

Bachelor's thesis

Information Technology

Internet Technology

2016

Denis Anchugov

CROSS-PLATFORM MOBILE
SOFTWARE DEVELOPMENT

Technology Overview and a Practical Example

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Theseus

https://core.ac.uk/display/45600347?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BACHELOR´S THESIS | ABSTRACT
TURKU UNIVERSITY OF APPLIED SCIENCES

Information Technology | Internet Technology

10 March 2016 | Number of pages: 58

Supervisor: Patric Granholm

Denis Anchugov

CROSS-PLATFORM MOBILE SOFTWARE
DEVELOPMENT

The vast diversity of portable devices has increased the need for an easy and unified approach
to build mobile software. The purpose of this work is to give an overview of technologies widely
used to deliver cross-platform software solutions. This was achieved by studying two of the most
common cross-platform frameworks – Xamarin.Forms and Cordova.

The first part of the work introduces the problem of mobile software development. The second
part describes the underlying technology of the cross-platform solutions and compares them to
the native application development in terms of benefits and drawbacks. The third part provides a
practical example of building an app using the two cross-platform solutions, demonstrating the
workflow of development and a toolset used.

KEYWORDS:

Mobile software development, cross-platform software, C#, JavaScript, Xamarin, Cordova, Ionic

CONTENTS

1 OS VENDORS AND DEVELOPMENT CHALLENGES 6

 Platform Architectures 7

 Application Architectures 9

2 CROSS-PLATFORM SOLUTIONS 11

 Cordova 11

 Xamarin 13

 Solutions Comparison 15

3 PRACTICAL EXAMPLE 18

 The Application 18

 Hybrid Approach 19

 Xamarin Approach 19

4 DISCUSSION AND CONCLUSION 25

5 REFERENCES 26

APPENDIX 1: HYBRID APP IMPLEMENTATION 29

 Code Listing: app.js 29

 iOS 7

 Android 8

 Windows Phone 8

 MVC (Model-View-Controller) 9

 MVVM (Model-View-ViewModel) 9

 AngularJS 12

 Native Application Development 15

 Hybrid Application Development 15

 Xamarin Application Development 16

 Cost 17

 Development Environment 19

 Ionic Project Structure 20

 Implementation 21

 Results 18

 Development Environment 19

 Xamarin.Forms Project Structure 19

 Implementation 19

 Results 24

 Code Listing: services.js 30

 Code Listing: controllers.js 31

 Code Listing: main-page.html 33

 Code Listing: index.html 35

 Code Listing: style.css 36

APPENDIX 2: XAMARIN APP IMPLEMENTATION 37

 Code Listing: App.cs 37

 Code Listing: ExpressionFactory.cs 38

 Code Listing: ITimer.cs 40

 Code Listing: PlayerStats.cs 41

 Code Listing: MainPageViewModel.cs 42

 Code Listing: MainPage.xaml 45

 Code Listing: MainPage.xaml.cs 47

 Code Listing: AndroidTimer.cs 48

 Code Listing: MainActivity.cs 49

 Code Listing: AppDelegate.cs 50

 Code Listing: Main.cs 50

 Code Listing: Windows.App.cs 51

 Code Listing: Windows.MainPage.xaml 53

PICTURES

Picture 1. Worldwide Smartphone OS Market Share (IDC, 2015). 6
Picture 2. iOS platform architecture, modified from (Apple, 2014). 7
Picture 3. Android platform architecture, modified from (Android Team, 2016). 8
Picture 4. Windows Phone platform architecture, modified from (Sharma, 2013). 8
Picture 5. Interaction of MVC components, modified from (Apple, 2012). 9
Picture 6. MVVM pattern, modified from (Microsoft, 2012). 10
Picture 7. Cordova platform architecture, modified from (Apache, 2016). 12
Picture 8. Angular architecture, modified from (Wahlin, 2013). 13
Picture 9. Xamarin.Forms solution architecture, modified from (Xamarin, 2016). 14
Picture 10. Application UI mockup, created with (Moqups, 2016). 18
Picture 11. Search result for Ionic project template. 19
Picture 12. Project structure as seen from Solution Explorer in Visual Studio. 20
Picture 13. Ionic app running in WP, Android and iOS emulators. 18
Picture 14. Xamarin projects and their dependencies. 19
Picture 15. Shared project. 20
Picture 16. Android project structure. 21
Picture 17. iOS project structure. 22
Picture 18. Windows project structure. 23
Picture 19. Xamarin.Forms app running in WP, Android and iOS emulators. 24

LIST OF ABBREVIATIONS

API Application Programming Interface

HTML Hyper Text Markup Language

CSS Cascading Style Sheet

JVM Java Virtual Machine

MSIL Microsoft Intermediate Language

IDE Application Development Environment

CLR Common Language Runtime

UI User Interface

ECMA European Computer Manufacturers Association

SPA Single Page Application

DOM Document Object Model

6

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

1 OS VENDORS AND DEVELOPMENT CHALLENGES

According to the International Data Corporation (IDC, 2015), three major mobile

operating systems share the majority of the market:

1. iOS – developed by Apple.

