

SMART TAGGING SYSTEM FOR

DIVING EQUIPMENT

Information Technology

2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Theseus

https://core.ac.uk/display/45600908?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ACKNOWLEDGMENTS

I would like to begin by expressing my gratitude to my thesis supervisor, Timo

Kankaanpää, for his guidance throughout this thesis. I would also like to thank

Tommi Rintala and Antti Backman, the client supervisors, for their support during

the project.

In addition, I would like to take this opportunity to thank all the teachers and staff

at Vaasa University of Applied Sciences(VAMK) for their help during my studies.

The completion of this thesis and my degree program in VAMK would not have

been possible without the continuous support of my family. I am very grateful and

lucky to have them.

 1

VAASA UNIVERSITY OF APPLIED SCIENCES

Degree Programme of Information Technology

ABSTRACT

Author Rohullah Ayoub

Title Smart Tagging System for Diving Equipment

Year 2016

Language English

Pages 70

Name of Supervisor Timo Kankaanpää

The use of Near Field Communication (NFC) has revolutionized many industries

through digitalization. This process of digital immersion has been further acceler-

ated through the mainstream availability of NFC-enabled devices and the substan-

tial decline in the cost of NFC smart tags.

The purpose of this thesis was to design and implement an end-to-end, smart tag-

ging solution for diving equipment. The project involved an Android application,

an AngularJS web application and the back-end was developed using Amazon

Web Services (AWS). A server-less architecture using AWS micro services was

employed in the project.

The Android application is used to register NFC tags by writing and reading data

from NFC tags and communicating with the backend through a RESTful API. The

AngularJS application provides access to the corresponding data. In addition, user

authentication is achieved by using Google as an Identity Provider (IdP).

This document provides an overview of the steps necessary to implement and in-

tegrate applications running on different platforms with AWS services, in a cost-

effective and scalable manner. Even though this document addresses topics rele-

vant to a specific project, most of the implementation and design instructions can

be used to serve other use-cases, particularly by startups.

Since the project involves applications developed on different platforms, only the

most important aspects of the process are presented throughout this document.

Keywords NFC, Android, AWS, Identity Provider, AngularJS

 2

VAASAN AMMATTIKORKEAKOULU

Tietoteknikaan koulutusohjelma

TIIVISTELMÄ

Tekijä Rohullah Ayoub

Opinnäytetyön nimi Sukellusvarusteiden Älykäs Merkintäjärjestelmä

Vuosi 2016

Kieli Englanti

Sivumäärä 70

Ohjaaja Timo Kankaanpää

Lyhyen kantaman tiedonsiirron (NFC:n) käyttö on mullistanut monia teollisuuden

aloja digitalisoinnin kautta. Näiden digitaalisen upotuksien prosessi on kiihtynyt

entisestään, NFC yhteensopivien laitteiden ja saatavuuden noustessa. Prosessi

myös supistaa toimintotunnisteiden kustannuksia merkittävästi.

Tämän opinnäytetyön tarkoituksena on suunnitella ja toteuttaa päästä päähän

toimintotunnisteratkaisu ajovarusteisiin. Projektiin sisältyy Android sovellus, An-

gularJS web sovellus ja back end on kehitetty käyttäen Amazon Web Serviceä

(AWS). AWS micro palveluja käytetään projektissa palvelimettoman arkkiteh-

tuurin avulla.

Android sovellusta käytetään NFC-tunnisteien rekisteröimiseen dataa kirjoitta-

malla ja lukemalla niitä NFC-tunnisteesta sekä kommunikoimalla back endiin

RESTfulAPI:n kautta. AngularJS sovellus tarjoaa pääsyn vastaavaan tietoon.

Lisäksi käyttäjän todennus saavutetaan käyttämällä Googlen Identity Provideria

(idP).

Tässä dokumentissa on yleiskatsaus tarvittavista toimenpiteistä, joilla toteutus ja

integrointi pystytään tekemään, eri alustoilla käynnissä olevilla prosesseilla AWS

palveluissa.kustannustehokkaasti ja mitattavissa olevilla tasoilla. Vaikka tässä asi-

akirjassa käsitellään tiettyyn projektiin liittyviä aiheita, useimpia toteutus- ja suun-

nitteluohjeita voidaan myös soveltaa muihin käyttötarkoituksiin, erityisesti startup

ideoille.

Koska projekti sisältää sovelluksia, jotka on kehitetty eri alustoille, ainoastaan

tärkeimmät prosessin näkökohdat on esitetty dokumentissa.

Avainsanat NFC, Android, AWS, Identity Provideria, AngularJS

 3

CONTENTS

LIST OF FIGURES AND TABLES ... 6

LIST OF ABBREVIATIONS ... 7

1 INTRODUCTION .. 8

1.1 Client Organization ... 8

1.2 Current State ... 8

1.3 Project Objectives ... 8

1.4 Author’s role ... 9

2 TECHNOLOGIES .. 10

2.1 Near Field Communication ... 10

2.1.1 Active NFC devices .. 11

2.1.2 Passive NFC devices ... 11

2.1.3 RFID vs NFC .. 12

2.1.4 NDEF .. 12

2.2 Java 14

2.2.1 Android Application Framework .. 14

2.2.2 Gradle .. 17

2.2.3 JUnit .. 17

2.3 JavaScript .. 18

2.3.1 NodeJS .. 19

2.3.2 AngularJS .. 21

2.4 Amazon Web Services .. 21

2.4.1 Identity Access Management .. 22

2.4.2 Lambda .. 24

2.4.3 API Gateway ... 25

2.4.4 Simple Storage Service ... 26

2.4.5 DynamoDB ... 27

2.4.6 Cognito .. 28

2.5 Miscellaneous ... 28

2.5.1 MongoDB .. 28

2.5.2 REST ... 29

 4

2.5.3 CORS .. 30

2.5.4 OAuth2 .. 31

3 SYSTEM DESCRIPTION AND DESIGN .. 33

3.1 Requirements specification ... 33

3.1.1 Non-functional requirements .. 34

3.2 Use Cases .. 34

3.2.1 Android Application.. 35

3.2.2 Web Application ... 38

3.3 Sequence Diagrams ... 42

3.4 Application design .. 44

3.4.1 Three-tier Architecture .. 44

3.4.2 Service-Oriented Architecture .. 45

3.4.3 Microservices Architecture ... 46

3.4.4 Server-less Architecture using AWS Microservices 48

3.4.5 Fragment-Oriented Architecture for Android 49

4 IMPLEMENTATION .. 51

4.1 Android ... 51

4.1.1 Enabling NFC ... 51

4.1.2 Reading NFC Tag ... 52

4.1.3 Writing NFC Tag .. 54

4.1.4 Application views.. 54

4.2 AngularJS .. 56

4.2.1 Authentication ... 56

4.2.2 Optimizing for production... 56

4.3 AWS .. 57

4.3.1 Deploying a RESTful API .. 58

4.3.2 CRUD Operations in Lambda ... 60

4.3.3 Deploying to S3 .. 61

4.3.4 Configuring Cognito ... 62

4.4 Tests and Analysis .. 62

4.4.1 Testing fundamentals .. 62

4.4.2 Analysis ... 65

 5

5 CONCLUSION .. 67

REFERENCES .. 68

 6

LIST OF FIGURES AND TABLES

Figure 1: NFC tag communication with a phone 11

Figure 2: NDEF Record. Adapted from /9/ 13

Figure 3: Android NFC intents. Adapted from /7/ 16

Figure 4: AWS Regions and Availability Zones. Adapted from /16/ 22

Figure 5: Amazon API Gateway call flow. Adapted from /17/ 26

Figure 6: MongoDB comparison with other database systems 29

Figure 7: Common OAuth2 flow 32

Figure 8: Use Case Diagram for the DiveSafe mobile application 35

Figure 9: Use case diagram for DiveSafe web 38

Figure 10: Sequence diagram “Read tag details” 43

Figure 11: Sequence diagram “Login with Google” 43

Figure 12: Sequence diagram “Register new tag” 44

Figure 13: Three-tier Architecture 45

Figure 14: SOA and scaling 46

Figure 15: Architecture Comparison 47

Figure 16: “Server-less” Architecture using AWS 48

Figure 17: Fragment-Oriented Architecture 50

Figure 18: DiveSafe Mobile views 55

Figure 19: API diagram for /tag resource 59

Figure 20: API-Lambda Integration test 64

Table 1: Main features of JUnit. Adapted from /5/ 18

Table 2: Use case “Login with Gmail” 35

Table 3: Use case “Register tag” 36

Table 4: Use case “Read tag details” 37

Table 5: Use case “Login with Gmail” 38

Table 6: Use case “View Profile” 39

Table 7: Use case “View registered tags” 40

Table 8: Use case “Add maintenance” 40

Table 9: Use case “View owned tags” 41

Table 10: Use case “Show inspections/maintenances” 41

Table 11: Project requirements 33

 7

LIST OF ABBREVIATIONS

API Application Programming Interface

AWS Amazon Web Services

CORS Cross-Origin Resource Sharing

CRUD Create, Read, Update, Delete

CSS Cascading Stylesheet

DOM Document Object Model

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IAM Identity Access Management

NDEF NFC Data Exchange Format

NFC Near Field Communication

REST Representational State Transfer

RFID Radio Frequency Identification

SDK Software Development Kit

SOA Service Oriented Architecture

S3 Simple Storage Service

IdP Identity Provider

URL Uniform Resource Locator

 8

1 INTRODUCTION

This document provides an overview of developing a smart tagging system using

NFC enabled devices and NFC tags. The solution was built for Delektre Ltd and

consists of an Android application, an AngularJS web application and Amazon Web

Services.

