes the act of programming more than fun. The strong uphold in Google,

YouTube, Bit torrent file sharing, NASA’s Jet propulsion lab, etc. are the answers if

questioned upon its credibility [10, 56].

As discussed in the introductory part of this report, GUI has become essence of any

software package. The simplicity of Python programming is quite handy for the creation

of GUIs in desktop. With the help of proper extensions and libraries, GUI support is

18

used in different toolkits within Python such as GTK with PyGTK, Qt with PyQt, .NET

with IRonPython and tkinter. In this FYP, Python uses Gimp Toolkit+ (GTK+) for the

creation of GUI [11.]

4.2.1 GTK+ toolkit

It is a cross-platform (applicable in Windows, Linux and Mac) toolkit used in creation of

GUIs. It is licensed under GNU Lesser General Public License (LGPL) which primarily

means it is free to use. It requires several binding and wrappers to communicate with

IDE sketches generated by the Arduino Nano. Bindings are the bridge between two dif-

ferent programming languages. Similarly, wrappers are the package of the functions

which is called by the main function of the program to make the computing easier and

less sophisticated.

4.2.2 GTK

It acts as a convenient wrapper for the GTK+ library. It helps to create function in the

program where desired attributes are added. In our case, images required to move with

the help of hand gesture are added in the GUI window created by the python [11,360].

4.2.3 Cairo Graphics library

Cairo is 2D graphics library which provides vector graphics-based and device inde-

pendent Application Programming Interface (API). Cairo is implemented as a library

written in the C programming language but there are several bindings to get it linked

with different programming languages. In our case, PyCairo acts as a binding which

maintains a co-relation between PPL and Arduino IDE (written in C language).

4.2.4 PySerial

This library obliges us with the access of the serial port. It provides backend for Python

to run in the windows and accessibility to the port settings. In our case, this helps Py-

thon in reading the command for forward and backward hand gesture from the serial

port to execute the GUI accordingly.

19

4.2.5 GObject

It provides the object- orienting platform and cross language interoperability like Py-

Cairo. Since, we are working two different languages (Arduino IDE and Python), Py-

GObject is the binding.

Figure 12 shows the GUI shell of python where the codes are written for animating the

images from the designated directory. Similarly, it also shows libraries like gtk, os, se-

rial and gobject running in it.

Figure 12. GUI shell of Python

20

5 REVIEW

The control of GUI with hand gestures is really appealing. But the excitement comes

with the challenge of limiting unintended hand motions. This step includes writing and

testing the system made so far with a program whose supposed function is making the

last sensor determine the direction of user’s hand. This particular program identifies the

direction of hand using the variable declared in the program. With the help of sensor,

arduino informs the serial port whether user has waved hand left to right (B) or from

right to left (F). Visually, we can identify the activity of particular sensor with the help of

LEDs, meaning that LED will blink as user moves hand in front of sensor connected

with it. This is also explained by the figure 7 and figure 8.

On the other hand, with respect to the Arduino Nano’s command, PPL returns the

output . First of all, code is written to read the serial port of the computer. The aim of

this code is to read the information coming from Arduino through serial port of the

computer. The second code picked images saved inside specified directory and

stretched it to fullscreen. Following the subsequent success of reading serial and fitting

images to full screen, the prominent part of coding is done where following the

movement of hand (sent by the Arduino to the serial port), Python moves the image in

the display accordingly.

Hence, the final prototype of the project was achieved where the user can move his/her

hand to change the images in GUI.

The pictorial representation of how system works when user moves hand in the forward

direction is given in Figure 13.

21

Figure 13. System when user moved hand forward

Likewise, Figure 14 shows the change of image in GUI when the user moved hand in

the backward direction.

Figure 14. system when user moved hand backward

22

6 CONCLUSION

Though gesture recognition is still in its infancy state, the innovative market scenario

which has seen Virtual Reality being a global phenomenon pushes us to admit that its

application areas could keep on growing. Conclusively, the whole project proved to be

a good learning curve. Some of the challenges that incurred during the FYP are as fol-

lows:

a) Hardware malfunction: Arduino Nano ordered from internet turned out to be faulty.

b) Short-circuiting: While building the circuitry, there were short-circuiting on several oc-

casions because of bad pin configuration. Two ultrasonic sensors were lost in the pro-

cess.

c) Coding errors: There were repetitive compiling errors in codes to determine the posi-

tion of user and animating images.

d) Project management: At times, when some part of the prototype was not working,

the whole project got stalled for considerable amount of time.