2. Android – an open source project supported by Google.

3. Windows – developed by Microsoft.

Picture 1. Worldwide Smartphone OS Market Share (IDC, 2015).

Since all three platforms have been developed by different vendors and have

appeared at different times, they differ not only in structure but also in the kind of

technologies used to build applications. Although the most commonly used

programming languages are object oriented, the differences in platform

frameworks make applications written for one platform incompatible with the

others.

In order to reach as many users as possible, companies and individuals that

develop software need to create the same application three times – each time

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

targeting a different platform. This means that the development cost essentially

triples even though the functionality of the apps is identical.

Such approach is known as native application development. Native applications

are created with the use of application frameworks provided by the operating

system software vendors.

 Platform Architectures

This section briefly describes the platform architectures of mobile operating

systems in order to highlight why they are incompatible with each other.

 iOS

Applications for iOS devices are written either in the Objective-C or Swift

programming languages. The code written in these languages is compiled

directly into a native code for a specific processor architecture, without the use of

any intermediate languages. This is an important distinction among the

languages used in other platforms.

Platform Application Programming Interfaces (APIs) are delivered to developers

through platform frameworks. These frameworks present themselves as layers,

with complex and detailed components at the lower levels and abstract

components at the higher levels (Apple, 2014).

Picture 2. iOS platform architecture, modified from (Apple, 2014).

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 Android

Java is the most common programming language for developing Android

applications. Unlike Objective-C or Swift, Java does not compile to native code

at once. Instead, Java source code compiles into an intermediate language, byte

code, which can only be executed by a Java Virtual Machine (Oracle, 2011).

There is a variety of Java Virtual Machines (JVMs) for different platforms. In case

of Android, it is either Dalvik or Android Runtime (Android Project, 2016).

Picture 3. Android platform architecture, modified from (Android Team, 2016).

 Windows Phone

Applications for Windows Phone are built using Microsoft’s .NET framework with

C# as the preferred programming language. Similar to Java, C# compiles into an

intermediate language, Microsoft Intermediate Language (MSIL), which is then

executed by the Common Language Runtime (CLR). MSIL and byte code share

the same concept but are not compatible with each other (Microsoft, 2016).

Picture 4. Windows Phone platform architecture, modified from (Sharma, 2013).

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 Application Architectures

Although developers are not limited in ways of organizing their code, several

architectural patterns became a de-facto standard for building mobile

applications. These patterns aim to facilitate the complexity of the application

presentation and business logic. Two particularly common architectural patterns

used in software development are MVC and MVVM patterns.

 MVC (Model-View-Controller)

The most common architectural pattern that is used to build applications for iOS

and Android is the MVC pattern (Apple, 2016). Trygve Reenskaug, a Swedish

computer scientist, first introduced the pattern in the 70s in order to tackle the

complexity of manipulation on large quantities of data (Reenskaug, 2010). The

pattern consists of three object types:

1. View – an object that is responsible for presenting information to the user

and gathering user input.

2. Model – an object that encapsulates essential business domain rules.

3. Controller – an object that facilitates the communication between the View

and the Model.

Picture 5. Interaction of MVC components, modified from (Apple, 2012).

 MVVM (Model-View-ViewModel)

The MVVM is an architectural pattern most commonly used in Windows

applications. The pattern was formulated by Ken Cooper and Ted Peters while

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

working at Microsoft, and was first announced by John Gossman in his blog in

2005 (Gossman, 2005). The purpose of the View and the Model in MVVM are the

same as in MVC, however, the Controller is now replaced with a ViewModel. The

ViewModel is practically a representation of the View in terms of actions and

properties. The elements in the View bind to the corresponding properties of the

ViewModel and ViewModel updates the View whenever its state changes.

Picture 6. MVVM pattern, modified from (Microsoft, 2012).

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

2 CROSS-PLATFORM SOLUTIONS

Cross-platform mobile software has been a hot topic for several years now. Being

able to create apps that could run on the three major platforms with the use of

existing skills would decrease the development and maintenance cost of these

apps significantly.

At this point, the two most popular frameworks for developing cross-platform

mobile apps are Cordova and Xamarin and both frameworks have different

approaches to run across platforms.

 Cordova

Cordova (Apache, 2016) is a framework that enables developers to use their web

programming skills (JavaScript, HTML, CSS) in order to build mobile apps. Apps

that are built with Cordova are quite often called hybrid apps.

A hybrid application is essentially a web page that is contained locally on the

users’ phone (instead of being loaded from the server in a normal web page

scenario) and executed in a built-in web browser engine. Browsers on each of

the platforms conform to the ECMA standard in order to be able to render web

pages; this makes it possible to share the code between the platforms.