1.1 Client Organization

Delektre Ltd is a Finnish product development company located in Vaasa. Founded

in 2010, Delektre offers R&D and consultancy services to both institutions and

business clients.

In addition to aforementioned services, Delektre is involved in the development of

several of their own products such as REBEL Ring, an activity tracker worn as a

ring.

1.2 Current State

Presently, scuba diving equipment is mostly marked using felt pens. Using felt pens

to mark equipment poses several problems such as the markings wearing down

through contact with water for an extended period of time, difficulty changing the

markings and only allowing a small amount of data to be written on the equipment.

In some cases, tapes are used to mark the equipment. This makes it easier to change

the markings but it does not address the other issues present.

Since scuba diving equipment needs maintenance and inspections throughout the

year, the lack of an intuitive centralized system makes it difficult for the equipment

shops to keep track of all the equipment.

1.3 Project Objectives

Delektre would like to offer a complete solution, addressing the issues briefly men-

tioned in the previous section and providing additional functionality that stream-

lines the experience for both the equipment shops and the equipment owners.

 9

The solution in its initial stage will make use of:

 Near Field Communication (NFC) tags: These are used to mark the equip-

ment with the basic information necessary for identification, inspection and

maintenance

 Mobile application: This will be used to register new tags to the system and

read existing tags

 Web application: This will allow the management of tags, provide reporting

and additional details

 Amazon Web Services (AWS): Various services offered by AWS will be

used to implement the back-end for the solution

The scope of the thesis is to develop the initial version of this system of tag regis-

tration. The thesis will cover the mobile application, web application and the REST

services needed to support both the mobile and web applications.

1.4 Author’s role

The author of this document is responsible for researching possible solutions to

achieve the aforementioned objectives. The author is also responsible for designing

the architecture used in the project, implementing the corresponding applications

on all platforms, testing and documenting the process.

 10

2 TECHNOLOGIES

This chapter briefly describes the technologies used throughout the development of

this project.

The mobile application is built using the Android application framework. Since

Near Field Communication is a necessary feature, the corresponding NFC libraries

provided by the Android framework are also used.

The backend of the solution is implemented using Amazon Web Services. This in-

volves, among other steps, deploying the API using the API Gateway, running the

server-side code in Lambda and using DynamoDB as a database.

The web application is developed using AngularJS. In addition, AngularUI libraries

alongside Bootstrap are used to provide a rich User Interface.

2.1 Near Field Communication

As the name implies, Near Field Communication (NFC) enables a device to interact

wirelessly with another compatible device over a short range. This range is usually

a radius of approximately 10 cm. /8/

A full NFC device can operate in the following modes:

 Reader/writer: allows the device to read/write information to NFC tags

 Card emulation: the device acts as smartcard, offering features such as con-

tactless payments

 Peer-to-Peer: enables the device to communicate and exchange data with

another compatible NFC device

There is a wide variety of NFC-enabled devices available today. However, they can

generally be divided into two groups: active and passive.

 11

2.1.1 Active NFC devices

These devices can send and receive data from any NFC device. An NFC enabled

smartphone, for example, is able to not only communicate with other compatible

devices, but to read information stored in NFC tags or even modify that information,

if allowed.

2.1.2 Passive NFC devices

These NFC devices do not possess their own power-source and they receive power

during communication with an Active NFC device. Therefore, these devices are

able to communicate only with Active NFC devices and cannot process any infor-

mation themselves. Passive NFC devices include small transmitters like NFC tags.

Figure 1 illustrates the communication between an active and passive device.

Figure 1: NFC tag communication with a phone

The effective range of a passive NFC device is usually 10-15cm and depends on

the type, design and quality of the device, as well as the material used for the an-

tenna. This material is typically silver or copper.

 12

2.1.3 RFID vs NFC

Even though the means of communication for both Radio Frequency Identification

(RFID) and NFC are radio signals, RFID is more ubiquitous today when compared

to NFC. /10/

An RFID communication involves an RFID tag that stores information, and an

RFID reader that reads that information. This may seem very similar to the com-

munication between an NFC tag and an NFC device. However, there is a major

difference here since the communication in RFID is one way whilst the Peer-to-

Peer mode in NFC allows devices to exchange data in both directions. /10/

In addition, RFID communication may work well up to several meters compared to

10 cm of NFC.

2.1.4 NDEF

Created by the NFC forum, NFC Data Exchange Format (NDEF) is a standard for-

mat that defines encoding an NFC tag and communication between two NFC de-

vices. /9/

Perhaps one of the most widely supported standard by the NFC industry, the NDEF

format comprises of NDEF Messages and NDEF Records. Each NDEF Message

can contain several NDEF Records.

2.1.4.1 NDEF Record Layout

Even though records in NDEF format may have variable length, they follow a spe-

cific format that provides insight into the type and content of the record. Figure 2

shows the common fields of NDEF Records followed by a brief explanation of each

field.

 13

Figure 2: NDEF Record. Adapted from /9/

 Header

o Type Name Format (TNF): This three-bit value defines the type of

records, giving insight into the rest of content and structure.

o ID Length (IL): Indicates whether the ID Length field is present. 0,

if not present.

o Short Record (SR): If set, indicates that the payload length field is 1

byte or less.

o Chunk Flag (CF): Indicates whether this is the first or middle chunk

of a chunked payload.

o Message End (ME): If set, indicates that this is the last record in the

message.

o Message Begin (MB): Indicates whether this is the beginning of the

message.

 14

 Type Length: The length of the type field is specified here in bytes.

 Payload Length: The length of the payload in bytes is indicated here. The

size of this field is dependent upon the Short Record (SR) bit above. If SR

is 0, the payload length field will be four bytes long. Otherwise, it will be

one byte long.

 ID Length: This field specifies the length of the ID and is present if the ID

Length field in the record header is set to 1.

 Record Type: Corresponding with the value of the TNF field in the record

header. This field indicates the exact type of the record

 Record ID: Present only if the Indicates the IL field in the record is set to 1,

this field indicates the ID value.

 Payload: The actual payload intended to be used. The size of this record is

exactly the amount specified in the Payload Length field, in bytes.

2.2 Java

Developed at Sun Microsystems in California and released in 1995, Java is a pro-

gramming language based on C/C++. Initially, Java was aimed at making programs

for consumer appliances such as microwave ovens. However, due to its use in writ-

ing applets, applications running in the browser, Java was soon widely adopted as

a web programming language. /1/

Today, thanks to its write once, run anywhere (WORA), Java is used to develop

standalone applications on a variety of platforms and has become one of the most

popular programming languages in the world.

2.2.1 Android Application Framework

Composed of a set of Java libraries, the Android application framework provides

the components and tools needed to develop mobile applications for Android

handheld devices, defining how applications should work. /22/

Android Application Framework wraps the lower level libraries in the Android Op-

erating System. This allows the developers to utilize the low-level libraries that are

 15

written in C/C++, by using Java code and without the need to know how each of

those low-level libraries work.

It is possible to develop applications for Android OS without using the application

framework, through direct communication with the low-level C/C++ libraries.

However, that is beyond the scope of this thesis.

2.2.1.1 Android NFC

Even though Android supports other NFC standards, most of the functionality is

aimed towards tags using the NDEF standard. When working with NDEF, Android

supports:

 Reading data from an NFC tag

 “Beaming” data from one device onto another

When an NFC tag is detected, the Tag Dispatch System is responsible for analyzing,

categorizing and determining the appropriate application to launch, from a list of

applications that have registered to be expecting NFC communication. The Tag

Dispatch System does this by analyzing the first data record in the tag and trying to

map it to a known type. /7, 22/

After the dispatch system has finished analyzing the tag, one of the following three

intents, in the order of their priority level, are created, and based on the result of the

analysis:

 ACTION_NDEF_DISCOVERED: Intent for when the Tag is identified to

be in the NDEF format. This has the highest priority and an application fil-

tering for this intent will be launched.

 ACTION _TECH_DISCOVERED: Intent for when the Tag is identified to

be in the NDEF format but no activity is found filtering for the previous

intent. This intent is also created when the Tag is not using the NDEF format

but the technology type is known.

 ACTION_TECH_DISCOVERED: Created when no activity is found that

handles any of the above intents.

 16

Figure 3: Android NFC intents. Adapted from /7/

In Android, an intent object is used to deliver information within components. Us-

ing an intent, the Tag Dispatch System delivers the tag information to the corre-

sponding application.

Tag Dispatch System allows the appropriate applications to be launched without

the need for the user to select applications through a dialog. This ensures a seamless

experience by reducing the amount of user interaction.

2.2.1.2 Material design

Offered by Google and available in Android 5.0+, Material design for Android is a

set of design guidelines and interactive components to be used when developing

mobile applications for Android devices./26/. This includes, but is not limited to:

 Comprehensive design specification

 Material theme

 Widgets

 Animations

 17

Using Material design accelerates the development of Android applications while

retaining a good User Experience.