But, the theory learned and small projects accomplished in the courses like embedded

systems, advanced programming and microcontrollers came with great help. Likewise,

extensive resources of school like library and e-portal also came up with immense sup-

port.

As Scandinavian mentality says about room for perfection, there are also areas of im-

provement in this project. The whole project is carried out in the test board and per-

sonal computer in order to build the prototype. If used proper resources, a proper user-

GUI orientation system can be built in sophisticated way. An example could be config-

ured in the PC of first-floor lobby inside Metropolia Albertinkatu Campus.

23

References

1. Nidhi Gupta, Ramandeep Singh , Sidharth Bhatia. Hand gesture recognition

using ultrasonic sensor and atmega128 microcontroller; June 2014 [online]

http://esatjournals.net/ijret/2014v03/i06/IJRET20140306107.pdf

2. Dong-Ik Go, Gaurav Agarwal. Gesture Recognition: Enabling natural inter-

actions with electronics; April 2012 [online]

 URL: http://www.ti.com/lit/wp/spry199/spry199.pdf

3. Huang, Pavlovic, Sharma. Visual Interpretation of Hand Gestures for

Human-Computer Interaction: A Review; July 1997 [online]

http://www.cs.rutgers.edu/~vladimir/pub/pavlovic97pami.pdf

4. Kimmo Karvinen, Tero Karvinen. Make: Arduino Bots and Gadgets First Edi-

tion. United States of America: O’Reilly Media, Inc.; 2011

5. Lentin Joseph. Learning Robotics Using Python. Birmingham UK: Packt

Publishing Ltd; May 2015

6. Fernandez, Mahtani, Crespo, Martinez. Learning ROS for Robotics Second

Edition. Birmingham UK: Packt Publishing Ltd; May 2015

7. Massimo Banzi, Michael Shiloh. Make: Getting started with Arduino Third

Edition. USA: Maker Media Inc.; December 2014

8. Michael Margolis. Arduino Cookbook First Edition. USA: O’Reilly Media, Inc.;

2011

9. Creative Commons Attribution Share-Alike 2.5 License. Arduino Nano (V

2.3) User Manual [online]

 URL: https://www.arduino.cc/en/uploads/Main/ArduinoNanoManual23.pdf

24

10. Mark Lutz. Learning Python Fifth Edition. USA: O’Reilly Media, Inc.; 2013

11. Mark Lutz. Programming Python Fourth Edition. USA: O’Reilly Media, Inc.;

2013

Appendix 2

1 (6)

Determination of hand movement by Arduino

/*

 Based on code by David A.Melis,Tom Igoe

 Kimmo Karvinen, Tero Karvinen, Joe Savedra

 Edited as required by Suman Basnet, 2016

 */

int slide = 0;

boolean left=false;

boolean center=false;

boolean right=false;

int leftsensor = 2;

int centersensor = 3;

int rightsensor = 4;

int ledPin = 13;

int leftLED = 5;

int centerLED = 6;

int rightLED = 7;

int maxD = 20; // cm

long int lastTouch = -1;

int resetAfter = 2000;

int afterSlideDelay = 500;

int afterSlideOppositeDelay = 1500;

int SLIDE_FROM_LEFT_SENSOR = -1; // Motion was detected from right

int LEFT_TO_CENTER = -2; // Motion was detected from right to center

int SLIDENONE = 0; // No motion detected

int SLIDE_FROM_RIGHT_SENSOR = 1; // Motion was detected from left

int RIGHT_TO_CENTER = 2; // Motion was detected from left to center

Appendix 2

2 (6)

void setup() {

 Serial.begin(9600); // bit/s

 pinMode(leftLED, OUTPUT);

 pinMode(centerLED, OUTPUT);

 pinMode(rightLED, OUTPUT);

}

void loop() {

 left = ping(leftsensor, leftLED);

 center = ping(centersensor, centerLED);

 right = ping(rightsensor, rightLED);

 if (left || center || right) {

 lastTouch=millis();

 }

 if (millis()-lastTouch>resetAfter) {

 slide=0;

 digitalWrite(ledPin, LOW);

 // Serial.println("Reset slide and timer. ");

 }

 if (slide >= SLIDENONE) { // only if we are not already in opposite move

 if ((left) && (!right))

 slide = SLIDE_FROM_RIGHT_SENSOR;

 if (center && (slide == SLIDE_FROM_RIGHT_SENSOR))

 slide = RIGHT_TO_CENTER;

 if (right && (slide == RIGHT_TO_CENTER))

 slideNow('T');