Another important distinction between regular web pages and hybrid apps is that

a hybrid app is wrapped in a platform-specific application executable that can be

distributed through the platform’s application store. The wrapper also permits

access to the phone’s hardware APIs (such as camera, accelerometer or storage)

through a layer of plugins written in the platform specific language (C#, Swift,

Objective-C, Java, among others). This capability is the reason for the name

“hybrid”.

There is a variety of frameworks that are built on top of Cordova and extend its

functionality. Ionic framework is one such framework. It provides a set of tools

and reusable components to be used when building apps and it uses AngularJS

– a JavaScript framework for building single page frontend applications (SPA).

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

Picture 7. Cordova platform architecture, modified from (Apache, 2016).

 AngularJS

AngularJS is a well-known and highly popular framework for frontend

development. It helps building complicated applications by utilizing a variation of

MVVM pattern and other implementation patterns such as factory and

dependency injection.

AngularJS’ main component types are:

 Controllers – they provide a set of methods to manipulate the state of the

View.

 Views – they are HTML templates that bind to a controller and are updated

whenever the corresponding Controller updates the state.

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 Directives – they are special attributes that can extend the functionality of

regular HTML DOM elements.

 Services – they are objects that provide the functionality to be used within

controllers. Usually these objects encapsulate the application’s business

logic.

Picture 8. Angular architecture, modified from (Wahlin, 2013).

 Xamarin

Xamarin is a framework and a set of tools based on an open source, cross-

platform version of Microsoft’s .NET framework called Mono (Xamarin, 2016).

Xamarin apps are written in C# and work similar to native Windows Phone apps

(refer to section 1.1.3). There is, however, a difference in compilation and

execution process on different platforms (Xamarin, 2016):

 iOS – the C# source code is compiled directly into the processor

instructions. No IL code is generated, hence, no runtime is involved in the

execution process.

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 Android – the C# source code is compiled into IL code and packaged along

with Mono Runtime, which is an open source version of Microsoft’s .NET

CLR. The IL is then executed by the Mono Runtime.

 Windows Phone – works just like a Windows Phone app in a native

scenario. The IL is executed by the Microsoft’s .NET CLR.

There are several approaches of building apps with Xamarin. This work is

particularly focusing on Xamarin.Forms since it permits the most code reuse.

Xamarin.Forms application consists of a platform specific executable and a

shared library that contains the application’s business logic and platform

dependent abstractions. Platform specific executable contains an entry point and

the implementation of platform dependent abstractions.

Picture 9. Xamarin.Forms solution architecture, modified from (Xamarin, 2016).

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 Solutions Comparison

When it comes to choosing a development approach, it is important to understand

its limitations. This section covers the benefits and drawbacks of native, hybrid

and Xamarin application development.

 Native Application Development

Pros:

 Gestures – native apps support multi touch input and are capable of

recognizing gestures like swipe and pinch out of the box.

 Animations – complicated animations can be created. This is a crucial

factor if applications have to be visually rich and complicated.

 Hardware API access – native application frameworks provide easy to use

access to hardware APIs, such as camera, accelerometer or storage.

 Documentation – the software vendors extensively document each native

framework.

Cons:

 Skills – different platforms rely on a different set of technologies; time is

required in order to learn to use them.

 Time/money – as mentioned before, the development time triples because

three different apps have to be created. This factor turns out to be the most

crucial when choosing a development approach.

 Hybrid Application Development

Pros:

 Use of existing skills – because hybrid apps are built around web

technologies, it is easier for web developers to leverage their existing skills

in order to deliver mobile applications.

 Time/money – since the code base is shared, less time is required for

developing the applications.

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

Cons:

 Hardware API access – because of an extra layer of browser engine,

access to hardware APIs becomes complicated. Each time it is required

to use a hardware API – a plugin has to be used. A plugin, written in

platform specific language, exposes hardware APIs to be used from the

browser’s JavaScript engine. There is a variety of plugins created by the

community, but quite often these plugins are poorly maintained.

 Animations – application developers are limited in the kind of animations

they can have in their apps because browser engines are not as efficient

as native presentation technologies. This is usually not a concern if the

applications are not required to have sophisticated animations.

 Gestures – the only gesture that is supported out of the box is a regular

tap gesture. In order to leverage more gestures in hybrid applications a

plugin has to be used.

 Performance – again, because of the layer of the browser engine, apps

consume more resources and may behave unresponsively.

 Xamarin Application Development

Pros:

 Use of existing skills – Xamarin apps are built with C#, which is among the

most popular programming languages and is often used for building server

applications.

 Time/Money – similar to the hybrid approach, the code base is shared and

less time is required for developing the applications.

 Compiled into native code – unlike the hybrid approach, C# code is

compiled into native code. This makes apps as efficient as native apps.

Cons:

 Animations – because of the differences in presentation technologies, it is

harder to make animations that would look good on each of the platforms.

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 Gestures – not all the gestures are supported by Xamarin.Forms

framework.