2.2.1.3 OpenNFC emulator

OpenNFC is an open-source implementation, consisting of APIs to provide NFC

capabilities to different Operating Systems. As part of their product catalog, they

offer an Android emulator which, together with their desktop application, provides

basic NFC functionality including reading and writing to a variety of virtual NFC

tags.

2.2.2 Gradle

Gradle is a build automation system for Java. Even though they are over-rideable,

Gradle builds are written using a set of conventions that allow developers to under-

stand each other’s builds.

In contrast to Maven and Ant, the other two popular build automation systems, Gra-

dle uses a “declarative build language”, focusing on what needs to be built rather

than how it needs to be built. In addition, the build language for Gradle is a Domain

Specific Language (DSL) called “Groovy”. Therefore, unlike other build automa-

tion systems, configuring Gradle builds may be easier to achieve since it uses a

language that is specific to the build.

Furthermore, Gradle supports dependencies and multi-project builds. Therefore, if

an application requires many different projects to be built, Gradle allows that out of

the box.

2.2.3 JUnit

Created by Kent Beck and Enrich Gamma, JUnit is a unit testing framework for

Java. /5/

JUnit follows the xUnit architecture, which provides a model for the structure and

functionality of unit testing frameworks, and allows to write and to run repeatable

tests. /5/. The main features of JUnit are detailed in Table 1.

 18

Table 1: Main features of JUnit. Adapted from /5/

Feature Role Explanation

Assertion Tests expected results Verifies whether the result of

a function, with given pa-

rameters, matches against a

predefined, expected value

Text fixture Share data between tests Ensures that there is a

known, fixed environment

for the repeatable tests.

Comprises of a fixed state of

a particular set of objects, to

be used as a base for the test.

Test runners Run the tests Allows running tests and dis-

playing the results. IDEs

tend to have graphical test

runners included.

2.3 JavaScript

Initially named “Mocha” and later renamed to JavaScript, this interpreted language

was developed at NetScape Communications Corporation in 1995. It is standard-

ized through EcmaScript specification.

JavaScript is a weakly typed language with support for object oriented program-

ming. However, its approach to OOP is in contrast to the class-based programming

style found in popular languages such as Java and C++. JavaScript does not possess

a concept of classes, but rather prototypes. This is known as prototype-based pro-

gramming. /6/

 19

Even though JavaScript has, for the most part, been used for client-side program-

ming in the web, it has also been employed in developing hybrid mobile applica-

tions and in server-side programming. In fact, the rise of JavaScript on the server

has introduced an entirely new software stack comprising of MongoDB, Express,

AngularJS and NodeJS. This is more commonly referred to as the MEAN stack and

will be discussed in the upcoming sections.

2.3.1 NodeJS

First introduced in 2009 by its creator, Ryan Dahl, NodeJS is an open-source,

server-side, runtime environment that uses JavaScript as its language. Bringing Ja-

vaScript to the server side, NodeJS is truly cross platform. Therefore, JavaScript

code running inside NodeJS can be deployed to Microsoft Windows, Linux and

OSX.

NodeJS is event-driven. Default design pattern of JavaScript in NodeJS is modular

and it encourages writing asynchronous, non-blocking code. Consequently, it

makes use of callback mechanism when performing most tasks. This is perhaps one

of the biggest distinctions to be made between NodeJS and other more traditional

web servers like IIS.

In addition to being asynchronous by default, NodeJS standard libraries are also

low level. Therefore, it might not provide a lot of “helpers” to make the code easy

and fast to write, out of the box. However, it offers good building blocks for higher

level implementations that are provided by the community and available through

the Node Package Manager (NPM). /12/

2.3.1.1 Express

Express is a lightweight and minimalist web development framework for NodeJS.

Being un-opinionated, Express provides a flexible solution to handle tasks like rout-

ing and rendering.

Essentially a package in the Node Package Manager (NPM), one of the key features

of Express is that it allows “middleware” when responding to HTTP requests. These

 20

functions have access to the request/response object and the next middleware func-

tion in the request/response cycle. Using middleware functions, the following tasks

can be performed:

 Modify the request/response object

 Execute code

 End the cycle

 Call the next middleware

The minimalist approach of Express framework coupled with the middleware and

routing it provides, offers a good stack for developing an Application Programming

Interface (API). /13/

2.3.1.2 Gulp

Gulp is a development task runner. In other words, it allows developers to automate

the repetitive tasks of the development process including but not limited to running

unit tests, refreshing browser on file save and minifying source code.

A common Gulp workflow could be described in the following steps:

1. A new task is defined

2. Files needed for accomplishing that task are loaded into the Gulp stream

3. Any necessary modifications to the files are made

4. The modified files are saved to the stated destination.

Gulp is stream-based. This means that a write to the file system is only required

when Gulp is finished with all modifications. This is in contrast to Grunt, another

popular task runner, that requires writes to temporary folders between modifica-

tions. /14/

 21

2.3.2 AngularJS

Largely maintained by Google, AngularJS is an open-source, MVC and opinionated

JavaScript framework for creating web applications, specifically Single Page Ap-

plications (SPA). /2/

Angular allows the client to send and receive data from the backend, by handling

the Ajax communication with the server. It also handles the presentation of the data

on the page through partial templates or manipulation of the existing DOM. The

view and model are then kept in sync using two-way binding.

Perhaps one of the most unique characteristics of AngularJS is that it extends

HTML by providing its own elements and properties. These are referred to as “di-

rectives” and are used to interact with the HTML DOM. In addition, testability is

an important aspect of AngularJS and it was a primary consideration behind the

project. It supports both isolated unit tests and integrated end to end tests.

2.3.2.1 AngularUI

Cohesively packaged together, AngularUI consists of multiple UI libraries for An-

gularJS. Ranging from robust, stand-alone modules to small utility tools. /18/

AngularUI Bootstrap offers components written in pure AngularJS. This eliminates

the need to add jQuery as a dependency, when using Bootstrap. In addition, the UI-

Router module offers a more flexible and powerful alternative to the AngularJS

ngRoute module.

2.4 Amazon Web Services

Offered by Amazon, Amazon Web Services includes a set of IT infrastructure ser-

vices, offered to individuals and organizations. These web services, also known as

Cloud services, provide the capability to rent compute resources on-demand. /16/

Typically considered Infrastructure-as-a-Service (IaaS), AWS offers Platform-as-

a-Service (PaaS) functionalities as well. AWS has a global footprint. Available in

190 countries, AWS are offered through 12 Regions and 32 Availability Zones. /19/

 22

Figure 4: AWS Regions and Availability Zones. Adapted from /16/

AWS Regions are geographic locations where the AWS services can be procured

and are completely independent from each other. This results in a high fault-toler-

ance. For example, if an application is hosted through multiple AWS Regions, it

will be available even if an entire region goes down.

A combination of one or more data centers, AWS Availability Zones are segmented

locations within a region and are physically isolated from other availability zones.

There is, however, a low-latency connection between availability zones within a

region. This allows, for example, the rapid provisioning of a server within a differ-

ent availability zone, when an availability zone fails.

In the following sections, some of the AWS services relevant to this project will be

discussed in more detail.

2.4.1 Identity Access Management

Also known as IAM, Identity Access Management is a service provided by AWS

to manage access to AWS resources. /20/

IAM addresses two key issues:

 23

 Authentication: Depending on the use-case, both long-standing and tempo-

rary credentials can be generated to determine the identity of the requesting

source.

 Authorization: Based on the identity of the requesting source, access to spe-

cific actions on specific resources is granted.

2.4.1.1 Permissions

Permissions are used to define and configure access to AWS resources. AWS sup-

ports assigning permissions in the following two ways:

 Identity-Based: When permissions are assigned to an identity such as User,

Group or Role. This involves attaching a policy to the identity.

 Resource-Based: When permissions are assigned to an AWS resource. This

involves attaching a policy to the resource.

2.4.1.2 Policies

Policies are used to configure and assign permissions to an IAM User, Group or

Role. An AWS Policy consists of the following basic components:

 Actions: The actions that are allowed in the current policy are listed here.

All other actions possible on the resource and not explicitly mentioned, are

denied. Wildcards can also be used to define Actions.

 Resources: The resources that the actions are allowed for, are specified here.

Again, permission is granted for only the resources explicitly mentioned

here and wildcards can be used to define Resources.

 Effect: This can either be “Allow” or “Deny”. If “Allow” is specified, the

requesting user will be given permissions based on the Actions and Re-

sources mentioned in the Policy. Otherwise, the request will be denied.

There are currently two methods of defining policies:

 Managed: Policies that can be attached to multiple Users, Groups or Roles.

In order to ease the process of authorization, AWS offers a large collection

of managed policies for a variety of use cases. However, the users can create

 24

policies themselves, for more control over the allowed resources and ac-

tions.

 Inline: Policies that are attached to a single User, Group or Role. Usually,

this method is used for Resource-Based Permissions.

2.4.1.3 Identities

An IAM Identity provides access to AWS resources to a person or process. This

can involve long-standing credentials to be used by a specific Identity or generating

temporary credentials on-demand. IAM identities include:

 User: A person or service that interacts with AWS through AWS console or

AWS CLI. An IAM User is usually created to share access within an AWS

account. Every IAM User has its own AWS Credentials.