 }

 if (slide <= SLIDENONE) {

 if (right && (!left))

 slide = SLIDE_FROM_LEFT_SENSOR;

 if (center && slide == SLIDE_FROM_LEFT_SENSOR)

 slide = LEFT_TO_CENTER;

 if (left && slide == LEFT_TO_CENTER) {

 slideNow('G');

 }

Appendix 2

3 (6)

 }

 delay(50);

}

boolean ping(int pingPin, int ledPin) {

 int d = getDistance(pingPin); //cm bl

 boolean pinActivated = false;

 if (d < maxD) {

 digitalWrite(ledPin, HIGH);

 pinActivated = true;

 }

 else {

 digitalWrite(ledPin, LOW);

 pinActivated = false;

 }

 return pinActivated;

}

int getDistance(int pingPin) {

 long duration, inches, cm;

 pinMode(pingPin, OUTPUT);

 digitalWrite(pingPin, LOW);

 delayMicroseconds(2);

 digitalWrite(pingPin, HIGH);

 delayMicroseconds(5);

 digitalWrite(pingPin, LOW);

 pinMode(pingPin, INPUT);

 duration = pulseIn(pingPin, HIGH);

 cm = microsecondsToCentimeters(duration);

 return(cm);

}

void slideNow(char direction) {

 if ('T' == direction)

 Serial.println("F");//Forward gesture forwarded to Serial PORT

 if ('G' == direction)

 Serial.println("B");//Backward gesture forwarded to Serial PORT

 digitalWrite(ledPin, HIGH);

Appendix 2

4 (6)

 delay(afterSlideDelay);

 slide = SLIDENONE;

}

long microsecondsToCentimeters(long microseconds) {

 return microseconds / 29 / 2;

}

Changing images in GUI with Python

#!/usr/bin/env python

moveimages.py - Choose full screen image by waving hand.

(c) Kimmo Karvinen & Tero Karvinen

edited as system required by Suman Basnet

 import gtk, os, serial, gobject

Global variables

dir="C:\\Users\\SMNBSN\\Desktop\\IMAGE"

pixbufs=[]

image=None

bg=None

pos=0

ser=None

Pixbuf manipulation

def fitRect(thing, box):

 # scale

 scaleX=float(box.width)/thing.width

 scaleY=float(box.height)/thing.height

 scale=min(scaleY, scaleX)

 thing.width=scale*thing.width

 thing.height=scale*thing.height

 # center

 thing.x=box.width/2-thing.width/2

 thing.y=box.height/2-thing.height/2

Appendix 2

5 (6)

 return thing

def scaleToBg(pix, bg):

 fit=fitRect(

 gtk.gdk.Rectangle(0,0, pix.get_width(), pix.get_height()),

 gtk.gdk.Rectangle(0,0, bg.get_width(), bg.get_height())

)

 scaled=pix.scale_simple(fit.width, fit.height, gtk.gdk.INTERP_BILINEAR)

 ret=bg.copy()

 scaled.copy_area(

 src_x=0, src_y=0,

 width=fit.width, height=fit.height,

 dest_pixbuf=ret,

 dest_x=fit.x, dest_y=fit.y

)

 return ret

 def newPix(width, height, color=0x000000ff):

 pix=gtk.gdk.Pixbuf(gtk.gdk.COLORSPACE_RGB, True, 8, width , height)

 pix.fill(color)

 return pix

File reading

def loadImages():

 global pixbufs

 for file in os.listdir(dir):

 filePath=os.path.join(dir, file)

 pix=gtk.gdk.pixbuf_new_from_file(filePath)

 pix=scaleToBg(pix, bg)

 pixbufs.append(pix)

 print("Loaded image "+filePath)

Controls

def go(relativePos):

 global pos

Appendix 2

6 (6)

 pos+=relativePos

 last=len(pixbufs)-1

 if pos<0:

 pos=last

 elif pos>last:

 pos=0

 image.set_from_pixbuf(pixbufs[pos])

def pollSerial():

 cmd=ser.read(size=1)

 print("Serial port read: \"%s\"" % cmd)

 if cmd=="F"

 go(1)

 elif cmd=="B":

 go(-1)

 return True

 # Main

def main():

 global bg, image, ser

 bg=newPix(gtk.gdk.screen_width(), gtk.gdk.screen_height())

 loadImages()

 image=gtk.image_new_from_pixbuf(pixbufs[pos])

 ser = serial.Serial('COM3', 9600, timeout=0)

 gobject.timeout_add(100, pollSerial)

 window = gtk.Window()

 window.connect("destroy", gtk.main_quit)

 window.fullscreen()

 window.add(image)

 window.show_all()

 gtk.main()

if __name__ == "__main__":

main()