 Cost

Hybrid frameworks that exist today are free to use and it has been recently

announced that the cost for developing Xamarin apps has been dropped

(Xamarin, 2016). This means that there is no cost difference when using either of

the approaches anymore.

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

3 PRACTICAL EXAMPLE

 The Application

The example application named “Train Your Brain” is a simple problem-solving

game. The player has to solve mathematical problems in a limited amount of time.

Each correct answer increases the player’s score and complexity of the

subsequent expressions. Each incorrect answer subtracts a “life” from the player

stats. Once the player reaches zero lives – the game is over.

Picture 10. Application UI mockup, created with (Moqups, 2016).

The timer starts to count once the user presses the “Start” button. The player

has five seconds to give an answer by using a numeric pad on the bottom of the

screen. Once the answer is submitted and evaluated – another expression is

deployed. If the game is over, the timer stops and the “Game Over” message

appears.

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 Hybrid Approach

The following section describes the development environment and

implementation of the example application using hybrid development approach.

 Development Environment

Practically, a simple text editor and a command line are sufficient to build hybrid

applications; however, we believe that Visual Studio IDE provides greater support

and streamlines the development process.

Visual Studio supports a variety of project templates, including a template for

applications based on Ionic framework. The template can be downloaded from

the Visual Studio extension gallery (Microsoft, 2015), or directly from the Visual

Studio’s “Extensions and Updates” window. After the installation, the Ionic project

template will be available under the “New Project” window.

Picture 11. Search result for Ionic project template.

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

After the creation of the project from Ionic template, Visual Studio generates a

basic project structure.

Picture 12. Project structure as seen from Solution Explorer in Visual Studio.

 Ionic Project Structure

 merges folder – it contains platform specific code, typically, compatibility

scripts and platform overrides.

 plugins folder – it contains native components that could be used in the

application code.

 www folder – it holds application resources.

 index.html – it is the main view of the application. Cordova framework,

application logic and styles are referenced from this file.

 config.xml – it contains configurations specific to each platform. It also

holds references to plugins.

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 css folder – it holds application style files.

 img folder – it holds visual assets that are used in the application.

 js folder – it contains JavaScript files with the application logic.

 app.js – it contains bootstrapping code and configures AngularJS

application page routing.

 controllers.js – it holds AngularJS controllers.

 services.js – it holds AngularJS services.

 templates folder – it contains HTML files that represent the UI of the

application. These files are loaded into the main view (index.html).

 main-page.html – it is the main template to be loaded into the main view.

 Implementation

Following section describes the implementation of the example app using the

hybrid approach.

 app.js (Appendix 1, Code Listing 1)

The code in this file is the bootstrapping code. It configures certain features of

Cordova application and brings together Controllers and Views.

 services.js (Appendix 1, Code Listing 2)

This file contains the application logic that is agnostic to the presentation layer.

In this file, we have defined a factory module that is going to be responsible for

constructing Expression objects. Expression is an object that holds the operands

and contains a method for formatting these operands into strings. It also contains

a method for checking the results.

 controllers.js (Appendix 1, Code Listing 3)

Since we have only one View – we have created one Controller. The scope of

this controller contains methods that the View uses to display the expression, and

gather user input.

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 main-page.html (Appendix 1, Code Listing 4)

This file contains HTML markup that represents the application UI. This View

binds to a scope of the main Controller. The View is divided into three rows:

a. the first row displays user statistics, such as amount of lives, score and

timer.

b. the second row displays the expression and the user input by

concatenating them.

c. the third row is an input pad. It holds numeric buttons as well as buttons to

submit the answer, erase characters, or insert the minus sign. Commands

for these buttons are bound via AngularJS’ ng-click directive with the

corresponding number as a parameter.

 index.html (Appendix 1, Code Listing 5)

In this file, we have changed the title of the app and referenced controllers.js and

expressionFactory.js. It also contains references for Cordova and Ionic itself. The

application mainPage.html will be rendered within the <body ng-

app=”trainBrain” >…</body> tag.

 style.css (Appendix 1, Code Listing 6)

Most of the styles used in the app are default Ionic styles. We have applied a few

minor visual improvements.

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 Results

All three operating systems can execute the application after compilation. The application looks similar on each of the platforms

because no native components are used.

Picture 13. Ionic app running in WP, Android and iOS emulators.

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 Xamarin Approach

The following section describes the development environment and

implementation of the example application using Xamarin.Forms development

approach.

 Development Environment

Similar to the case of Ionic, Visual Studio supports the development of Xamarin

apps. Xamarin tools are installed along with the Visual Studio or separately as a

plugin (Microsoft, 2016). There is one limitation when developing Xamarin apps

on a PC; due to certain restrictions from Apple, in order to build and run the

application for iOS, Apple Mac is required.

After creating the Xamarin.Forms project, the basic project structure is generated.

 Xamarin.Forms Project Structure

The Xamarin.Forms solution consists of four projects: three projects

corresponding to each platform plus a shared project. Each platform project

contains platform specific bootstrapping code, assets, and resources.