 Groups: A collection of users, IAM Groups allow specifying authorization

to AWS resources for a collection of users. An IAM Group is usually used

to form development teams, based on a project and the required AWS re-

sources for that project.

 Roles: Similar to an IAM User. However, IAM Roles are not attached to a

specific entity and make use of Temporary Credentials. IAM Roles are gen-

erally used to provide temporary access to AWS resources, based on the

IAM Policy attached to it. A sample use case for IAM Roles is user login

through Identity Federation, instead of IAM.

2.4.2 Lambda

AWS offers Lambda as a compute service that in response to the defined events,

runs the provided code and automatically manages the compute resources. /21/

When using AWS Lambda, the two primary components are the Lambda function

and the Event Source. Lambda function is the application code that is uploaded to

AWS Lambda and the event source is the component that invokes the Lamdba func-

tion.

 25

2.4.2.1 Invocation

The Lambda function can be invoked in the following ways:

 Automatic: When the Lamdba function is invoked automatically through an

event published by an event source. The event sources in this invocation are

other AWS services including but not limited to:

o DynamoDB

o Simple Notification Service

o Cognito

o S3

o CloudWatch Events

 On-Demand: When the Lamdba function is invoked over HTTPS. This is

usually accomplished through configuring a RESTful API using Amazon

API Gateway. However, the On-Demand invocation can also be achieved

by defining custom event sources.

2.4.3 API Gateway

Traditionally, deploying an API requires provisioning servers that host the API.

Amazon offers its API Gateway as a managed service for creating and managing

RESTful APIs. This allows creating API endpoints for backend applications with-

out the need to manage backend servers. Since resource provisioning is handled by

Amazon, the solution is highly scalable and flexible.

The API Gateway can be used to call Lambda functions available in the AWS ac-

count, publicly accessible HTTP endpoints and other AWS services. /17/

The group of resources and methods in the API gateway, also known as endpoints,

can be deployed to different stages, creating a development lifecycle. The endpoints

can also be versioned, allowing to activate a previous version of the API, in a seam-

less manner.

 26

Figure 5: Amazon API Gateway call flow. Adapted from /17/

2.4.3.1 Client SDK

Amazon API Gateway allows generating SDKs for any stage of an API. The SDKs

can then be used to call the API, abstracting much of the development needed to

communicate with an API. The currently supported platforms for SDK generation

are:

 JavaScript

 Android

 iOS

2.4.3.2 Monitoring and metrics

AWS provides a range of tools that enables tracking the use and performance of the

API. The API calls, errors and latency are all monitored. These can be accessed via

the API dashboard or through logs in the AWS CloudWatch.

2.4.4 Simple Storage Service

Widely known as S3, Amazon provides this cloud storage service as a means to

simplify the task of storing and retrieving objects. It is a highly scalable and on-

demand service targeting development teams. /24/

 27

S3 offers automatic object backups across multiple datacenters and has versioning

in place, in case objects are deleted by applications/users accidently. In addition,

since the service is on-demand, charges are only inferred for the storage used.

2.4.4.1 Static websites

One of the key features of AWS S3 is the ability to host static websites. Web appli-

cations that solely rely on client-side scripts for their functionality and do not re-

quire server side implementation, can be hosted directly on AWS S3.

By default, S3 allows the hosted website to be accessed from an automatically gen-

erated URL. However, a custom domain can also be used to serve the website. This

is done in conjunction with Amazon Route 53, a Domain Name System (DNS) ser-

vice.

2.4.5 DynamoDB

DynamoDB is a NoSQL database offered as a service by Amazon. Being fully man-

aged by AWS, it offers a fast and highly scalable alternative to the conventional

method of managing own database server.

2.4.5.1 Capacity units

While creating a table in DynamoDB, the corresponding provisioning settings need

to be configured. Using these settings, AWS allocates the required resources to be

used for this table and charges are inflicted based on this value. The term “Capacity

Units” is used to refer to this setting and it is described as follows:

 1 write capacity unit: 1 write per second

 1 read capacity unit: 1 strongly consistent or 2 eventually consistent reads

per second

If the frequency of read/write exceeds than the provisioned capacity units, the re-

quest fails.

 28

2.4.6 Cognito

Amazon offers Cognito as a user identity management service. In addition, Cognito

offers user data synchronization across multiple platforms and devices. /23/

Cognito supports login through external identity providers. These include public

identity providers such as Google and Facebook, as well as developer authenticated

identities.

2.4.6.1 Identitiy Pools

Cognito uses the concept of Identity Pools. Used to store user identities and the data

that may be associated with that identity, Identity Pools also help in syncing user

accounts on a variety of platforms.

An Identity Pool supports the following two forms of identities:

 Authenticated: these identities are authenticated using a public or developer

login provider

 Unauthenticated: these identities can also be referred to as guests and are

not authenticated.

Permissions to Identity Pools are assigned using IAM Roles.

2.5 Miscellaneous

2.5.1 MongoDB

A non-relational database, MongoDB stores information in the form of JavaScript

Object Notation (JSON) documents collection rather than tables. /27/

MongoDB is schema-less. This means that two documents in a collection do not

have to have the follow the same pattern of key-value pairs. Even though it might

be a good practice to follow a specific pattern in a collection to avoid confusion,

MongoDB offers the flexibility of having no schema.

 29

Since MongoDB stores data in a JSON format, the data structure is similar to what

developers work with inside their programs. This makes it easier to communicate

with the MongoDB, specifically when using JavaScript. /27/

The idea behind MongoDB is to retain most, if not all, the scalability and perfor-

mance of key-value data stores while providing a multitude of functionality. Some

of the missing functionality of MongoDB, when compared to a Relational Database

Management System (RDBMS), is the lack of Joins and Transactions. However,

Joins, for example, is a feature of RDBMS that scales poorly and Transactions is a

feature that is not needed most of the time in MongoDB, due to the way data is

stored.

Figure 6: MongoDB comparison with other database systems

2.5.2 REST

Coined in the year 2000 by Roy Fielding in his dissertation, Representational State

Transfer (REST) describes a series of constraints that should be laid out whenever

two systems communicate with each other. REST provides a series of rules for the

server so that all the clients using the service understand what it does and how it

works. /4/

Memcached

Key Value Store

MongoDB

RDBMS

Sc
al

ab
lit

y
an

d
 p

er
fo

rm
an

ce

Depth of functionality

 30

Communication with a RESTful interface takes place around resources or a series

of resources. Therefore, the service URI will contain nouns and not verbs. However,

the HTTP verb used in the request will dictate the type of activity taking place on

the resource. HTTP verbs include but are not limited to GET, POST, PUT, DE-

LETE and PATCH.

Another important characteristic of a RESTful interface is Hypermedia as the en-

gine of application state, also known as HATEOS. HATEOS states that in the re-

sponse of each request to the service, there should be set of hyperlinks that can be

used to navigate the API.

2.5.3 CORS

For security reasons, a web browser’s same-origin policy allows scripts in a web

page to access information in another web page only if they both originate from a

single origin. The origin is known based on host name, port number and URI

scheme.

Cross-Origin Resource Sharing, simply known as CORS, is a specification from

World Wide Web Consortium (W3C) that allows scripts in a browser to access re-

sources on another domain. /15/

In order to enable CORS, the server needs to be configured so that the response

header contains the appropriate fields. The fields necessary for a successful ex-

change vary depending on the HTTP methods used in the request and if any custom

headers are used. However, a basic CORS exchange can be achieved by configuring

the server to respond to GET requests with an “Allow-Control-Allow-Origin” to a

specific origin or “*” for all origins. This will either allow GET requests initiated

from a specific origin or all origins, depending on the setting.

2.5.3.1 Preflight requests

Preflight requests involve the browser making a HTTP OPTIONS request to the

target resource, before making the actual request initiated by the client. It is used to

 31

determine whether the target resource expects the type of request that the client is

trying to make and thus allowing or disallowing the request to be made.

The browser may “pre-flight” requests made to another domain if HTTP methods

other than GET, POST or HEAD are used in the request. The requests are also

preflighted if the request contains custom headers. /15/

2.5.4 OAuth2

An authentication protocol, OAuth2 allows applications to access user data on an-

other application without the need to acquire user password. This is achieved by

delegating user authentication to a service where the user already has an account.

2.5.4.1 Application Identity

Before a client can delegate authentication to an Identity Provider, it needs to be

registered with that provider. This, depending on the particular service used, will

generate keys that can be used later to prove the client’s identity.

2.5.4.2 Flow

Consider a user logging into a blog to leave a comment on a post, using their Google

account. OAuth2 defines 4 roles:

1. Client: The blog

2. Resource Owner: The user trying to login to the blog

3. Authorization Server: Google’s service handling user consent and authen-

tication

4. Resource Server: Google’s service for retrieving user profile information

 32

Figure 7: Common OAuth2 flow

 33

3 SYSTEM DESCRIPTION AND DESIGN

3.1 Requirements specification

The requirements for the project can be divided into the following three categories,

based on their priority for the success of the implementation:

 Must- haves (1): The basic characteristics the applications must implement.