Picture 14. Xamarin projects and their dependencies.

 Implementation

The following section describes the implementation of the example app using

Xamarin.Forms.

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

TrainYourBrain.Xamarin (Portable)

Picture 15. Shared project.

 App.cs (Appendix 2, Code Listing 1)

A C# class in this file is an entry point of the application. In this class, we have

configured the main page of the application. This class is instantiated from the

host platform project.

 ExpressionFactory.cs (Appendix 2, Code Listing 2)

The sole responsibility of this class is to create Expression objects.

 Expression.cs (Appendix 2, Code Listing 2)

It contains methods and fields to hold and operate on the expression operands

and defines formatting rules.

 ITimer.cs (Appendix 2, Code Listing 3)

The Timer type provides timer functionality. However, this type cannot be used

from this portable class library. Hence, we have created an ITimer interface that

is implemented in each platform-specific project and injected into the App through

the constructor.

 PlayerStats.cs (Appendix 2, Code Listing 4)

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

It contains the player stats properties. This class implements the

INotifyPropertyChange interface, which enables the View to be notified

whenever the player statistics change.

 MainPageViewModel.cs (Appendix 2, Code Listing 5)

This is a ViewModel for the main View to bind. It exposes properties and actions

the main View uses.

 MainPage.xaml (Appendix 2, Code Listing 6)

This XAML page describes the user interface of the app. The Binding keyword

is used to bind to the ViewModel’s properties and commands.

 MainPage.xaml.cs (Appendix 2, Code Listing 7)

This is a typically called “code behind”. This partial class contains code that can

access elements of the View and perform manipulations with them. Because the

application uses MVVM pattern, this code has little to do with the application logic.

The binding to the ViewModel is created in the class constructor.

Train.YourBrain.Xamarin.Droid

Picture 16. Android project structure.

 AndroidTimer.cs (Appendix 2, Code Listing 8)

This is an Implementation of the ITimer interface. An instance of this class is

passed during the instantiation of the App. The implementation is identical in case

of Windows Phone and iOS.

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 MainActivity.cs (Appendix 2, Code Listing 9)

In Android, an Activity is the main work unit that brings together the application

business and the presentation logic. The App is instantiated from this class.

Train.YourBrain.Xamarin.iOS

Picture 17. iOS project structure.

 AppDelegate.cs (Appendix 2, Code Listing 10)

In iOS, this class is responsible for the user interface initialization. The App is

instantiated from this class.

 Main.cs (Appendix 2, Code Listing 11)

This is the application’s entry point which calls into the AppDelegate.

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

TrainYouBrain.Xamarin.Windows

Picture 18. Windows project structure.

 App.xaml/App.xaml.cs (Appendix 2, Code Listing 12)

This is the native entry point of Windows apps. The App is instantiated from this

class.

 MainPage.xaml (Appendix 2, Code Listing 13)

The Page from the shared project is rendered within this page.

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 Results

All three operating systems can execute the application after compilation. The application looks slightly different on each of the

platforms because native UI components are used.

Picture 19. Xamarin.Forms app running in WP, Android and iOS emulators.

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

4 DISCUSSION AND CONCLUSION

Both Cordova and Xamarin allow building cross-platform mobile software

solutions. However, there are compromises to be made when choosing one

platform over the other.

Cordova, with addition of Ionic, allows rapid development due to a vast variety of

ready-made components and the application architecture imposed by AngularJS.

Applications with a simple UI can be delivered in a relatively short period of time.

This approach is perfect for apps that do not require high performance since the

browser engines are not as efficient as they would be if the app ran natively. The

user interface of the app appears to be identical from platform to platform

because no native UI components are used. Certain difficulties are present when

it comes to accessing hardware capabilities. Although there are numerous native

plugins available, it is not easy to work with them as it can be in the native case.

Xamarin.Forms apps are written in C# and because this language is strongly

typed, it tends to be less error prone and easier to debug than JavaScript.

However, usually C# includes more of “boilerplate code”, meaning that the code

is more verbose. This affects the speed of the development in the short term, but

makes it easier to introduce changes in the long term. Since C# is compiled into

native code of each platform, the apps use native components and have better

performance. Because the code is separated in several platform projects, it is

easier to do platform-specific customization. Similarly to the case of Ionic, there

is a variety of components that are provided by the community and can be used

within the app.

In summary, the decision of choosing an approach should be well considered

based on the application’s complexity and customer needs in terms of time and

performance.

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

5 REFERENCES

Android Project, 2016. ART and Dalvik. [Online]

Available at: https://source.android.com/devices/tech/dalvik/

[Accessed 25 December 2015].

Android Team, 2016. Google Code. [Online]

Available at: http://androidteam.googlecode.com/files/Anatomy-Physiology-of-an-Android.pdf

[Accessed 10 March 2016].

Apache, 2016. Cordova Documentation. [Online]

Available at: https://cordova.apache.org/docs/en/latest/guide/overview/

[Accessed 10 January 2016].

Apple, 2012. Model-View-Controller. [Online]

Available at:

https://developer.apple.com/library/ios/documentation/General/Conceptual/CocoaEncyclopedia/

Model-View-Controller/Model-View-Controller.html

[Accessed 27 December 2015].

Apple, 2014. iOS Technology overview. [Online]

Available at:

https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTec

hOverview/Introduction/Introduction.html

[Accessed 12 January 2016].

Apple, 2016. Concepts in Objective-C Programming. [Online]

Available at:

https://developer.apple.com/library/ios/documentation/General/Conceptual/CocoaEncyclopedia/

Introduction/Introduction.html#//apple_ref/doc/uid/TP40010810

[Accessed 27 December 2015].

Gossman, J., 2005. [Online]

Available at: http://blogs.msdn.com/b/johngossman/archive/2005/10/08/478683.aspx

[Accessed 15 December 2015].

IDC, 2015. Smartphone OS Market Share. [Online]

Available at: http://www.idc.com/prodserv/smartphone-os-market-share.jsp

[Accessed 27 December 2015].

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

Microsoft, 2012. The MVVM Patttern. [Online]

Available at: https://msdn.microsoft.com/en-us/library/hh848246.aspx?f=255&MSPPError=-

2147217396

[Accessed 12 January 2016].

Microsoft, 2015. Ionic Project Template. [Online]

Available at: https://visualstudiogallery.msdn.microsoft.com/8fa5bff2-e023-4e13-8b36-

0244e935fb7d

[Accessed 5 January 2016].

Microsoft, 2016. Managed Execution Process. [Online]

Available at: https://msdn.microsoft.com/en-us/library/k5532s8a(v=vs.110).aspx

[Accessed 9 March 2016].

Microsoft, 2016. Xamarin Extension. [Online]

Available at: https://visualstudiogallery.msdn.microsoft.com/dcd5b7bd-48f0-4245-80b6-

002d22ea6eee

[Accessed 10 January 2016].

Moqups, 2016. Moqups Designer. [Online]

Available at: https://moqups.com

[Accessed 12 04 2016].

Oracle, 2011. JVM Specification. [Online]

Available at: https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-1.html#jvms-1.2

[Accessed 12 January 2016].

Reenskaug, T. M. H., 2010. [Online]

Available at: http://folk.uio.no/trygver/themes/mvc/mvc-index.html

[Accessed 15 December 2016].

Sharma, G., 2013. C# Corner. [Online]

Available at: http://www.c-sharpcorner.com/UploadFile/b5be7f/some-basic-differences-between-

windows-store-app-windows-p/

[Accessed 10 March 2016].

Wahlin, D., 2013. [Online]

Available at: http://weblogs.asp.net/dwahlin/video-tutorial-angularjs-fundamentals-in-60-ish-

minutes

[Accessed 8 March 2016].

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

Xamarin, 2016. Application Fundamentals. [Online]

Available at: https://developer.xamarin.com/guides/cross-

platform/application_fundamentals/building_cross_platform_applications/sharing_code_options/

[Accessed 10 March 2016].

Xamarin, 2016. Understanding the Xamarin Mobile Platform. [Online]

Available at: https://developer.xamarin.com/guides/cross-

platform/application_fundamentals/building_cross_platform_applications/part_1_-

_understanding_the_xamarin_mobile_platform/

[Accessed 25 04 2016].

Xamarin, 2016. Xamarin Platform. [Online]

Available at: https://xamarin.com/platform

[Accessed 5 February 2016].

Xamarin, 2016. Xamarin Store. [Online]

Available at: https://store.xamarin.com/

[Accessed 10 March 2016].

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

APPENDIX 1: HYBRID APP IMPLEMENTATION

 Code Listing: app.js

angular.module("trainBrain", ["ionic", "trainBrain.controllers", "trainBrain.factories"])

.run(function ($ionicPlatform) {
 $ionicPlatform.ready(function () {
 if (window.StatusBar) {
 window.StatusBar.styleLightContent();
 }
 });
})

.config(function ($stateProvider, $urlRouterProvider) {

 $stateProvider.state("main", {
 url: "/main",
 templateUrl: "templates/main-page.html",
 controller: "expressionController"
 });

 $urlRouterProvider.otherwise("/main");
});

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 Code Listing: services.js

angular.module("trainBrain.services", [])
 .factory("expressionFactory", expressionFactory);

var operators = ["+", "-"];

function expressionFactory() {
 var numberRange = 8;

 var createExpression = function () {
 var a = Math.floor(Math.random() * numberRange);
 var b = Math.floor(Math.random() * numberRange);
 var operator = operators[Math.floor(Math.random() * operators.length)];

 return new Expression(a, b, operator);
 };

 return {
 getExpression: function () {
 numberRange++;
 return createExpression();
 },
 reset: function () {
 numberRange = 8;
 }
 };
};

function Expression(a, b, operator) {

 function toString() {
 return a.toString() + operator.toString() + b.toString() + '=';
 };

 function checkAnswer(userAnswer) {
 return calculate() === userAnswer;
 };

 function calculate() {
 switch (operator) {
 case "+":
 return a + b;
 case "-":
 return a - b;
 }
 };

 return {
 checkAnswer: checkAnswer,
 toString: toString
 };
};