 Should-haves (2): The necessary features for the application to be satisfac-

tory.

 Nice-to-haves (3): Even though not necessary, these attributes are desirable

for the application and could result in a better user experience.

Table 2: Project requirements

No. Description Priority

1 User is able to read/write NFC tags using the mobile appli-

cation

1

2 The mobile application makes use of tabbed UI 3

3 User is able to view tag details through the web application 2

4 The mobile application communicates with the web API for

storing/retrieving tag information

1

5 User is able to view history of tags through the mobile ap-

plication

3

6 The web application allows modification of maintenance

and other details, after identification

2

 34

7 The mobile application displays information to be written

and make the tag write-protected

1

8 The web application frontend makes use of AngularJS 3

9 The mobile application provides usage instructions 2

10 The mobile application shows history of writes, reads and

pending registers to the web service

3

3.1.1 Non-functional requirements

Besides the requirements regarding the functionality of the application, there are

also requirements related to the quality of the solution. These include:

 Scalability: the solution must be able to handle spikes in traffic while deliv-

ering a seamless user experience.

 Learnability: The use of NFC technology in the mobile application increases

the need for usage guidance. Therefore, the application must provide rele-

vant instructions and continuous feedback.

 Security: Since the solution will require user login, the architecture should

be designed so that the user data is safe, while providing a secure method of

communication with the backend.

3.2 Use Cases

Identifying use cases for an application provides an overview of the interaction be-

tween the application and its user/external system. This in turn offers a clear under-

standing of the functionality that the application is to deliver, based on an input

from an external entity.

The use cases can be presented in a logical approach using a Use Case Diagram.

The aforementioned diagram and an explanation of each use case are provided in

the following sections.

 35

3.2.1 Android Application

3.2.1.1 Use Case Diagram

Figure 8 shows the interaction between the user and DiveSafe mobile application

through a use case diagram.

The actor in a use case diagram performs actions that trigger an event in the appli-

cation flow. Since the application is primarily going to be used by diving equipment

shops, the actor in this use case is the shop staff.

Figure 8: Use Case Diagram for the DiveSafe mobile application

3.2.1.2 Login with Gmail

Since this project uses Identity Federation, the users of the mobile application login

using their Google account in order to access some features.

The characteristics of this use case can be seen in Table 2.

Table 3: Use case “Login with Gmail”

Description The user logs in using their Google account

 36

Preconditions Valid Google account

Input Google Identity Token

Triggered Actions Using the Identity Token, the user is verified to AWS Cog-

nito and temporary IAM credentials are issued

Result User is informed of the login and their display name is

shown

Exceptions No network access

3.2.1.3 Register Tag

In order for a Tag to be part of the DiveSafe system, it must be registered first.

Registering a new Tag involves writing the information the user provides to both

the DiveSafe database and the tag itself.

For a successful registration to occur, the user must provide the appropriate details

through the mobile application, review and confirm the information, and tap the tag

with the mobile device.

It is only possible to register tags that are not already part of the system. Therefore,

the registration will not proceed if the tag is not empty.

The characteristics for this use case can be seen in Table 3.

Table 4: Use case “Register tag”

Description The user registers a new tag to the system

Preconditions The tag is not already in the system

Input All tag and owner related data

 37

Triggered Actions Write all data to the server and if successful, add basic data

to the Tag.

Result A success message is shown to the user. The tag is now in

the system

Exceptions The tag is already registered/not empty/not valid

3.2.1.4 Read tag details

Table 4 describes the characteristics of “Read basic tag details” use case.

Only a few of the basic details that are provided by the user when registering the

tag are stored on the tag. Therefore, this information can be accessed even when no

internet access is available.

Table 5: Use case “Read tag details”

Description The user reads the information stored on the tag

Preconditions -

Input The tag is tapped with the device

Triggered Actions -

Result Tag details are shown to the user with the controls for SMS,

call and email ability

Exceptions The tag is empty

 38

3.2.2 Web Application

3.2.2.1 Use case diagram

Figure 9: Use case diagram for DiveSafe web

3.2.2.2 Login with Gmail

Since this project uses Identity Federation, the users of the mobile application login

using their Google account in order to access most of its features.

The characteristics of this use case can be seen in Table 5.

Table 6: Use case “Login with Gmail”

Description The user logs in using their Google account

Preconditions Valid Google account

Input Google Identity and Access Tokens

Triggered Actions Using the Identity Token, the user is verified to AWS Cog-

nito and temporary IAM credentials are issued. Basic user

profile is fetched using the Access Token

 39

Result User is informed of the login and redirected to the applica-

tion dashboard

Exceptions No internet access

3.2.2.3 View Profile

Users are able to view brief information about their profile through the Profile sec-

tion. The information largely displays the data fetched from the Google APIs. The

idea is to allow users observe what Google account they are using to perform vari-

ous operations in the application and possibly switch the account, if needed.

Table 7: Use case “View Profile”

Description Tag owner views their Profile information

Preconditions User must be logged into the application

Input -

Triggered Actions User information fetched from the Google API during the

login process is loaded from the local storage

Result Profile information is shown to the user

Exceptions Session expired

3.2.2.4 View registered Tags

As part of the Tag registration process through the Android application, the Google

account logged into the mobile application is assigned the “registerer” role. By log-

ging into the web application using the same account, all the Tags registered by the

account can be accessed.

Table 7 shows the features of this use case.

 40

Table 8: Use case “View registered Tags”

Description The user accesses the Tags registered by their account

Preconditions User must be logged into the application

Input -

Triggered Actions Using the temporarily issued AWS credentials, all tags in

the system registered to this account are fetched through the

API

Result A list of Tags with the relevant information is shown on the

screen

Exceptions Session expired

3.2.2.5 Add maintenance

Through the DiveSafe web application, the logged in user can add maintenance

information to the Tags they have registered using the Android application.

Table 9: Use case “Add maintenance”

Description Maintenance information is added by the user

Preconditions User must be logged into the application and possess the

“registerer” permissions to the Tag

Input All maintenance related information for instance date, name

and comments

Triggered Actions Using the temporarily issued AWS credentials, a new

maintenance instance is recorded in the database through the

API

Result Success message is shown to the user

 41

Exceptions Invalid data, session expired

3.2.2.6 View owned Tags

Tag owners are able to view their Tags through the DiveSafe web application, by

logging into the application using the Google account provided at tag registration.

Tag owners are able to, along with basic Tag information, view inspections and

maintenances. They are not, however, able to add instances of inspections or

maintenances.

Table 10: Use case “View owned Tags”

Description Tag owner views the information of their Tags

Preconditions User must be logged into the application and possess the

“owner” permissions to the tag

Input -

Triggered Actions All Tags having the logged in Google account as the owner

are fetched from the database and through the API

Result A list of Tags is shown to the user

Exceptions Session expired

3.2.2.7 Show inspections/maintenances

Through the DiveSafe web application, users are able to view the inspec-

tion/maintenance information for both the Tags they own and the Tags that have

been registered using their Google account.

Table 11: Use case “Show inspections/maintenances”

Description User views the inspection/maintenance information of a tag

Preconditions User must be logged into the application

 42

Input -

Triggered Actions The list of maintenance/inspection information, using the

Tag id, is fetched through the API

Result A list of inspections/maintenances is shown on the screen

Exceptions Session expired

3.3 Sequence Diagrams

Modeling the flow of events in a sequential manner, sequence diagrams are used to

document and communicate the design of an application. /3/

This section provides the sequence diagrams related to activities in the DiveSafe

system. The figures illustrate how the user interacts with the system and the activi-

ties that happen in the background, in sequence.

The sequence diagram for reading the basic tag details can be seen in Figure 10. As

it is shown in the figure, after the user has tapped the tag with the device, the An-

droid Operating System (OS) detects and dispatches the tag to the DiveSafe appli-

cation, invoking the necessary methods that continue the process.

 43

Figure 10: Sequence diagram “Read tag details”

The sequence diagram for logging into the application using Google is shown in

Figure 11.

Figure 11: Sequence diagram “Login with Google”

The sequence diagram for registering a new Tag to the system can be seen in Figure

12.

 44

Figure 12: Sequence diagram “Register new Tag”

3.4 Application design

In this chapter, the system design and how different platforms are integrated, will

be discussed on an abstract level. A more detailed view of how the design is imple-

mented in practice, is discussed in the next chapter.

Since the DiveSafe project makes use of applications developed for and running on

different platforms, it is appropriate to describe the design and architecture of each

application separately, in addition to the system as a whole.

3.4.1 Three-tier Architecture

When dealing with user-facing applications, the three-tier architecture is a common

configuration. In this pattern, the tiers that form the application are the presentation,

logic and data tiers.

 45

Figure 13: Three-tier Architecture

The Presentation tier comprises of the components that the user can directly interact

with. These can include, for example, mobile app UIs and webpages. The Logic tier

comprises of the code and functionality required to determine application behavior,

in response to interactions at the Presentation tier. The Data tier involves the per-

sistence of changes and information.

3.4.2 Service-Oriented Architecture

A service is a piece of software which provides functionality to other pieces of soft-

ware within a system. The other pieces of software could be, for example, a website,

a mobile application, a desktop application or another service. For instance, in the

context of an e-commerce solution, the functionality of placing an order could be

handled by a service that performs all the necessary operations for processing an

order successfully. Therefore, this service provides functionality to the e-commerce

website.