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 Code Listing: controllers.js

angular.module("trainBrain.controllers", [])
 .controller("expressionController", expressionController);

function expressionController($interval, $ionicPopup, expressionFactory) {
 var timer;
 var vm = this;
 vm.isInputDisabled = true;

 var timerTick = function () {
 vm.timer--;
 if (vm.timer === 0) {
 vm.lives--;
 vm.deployExpression();
 vm.timer = 5;
 }
 };

 var init = function () {
 vm.timer = 5;
 vm.score = 0;
 vm.lives = 3;
 vm.userInput = "";
 vm.isInputDisabled = false;

 vm.deployExpression();
 };

 vm.deployExpression = function () {
 if (vm.lives > 0) {
 vm.currentExpression = expressionFactory.getExpression();
 } else {
 vm.showAlert();
 $interval.cancel(timer);
 }
 };

 vm.eraseChar = function () {
 if (vm.userInput.length !== 0) {
 vm.userInput = vm.userInput.slice(0, -1);
 }
 };

 vm.appendChar = function (char) {
 vm.userInput = vm.userInput + char;
 };

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 vm.checkAnswer = function () {
 var isCorrect = vm.currentExpression.checkAnswer(parseInt(vm.userInput));

 if (isCorrect) {
 vm.score++;
 } else {
 vm.lives--;
 }

 vm.timer = 5;
 vm.userInput = '';
 vm.deployExpression();
 };

 vm.start = function () {
 expressionFactory.reset();
 init(vm);
 if (timer) {
 $interval.cancel(timer);
 }
 timer = $interval(timerTick, 1000);
 };

 vm.showAlert = function () {
 var alertPopup = $ionicPopup.alert({
 title: "Game Over",
 template: "Your score: " + vm.score
 });

 alertPopup.then(function () {
 vm.isInputDisabled = true;
 });
 };
}

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 Code Listing: main-page.html

<ion-view view-title="Main" ng-controller="expressionController as ec">
 <div class="row-top">
 <div class="col">
 <div class="row">
 <button class="button button-block button-assertive"
 ng-click="ec.start()">
 Start!
 </button>
 </div>
 <div class="row">
 <div class="col">Lives:</div>
 <div class="col">{{ec.lives}}</div>
 <div class="col">Timer:</div>
 <div class="col">{{ec.timer}}</div>
 <div class="col">Score:</div>
 <div class="col">{{ec.score}}</div>
 </div>
 </div>
 </div>
 <div class="row-center expression">
 <h2>{{ec.currentExpression.toString() + ec.userInput}}</h2>
 </div>
 <div class="row-bottom fixed-bottom">
 <div class="row">
 <div class="col-25 col-offset-75 col-right button"
 ng-disabled="ec.isInputDisabled"
 ng-click="ec.eraseChar()">←</div>
 </div>
 <div class="row">
 <div class="button col"
 ng-disabled="ec.isInputDisabled"
 ng-click="ec.appendChar(1)">1</div>
 <div class="button col"
 ng-disabled="ec.isInputDisabled"
 ng-click="ec.appendChar(2)">2</div>
 <div class="button col"
 ng-disabled="ec.isInputDisabled"
 ng-click="ec.appendChar(3)">3</div>
 <div class="button col"
 ng-disabled="ec.isInputDisabled"
 ng-click="ec.appendChar(0)">0</div>
 </div>
 <div class="row">
 <div class="button col"
 ng-disabled="ec.isInputDisabled"
 ng-click="ec.appendChar(4)">4</div>
 <div class="button col"
 ng-disabled="ec.isInputDisabled"
 ng-click="ec.appendChar(5)">5</div>
 <div class="button col"
 ng-disabled="ec.isInputDisabled"
 ng-click="ec.appendChar(6)">6</div>
 <div class="button col"
 ng-disabled="ec.isInputDisabled"
 ng-click="ec.appendChar('-')">-</div>
 </div>

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 <div class="row">
 <div class="button col"
 ng-disabled="ec.isInputDisabled"
 ng-click="ec.appendChar(7)">7</div>
 <div class="button col"
 ng-disabled="ec.isInputDisabled"
 ng-click="ec.appendChar(8)">8</div>
 <div class="button col"
 ng-disabled="ec.isInputDisabled"
 ng-click="ec.appendChar(9)">9</div>
 <div class="button col"
 ng-disabled="ec.isInputDisabled"
 ng-click="ec.checkAnswer()">↵</div>
 </div>
 </div>
</ion-view>