A system that employs a service or multiple services to provide functionality in this

manner is considered to be using a Service-Oriented-Architecture (SOA). Using

this architecture allows clients from different platforms to connect and use the same

service, reusing functionality.

SOA eases the process of scaling an application, in response to the increase in de-

mand. This is achieved through copying the service into new servers and using a

Load Balancer to redirect traffic to servers, depending on how busy they are.

 46

Furthermore, SOA provides reusability of functionality. For example, in our previ-

ous example of an e-commerce solution, the service could provide the functionality

of placing an order to a website or a mobile application.

One of the key aspects of an SOA is the use of standardized contracts or interfaces.

Therefore, the signature of the method that the client uses to interact with services

does not change when the service is modified. Therefore, upgrading a service does

not require upgrading the clients that rely upon that service, as long as the interface

has not been modified.

Figure 14: SOA and scaling

3.4.3 Microservices Architecture

Due to the lack of specific guidelines on sizing services in the traditional SOA, the

services became large and monolithic, as the requirements grew. This resulted in

services being difficult to change and less scalable.

Defined as an improved version of the Service-oriented Architecture, Microservices

Architecture shares the main characteristics of SOA. These include the reusability,

scalability, statelessness and the standardized interface for backwards compatibil-

ity.

 47

The Microservice Architecture proposes guidelines for sizing services. This archi-

tecture, as the name suggests, uses smaller services for addressing specific needs.

This in turn makes the services more efficient to scale and flexible.

Figure 15: Architecture Comparison

Applications using this architecture make use of multiple micro services to provide

functionality to specific part of the application. Since the micro services may com-

municate with client or other micro services, the communication mechanism is

lightweight.

Services in a Microservices Architecture are independent of each other. This means

that each service can be changed and deployed, without affecting other services in

the system.

 48

3.4.4 Server-less Architecture using AWS Microservices

In this project, an architecture commonly referred to as “Server-less Architecture”

was employed using Amazon Web Services. When using this architecture, the pro-

visioning of servers is handled by AWS. This eliminates the following risk factors:

 Under-provisioning: leading to performance decline

 Over-provisioning: leading to increased cost

 Development cost: without the need to manage and secure servers, the de-

velopment cost is reduced

Figure 16: “Server-less” Architecture using AWS

As mentioned in the “Used Technologies” chapter, AWS S3 can be used to serve

static files. This makes it possible to host websites on S3 that do not need server

side implementation and can solely rely on communicating with API to fetch the

necessary data. AngularJS and other client-side JavaScript frameworks allow this

functionality.

 49

3.4.4.1 Event-driven

Since resources are assigned in response to the traffic, the system can be described

as event-driven. If there are no requests made to the micro-services, there will be

no servers running in the system, thus minimizing the cost of the solution. For ex-

ample, when a Lambda function is invoked, it automatically assigns resources to

run the code and perform the tasks required.

3.4.5 Fragment-Oriented Architecture for Android

To produce code that is maintainable and testable, the view of an application is

separated into different components. In Android, this is achieved using Fragments.

Using Fragment-Oriented Architecture, the Android application is divided into

Fragments so that the final solution contains one primary Activity with multiple

Fragments. The Fragments provide the User Interface(UI) and related logic for a

particular functionality. The Activity is mainly used to add/remove Fragments and

for inter-Fragment communication.

It is a recommended practice to use an Interface for communication between a Frag-

ment and its containing Activity or other Fragments. This is to keep the Fragment

modular and easier to test.

Figure 17 shows the architecture diagram of the Android application.

 50

Figure 17: Fragment-Oriented Architecture

 51

4 IMPLEMENTATION

This chapter provides an overview of the key implementation topics in the project.

Most of the theory needed for this chapter is provided in the “Technologies” chap-

ter. However, some project-specific information will also be provided throughout

the upcoming sections.

Since the project involves multiple platforms, it is perhaps more appropriate to dis-

cuss the implementation aspect of each platform separately.

4.1 Android

The mobile application for this project was developed using the so called “Frag-

ment-oriented Architecture”. In this design pattern, Android applications contain a

single Activity and multiple Fragments. Each fragment is responsible for a specific

task, handling both the UI and logic aspects of that task. The Activity is primarily

used for inter-app/inter-fragment communication, application UI and session man-

agement.

Using the Fragment-oriented Architecture provides a good separation of concerns,

easier inter-app communication and generally produces a more maintainable code.

4.1.1 Enabling NFC

In order to enable the application to access the device’s NFC capabilities, the An-

droidManifest.xml file needs to include the following permission:

<uses-permission android:name=”android.permission.NFC” />

An additional step is to limit the installation of the application to NFC enabled de-

vices. This, while optional, enhances user experience by notifying users whether

they are actually able to use the application:

<uses-feature android:name="android.hardware.nfc" />

 52

4.1.2 Reading NFC Tag

As discussed in the “Used Technologies” chapter, when an NFC tag is detected,

Android begins a process aimed at finding the best candidate Activity to launch and

pass the Tag object. This is done by analyzing the list of Activities expecting NFC

Tags, whether or not enableForegroundDispatch() method has been called by

an activity and the corresponding filters.

Even though an Android Activity is on the foreground and is visible to the user, it

does not automatically possess any priority over other applications/activities regis-

tered for NFC tags. The method enableForegroundDispatch() provides the ac-

tivity that priority.

As mentioned, the first priority is given to the Activity that has called enableFore-

groundDispatch(). If no activity has called the method, the type of the first record

in the Tag is determined. Next, the Activity registered for that Tag type using the

most specific filter matching the determined type is launched and the Tag is passed

to it. Therefore, to make sure that this application is launched, filters were assigned

according to the Tag type and stored data.

 53

/*

* Invoke only when the Activity is in the foreground and not writing tag

*/

public void enableTagReadMode() {

 mWriteMode = false;

 // since Tags are expected to be in NDEF format, use the corresponding filter when

 // assigning found tags to this activity

 IntentFilter[] filters = new IntentFilter[1];

 filters[0] = new IntentFilter();

 filters[0].addAction(NfcAdapter.ACTION_NDEF_DISCOVERED);

 filters[0].addCategory(Intent.CATEGORY_DEFAULT);

 try {

 filters[0].addDataType(MIME_TEXT_PLAIN);

 } catch (IntentFilter.MalformedMimeTypeException e) {

 throw new RuntimeException("Check the mime type");

 }

 // give Tag handling priority to this activity, with the given filters

 mNfcAdapter.enableForegroundDispatch(this, mPendingIntent, filters, null);

}

/*

* Invoke in the onPause() method

*/

public void disableTagReadMode() {

 mNfcAdapter.disableForegroundDispatch(this);

}

When the Tag object is received as part of the delivered intent, the stored records

can either be retrieved using Ndef.getCachedNdefMessage().getRecords().

The method for retrieving data from the NdefRecord depends on the type of the

record. This can be found using the NFC Forum Specification. Following is an ex-

ample of retrieving data from an NdefRecord with type equal to TEXT.

/*

 * http://www.nfc-forum.org/specs/

 *

 * bit_7 defines encoding

 * bit_6 reserved for future use, must be 0

 * bit_5..0 length of IANA language code

 */

byte[] payload = record.getPayload();

// Get the Text Encoding

String textEncoding = ((payload[0] & 128) == 0) ? "UTF-8" : "UTF-16";

// Get the Language Code

int languageCodeLength = payload[0] & 0063;

// Get the Text

return new String(payload, languageCodeLength + 1, payload.length – languageCodeLength

- 1, textEncoding);

 54

4.1.3 Writing NFC Tag

In order to write to the Ndef Tag, an NdefMessage with at least one NdefRecord

needs to be created. The required method for creating a record depends on the type

of record. Following is an example of creating an NdefRecord with type TEXT.

// Generate a language code in bytes

String lang = "en";

byte[] langBytes = lang.getBytes("US-ASCII");

int langLength = langBytes.length;

// Generate text data in bytes

byte[] textBytes = text.getBytes();

int textLength = textBytes.length;

// Actual payload to be saved to the record

byte[] payload = new byte[1 + langLength + textLength];

// set status byte (see NDEF spec for actual bits)

payload[0] = (byte) langLength;

// copy langbytes and textbytes into payload

System.arraycopy(langBytes, 0, payload, 1, langLength);

System.arraycopy(textBytes, 0, payload, 1 + langLength, textLength);

return new NdefRecord(NdefRecord.TNF_WELL_KNOWN, NdefRecord.RTD_TEXT, new byte[0],

payload);

When the NdefMessage has been created and the tag is in range, the information

can be written to the tag by first calling Ndef.connect() followed by

Ndef.writeNdefMessage(NdefMessage). After the write operation is finished,

Ndef.close() is called to gracefully close I/O operation.

4.1.4 Application views

Since the mobile application involves communication with an NFC tag, it is imper-

ative that it provides a user interface that is easy to follow. Therefore, a tabbed user

interface was implemented using Google’s Material design. Following Material de-

sign specification ensures that the user is presented with a familiar array of controls.

Figure 18 shows the corresponding views of the three tabs used in the initial version

of the mobile application. Please note that only screens for successful operations

are given here.

 55

Figure 18: DiveSafe Mobile views

 56

4.2 AngularJS

In order to streamline the development process and produce code that is easier to

migrate to Angular 2, Angular best practices authored by John Papa and backed by

the Angular team/11/ were used in this project. This involves, among other things,

separating HTML partials, controllers, services and directives into smaller

files/folders, based on their role in the project.

4.2.1 Authentication

Since the web application of this project is hosted on AWS S3, the OAuth 2.0 Im-

plicit Grant type authentication is used, which does not require a server side imple-

mentation. An abstract explanation of the steps required for authentication and au-

thorization is given below.

1. Client: Build request to Google authorization server with configu-

ration. Create a popup for authorization, using the built request.

2. Authorization Server: If authorized by user, respond with the access

and identity token to the popup.

3. Client: Extract identity and access token from popup URL. Close

the popup and save the tokens to local storage.

4. Client: Retrieve Google user profile using access token and save to

local storage.

5. Client: Request AWS credentials from Cognito, using local identity

token

6. Cognito: Validate the identity with Google authorization server and

if token is valid, respond with temporary AWS credentials

7. Client: Use AWS credentials with all future requests.

4.2.2 Optimizing for production

The implication of John Papa’s widely used design pattern is the necessity to in-

clude all application/vendor JavaScript and HTML files into the index.html.

Each of these will require a separate network call. In addition, separate network

 57

calls will be made for any application/vendor stylesheets. This is not a desired be-

havior in production.

To produce an optimized build for deployment, Gulp with plugins is used to minify

and combine all:

 Application JavaScript into app.js

 Vendor(excluding apigateway sdk) JavaScript into lib.js

 HTML partials into Angular $templateCache and inject into app.js

 ApiGateway SDK into apigateway.js

 Application CSS into app.css

 Vendor CSS into lib.css

The files are then injected into the index file. Additionally, file name revisions are

used in all generated files. This is used for the purpose known as “Cache-busting”.

Cache-busting is used to prevent browsers from using outdated resources that are

cached. Each modification results in a unique file name, forcing the browser to re-

quest the new resource.

4.3 AWS

The server-less implementation in this project involves using Lambda as the

backend, DynamoDB as the data store and invoking Lambda through the API Gate-

way. Even though these services are all offered by AWS and logged in account may

have write/read access to all of these services, IAM Roles with necessary access

need to be used to grant the services access to each other.

For example, the Lambda functions accessing DynamoDB tables will need to have

a policy attached to them that allows access to those tables.

 58

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "TagsDynamoDBRead",

 "Effect": "Allow",

 "Action": [

 "dynamodb:GetItem",

 "dynamodb:Scan"

],

 "Resource": [

 "arn:aws:dynamodb:eu-west-1:884453216036:table/Tags"

]

 }

]

}

The policy given above grants read access to the Tags table in DynamoDB and is

attached to the readTag and listTags Lambda functions.

4.3.1 Deploying a RESTful API

AWS API Gateway provides the ability to deploy the API to custom deployment

stages. The names and number of these deployment stages can vary depending on

the product lifecycle methodology used within the organization. For the purpose of

this project, the API resides in the “dev” stage.

The diagram of the /tags and its child /tags/{id} resource is given in the Figure 19:

 59

Figure 19: API diagram for /tag resource

Currently all the methods that provide CRUD functionality on resources require

IAM authorization. This means that a custom “X-Amz-Security-Token” is required

in the header of each request.

4.3.1.1 Models

Even though not obligatory, it is good practice to create Models for the resources

in AWS API Gateway. The models are defined using JSON Schema and are mainly

used to communicate the expected format of data. This provides several benefits

including:

 automatically generating output templates

 class description for Models in the client SDK

 reducing the chances of a malformed request

Since this project primarily focuses on Tag and User resources, a model for each

was created. The model for Tags is created as follows:

 60

{

 "$schema": "http://json-schema.org/draft-04/schema#",

 "title": "DiveSafeTagModel",

 "type": "object",

 "properties": {"id": { "type": "string" },"type": {"type": "string"},

 "registrationDate": {"type": "string"},

 "maintenance": {

 "type": "object",

 "properties": {

 "date": {"type": "string"},"name": {"type": "string"},

 "comment": {"type": "string"}

 }

 },"inspection": {

 "type": "object",

 "properties": {

 "date": {"type": "string"},"name": {"type": "string"},

 "comment": {"type": "string"}

 }

 },"owner": {

 "type": "object",

 "properties": {

 "name": {"type": "string"},"phone": {"type": "string"},

 "email": {"type": "string"}

 }

 },"registerer": {"type": "string"}

 }

}

Using the Model above, a large part of effort to form proper requests is abstracted

from the clients.

4.3.2 CRUD Operations in Lambda

While creating resources through the API Gateway, each HTTP method is assigned

an existing AWS Lambda function that will be invoked on a request. Each Lambda

function is a standalone module.

For the purpose of this project, Node.js runtime environment was used for the exe-

cution of server-side functions. Each function is called with two arguments:

 event: This object contains any passed in values like HTTP request body,

query and url parameters

 context: This object provides runtime information including Lambda con-

figuration. It also provides callback functions to indicate the result of the

operation

 61

For example, the following code fetches a Tag item from DynamoDB, using the

provided id through the event object. It then invokes the callback functions in the

context object, depending on the result of the operation.

var doc = require('dynamodb-doc');

var dynamodb = new doc.DynamoDB();

// dynamodb table with hash key = id

var tableName = "Tags";

exports.handler = function(event, context) {

 var payload = {

 "TableName": tableName,

 "Key" : {

 "id": event.id

 }

 };

 dynamodb.getItem(payload, function(err, data){

 if(err){

 context.fail();

 }

 // if the result is empty, provide the proper response

 if(JSON.stringify(data) === JSON.stringify({})){

 context.fail("Not Found: The requested Tag cannot be found");

 }

 context.succeed(data);

 });

};

4.3.3 Deploying to S3

After the web application code has been optimized, it can be deployed to S3 using

the AWS console. This is done by creating a new S3 bucket and uploading all the

files, with index.html residing at the root of the bucket. An automatic URL is gen-

erated in the following format:

<bucket-name>.s3-website-<AWS-region>.amazonaws.com

In order to make it easier to use a custom domain at later point, the bucket name is

chosen so that it follows the same pattern as that of a future domain name. In addi-

tion, two buckets are created: bucket name with and without the “www” prefix.

This is necessary due to the internals of how Route 53 maps the domains to S3

buckets and to be able to serve the website for both domain.com and www.do-

main.com.

http://www.domain.com/
http://www.domain.com/

 62

4.3.4 Configuring Cognito

AWS Cognito offers a simple interface for configuring well known OpenID pro-

viders by providing dedicated fields, tailored to the corresponding OpenID pro-

vider. For example, only a Google application client Id is needed to configure a

Google sign in.

However, when using Google sign in on more than one platform, Google has to be

configured as an OpenID provider through IAM and each platform’s Google client

id needs to be added. If Google is configured both through the IAM and Cognito,

none of the two configurations will work.

4.4 Tests and Analysis

This section provides an overview of the necessary setup for testing the major parts

of the application. It also details the outcome of the project in terms of learning and

achievements.

4.4.1 Testing fundamentals

Testing the NFC capabilities of an Android application, which is one of the primary

test cases in this project, generally requires physical NFC tags. This is due to the

complexities involved in Activity/Fragment lifecycle and the lack of comprehen-

sive resources on the subject. In the beginning of the project and before the physical

NFC tags were delivered, the emulator provided by the OpenNFC project was used

to test the application.

4.4.1.1 Using Reflection for mocking

To automate the testing process, a mock of the Ndef Tag object needs to be created.

However, the constructor for Tag object is only for internal use and is not public.

/25/ In addition, Android framework does not provide accessible methods for in-

stantiating a new Tag object. Therefore, Reflection needs to be used to mock the

Tag.

 63

The term “Reflection” is used in Java and other programming languages for the

concept of examining and possibly modifying the behavior of classes at runtime. It

gives programs access that would be otherwise illegal, like accessing private meth-

ods. Reflection, in this case, is used to access a private method of the Tag class, in

order to create a mock Tag.

The Android Tag object includes a method createMockTag that can, through re-

flection, be invoked with the necessary arguments to return a Tag instance corre-

sponding to the arguments. The Tag instance is then passed on for testing.

// Using Reflection, gain access to the otherwise inaccessible createMockTag method

Class tagclass = Tag.class;

Method createMockTagMethod = tagclass.getMethod("createMockTag", byte[].class,

 int[].class, Bundle[].class);

// NdefMessage with a simple text record

NdefMessage myNdefMessage = new NdefMessage(Utils.createTextRecord(textToWrite));

// values obtained from the tag's specification

Bundle ndefBundle = new Bundle();

ndefBundle.putInt(EXTRA_NDEF_MAXLENGTH, 137); // maximum message length

ndefBundle.putInt(EXTRA_NDEF_CARDSTATE, 2); // read-write ability

ndefBundle.putInt(EXTRA_NDEF_TYPE, 2); // Type 2 tag

ndefBundle.putParcelable(EXTRA_NDEF_MSG, myNdefMessage); // add the NDEF message

// Unique 7-byte identifier for type 2 tag

byte[] tagId = new byte[] { (byte)0x3F, (byte)0x12, (byte)0x34, (byte)0x56,

(byte)0x78,

 (byte)0x90, (byte)0xAB };

Tag mockTag = (Tag)createMockTagMethod.invoke(

 null, // null since we dont have an object

 tagId, // tag UID/anti-collision identifier

 new int[] {TECH_NDEF }, // tech-list

 // tech-extra bundles mapping to to entries in tech-list

 new Bundle[] { ndefBundle });

The mock Tag is then used, for example, to perform unit tests on the Fragment

responsible for reading Tags.

4.4.1.2 API Gateway and Lambda Integration

AWS console provides an interface for testing the integration of an API Gateway

method against the corresponding Lambda function. This is important since in some

cases, the request parameters received in the API Gateway need to be modified into

a format that can be consumed by the Lambda function.

 64

Figure 20 shows an integration test of /tags/{id} resource and the updateTag

Lambda function.

Figure 20: API-Lambda Integration test

4.4.1.3 Test Harness using Lambda

In addition to testing Lambda functions through the AWS console, a separate

Lambda function was created for unit testing Lambda functions. The test function

runs the specified Lambda function using the given event object. It then saves the

result of the test in a DynamoDB table for later analysis.

For example, the following is a result recorded in the DynamoDB table, after run-

ning the test against the readUser Lambda function:

{

 "iteration": 0,

 "passed": true,

 "result": {

 "Item":{"name":"DiveSafe","id":"divesafe@gmail.com","phone":"0498830653"}

 },

 "testId": "readUser"

}

The benefit of using this approach is that as the test harness is just another Lambda

function and therefore it requires no resource provisioning. In addition, any infor-

mation necessary to the function under test can be recorded in the DynamoDB table.

 65

4.4.2 Analysis

Implementing the server-less architecture using AWS micro services proved to be

a challenging task, especially in the initial phase. This was partially due to the una-

vailability of many resources on the relevant topics, at the time of writing this doc-

ument.

Prior to selecting the server less architecture to be used in the project, a more con-

ventional solution that involved an API to be hosted on an Amazon EC2 server was

developed. The basic API was built using NodeJS, Express framework and Mon-

goDB. However, the architecture was later changed in favor of the server less ar-

chitecture, which takes full advantage of the services offered by AWS.

4.4.2.1 Learning outcome

The developer of this project had previous experience with developing web and

mobile applications. The developer had also been involved, to some degree, in ar-

chitecting applications in the past. However, the developer had no considerable

prior experience with either cloud computing or Android NFC. This posed a chal-

lenge during the development, especially in the initial stages.

Perhaps one of the more challenging aspects of this project, from the developer’s

point of view, was designing the architecture in a meaningful way that took ad-

vantage of the powerful services provided by AWS.

The project provided the developer with a solid knowledge base in cloud computing

as well as developing for NFC-enabled devices.

4.4.2.2 Future development

While the current implementation offers the basic functionality needed for the

DiveSafe solution and it integrates different platforms in a scalable fashion, there

are still additions that may prove helpful in the future. These include:

 Offline Tag registration: The mobile application should allow shops to reg-

ister tags even when internet access is not available. This could be achieved

 66

by saving Tags to local storage and committing them when internet is avail-

able.

 Flexible fields in the tag: Currently, the mobile application allows specific

fields to be written to the tag. This could be changed so that the user is able

to dynamically decide what information to store on the tag.

 iOS application: As of writing this document, Apple does not provide APIs

to develop NFC based applications. Developing the DiveSafe mobile appli-

cation for iOS devices, when possible, will indeed increase the user base.

On top of the technologies used in this project, Amazon Web Services (AWS) con-

tinues to offer other services that can be added in order to further enhance the pro-

ject’s usability. This, for example, includes Simple Notification Service(SNS).

 67

5 CONCLUSION

Even though this project achieves the objectives set forth in the beginning, there are

still additions needed to make the DiveSafe project into an industry ready solution.

However, these largely include modifications dependent on business related deci-

sions and are not necessarily significant from a software development point of view.

The server-less architecture using micro services is a relatively new concept and

not a lot of resources are readily available. Therefore, this document promises to be

a good reference for future projects being implemented using these technologies.

The project offers a good overview of the steps necessary to integrate different plat-

forms with Amazon Web Services (AWS) and typical challenges that newcomers

may face.

Although the implementation and design instructions documented in this thesis tar-

get the specific objectives of this project, they can easily be tailored for various

other purposes. Specifically, the server-less architecture is a low cost and a highly

scalable approach that can be employed for a variety of needs. This, coupled with

the fact that AWS offers a free trial of 12 months as of writing this document, pro-

vides a good platform for startups and small companies.

 68

REFERENCES

/1/ Thomas Wu. 2001. An introduction to object-oriented programming with

Java. 2nd edition. McGraw-Hill

/2/ AngularJS website. Last Accessed 21.12.2015

https://angularjs.org/

/3/ Sequence Diagrams: And Agile Introduction. Last Accessed 15.12.2015

http://www.agilemodeling.com/artifacts/sequenceDiagram.htm

/4/ Roy Fielding’s Dissertation. Last Accessed 20.12.2015

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

/5/ JUnit website. Last accessed 22.12.2015

http://junit.org

/6/ Kyle Simpson. 2015. You don’t know JS. O’Reilly Media Inc.

/7/ NFC Basics. Last Accessed 12.12.2015

http://developer.android.com/guide/topics/connectivity/nfc/nfc.html

/8/ How NFC works: Last Accessed 23.12.2015

http://www.nearfieldcommunication.org/how-it-works.html

/9/ NFC Forum. 2006. NDEF Technical Specification. NFC Forum Inc.

http://members.nfc-forum.org/specs/spec_list/

/10/ What’s the difference between RFID and NFC? Last Accessed 23.12.2015

http://electronics.howstuffworks.com/difference-between-rfid-and-nfc.htm

/11/ John Papa. Angular 1 Style Guide. Last accessed 10.03.2016

https://angularjs.org/
http://www.agilemodeling.com/artifacts/sequenceDiagram.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://junit.org/
http://developer.android.com/guide/topics/connectivity/nfc/nfc.html
http://www.nearfieldcommunication.org/how-it-works.html
http://members.nfc-forum.org/specs/spec_list/
http://electronics.howstuffworks.com/difference-between-rfid-and-nfc.htm

 69

https://github.com/johnpapa/angular-styleguide/tree/master/a1

/12/ NodeJS. Last accessed 16.12.2015

https://nodejs.org/en/

/13/ ExpressJS. Last accessed 16.12.2015

http://expressjs.com

/14/ Gulp. Last accessed 20.12.2015

http://gulpjs.com/

/15/ HTTP Access Control. Last accessed 21.03.2016

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

/16/ What is AWS? Last accessed 22.01.2016

https://aws.amazon.com/what-is-aws/

/17/ AWS API Gateway Developer guide. Last accessed 27.01.2016

http://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html

/18/ AngularUI. Last accessed 26.01.2016

https://angular-ui.github.io/

/19/ AWS Cloud Products. Last accessed 28.01.2016

https://aws.amazon.com/products/

/20/ What is IAM? Last accessed 27.01.2016

http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

/21/ AWS Lambda. Last accessed 15.01.2016

https://github.com/johnpapa/angular-styleguide/tree/master/a1
https://nodejs.org/en/
http://expressjs.com/
http://gulpjs.com/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://aws.amazon.com/what-is-aws/
http://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
https://angular-ui.github.io/
https://aws.amazon.com/products/
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

 70

http://docs.aws.amazon.com/lambda/latest/dg/welcome.html

/22/ Reto Meier. 2012. Professional Android™ 4 Application Development.

John Wiley & Sons, Inc.

/23/ AWS Cognito. Last accessed 28.01.2016

http://docs.aws.amazon.com/cognito/devguide/

/24/ AWS S3. Last accessed 23.03.2016

https://aws.amazon.com/s3/

/25/ Android Tag source. Last accessed 08.03.2016

https://android.googlesource.com/platform/frame-

works/base.git/+/4049f9d00a86f848d42d2429068496b31a6795ad/core/java/an-

droid/nfc/Tag.java

/26/ Material design specification. Last accessed 10.02.2016

https://www.google.com/design/spec/material-design/introduction.html

/27/ MongoDB for NodeJS. Last accessed 29.03.2016

https://docs.mongodb.org/getting-started/node/

http://docs.aws.amazon.com/lambda/latest/dg/welcome.html
http://docs.aws.amazon.com/cognito/devguide/
https://aws.amazon.com/s3/
https://android.googlesource.com/platform/frameworks/base.git/+/4049f9d00a86f848d42d2429068496b31a6795ad/core/java/android/nfc/Tag.java
https://android.googlesource.com/platform/frameworks/base.git/+/4049f9d00a86f848d42d2429068496b31a6795ad/core/java/android/nfc/Tag.java
https://android.googlesource.com/platform/frameworks/base.git/+/4049f9d00a86f848d42d2429068496b31a6795ad/core/java/android/nfc/Tag.java
https://www.google.com/design/spec/material-design/introduction.html
https://docs.mongodb.org/getting-started/node/