35

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 Code Listing: index.html

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="initial-scale=1,

maximum-scale=1,
user-scalable=no,
width=device-width">

 <title>Train Your Brain</title>

 <link href="lib/ionic/css/ionic.css" rel="stylesheet">
 <link href="css/style.css" rel="stylesheet">

 <script src="js/platformOverrides.js"></script>
 <script src="lib/ionic/js/ionic.bundle.js"></script>
 <script src="cordova.js"></script>

 <script src="js/app.js"></script>
 <script src="js/controllers.js"></script>
 <script src="js/expressionFactory.js"></script>
</head>
<body ng-app="trainBrain">
 <ion-nav-view></ion-nav-view>
</body>
</html>

36

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 Code Listing: style.css

.scroll-bar-indicator {
 display: none;
}

.fixed-bottom{
 position: absolute;
 bottom: 0;
 width: 100%;
}

h2 {
 text-align: center;
}

.expression {
 padding-top: 40px;
}

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

APPENDIX 2: XAMARIN APP IMPLEMENTATION

 Code Listing: App.cs

using Xamarin.Forms;

namespace TrainYourBrain.Core
{
 public class App : Application
 {
 public App(ITimer timer)
 {
 var expressionFactory = new ExpressionFactory();
 var mainPageViewModel = new MainPageViewModel(expressionFactory, timer);
 MainPage = new MainPage(mainPageViewModel);
 }
 }
}

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 Code Listing: ExpressionFactory.cs

using System;

namespace TrainYourBrain.Core
{
 public class ExpressionFactory
 {
 int numberRange = 8;
 char[] operators = { '+', '-' };

 public Expression CreateExpression()
 {
 var random = new Random();

 var operand1 = random.Next(numberRange);
 var operand2 = random.Next(numberRange);

 var operatorSign = operators[random.Next(operators.Length)];

 numberRange++;
 return new Expression(operand1, operand2, operatorSign);
 }

 public void Reset()
 {
 numberRange = 8;
 }
 }

 public class Expression
 {
 int operand1;
 int operand2;
 char operatorSign;

 public Expression(int operand1, int operand2, char operatorSign)
 {
 this.operand1 = operand1;
 this.operand2 = operand2;
 this.operatorSign = operatorSign;
 }

 public bool CheckAnswer(int userInput)
 {
 return userInput == Calculate();
 }

 int Calculate()
 {
 switch (operatorSign)
 {
 case '+':
 return operand1 + operand2;
 default:
 return operand1 - operand2;
 }
 }

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 public override string ToString()
 {
 return $"{operand1} {operatorSign} {operand2} = ?";
 }
 }
}

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 Code Listing: ITimer.cs

using System;

namespace TrainYourBrain.Core
{
 public interface ITimer
 {
 void Start(Action toExecute, TimeSpan period, TimeSpan dueTime);
 void Stop();
 }
}

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 Code Listing: PlayerStats.cs

using System.ComponentModel;
using System.Runtime.CompilerServices;
using TrainYourBrain.Core.Annotations;

namespace TrainYourBrain.Core
{
 public class PlayerStats : INotifyPropertyChanged
 {
 int lives;
 int score;
 int timerCount;

 public int Lives
 {
 get { return lives; }
 set
 {
 if (lives == value) return;
 lives = value;
 OnPropertyChanged();
 }
 }

 public int Score
 {
 get { return score; }
 set
 {
 if (score == value) return;
 score = value;
 OnPropertyChanged();
 }
 }

 public int TimerCount
 {
 get { return timerCount; }
 set
 {
 if (timerCount == value) return;
 timerCount = value;
 OnPropertyChanged();
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;

 [NotifyPropertyChangedInvocator]
 protected virtual void OnPropertyChanged([CallerMemberName]

string propertyName = null)
 {
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
 }
 }
}

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 Code Listing: MainPageViewModel.cs

using System;
using System.ComponentModel;
using System.Runtime.CompilerServices;
using System.Windows.Input;
using TrainYourBrain.Core.Annotations;
using Xamarin.Forms;

namespace TrainYourBrain.Core
{
 public class MainPageViewModel : INotifyPropertyChanged
 {
 ExpressionFactory expressionFactory;
 ITimer timer;

 PlayerStats playerStats;
 Expression currentExpression;
 string currentExpressionString;
 bool isInputEnabled;

 public PlayerStats PlayerStats
 {
 get { return playerStats; }
 set
 {
 if (playerStats == value) return;
 playerStats = value;
 OnPropertyChanged();
 }
 }

 public bool IsInputEnabled
 {
 get { return isInputEnabled; }
 set
 {
 if (isInputEnabled == value) return;
 isInputEnabled = value;
 OnPropertyChanged();
 }
 }

 public string ExpressionString
 {
 get { return currentExpressionString; }
 set
 {
 if (currentExpressionString == value) return;
 currentExpressionString = value;
 OnPropertyChanged();
 }
 }

 public ICommand StartCommand { get; set; }
 public ICommand CheckAnswerCommand { get; set; }

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 public MainPageViewModel(ExpressionFactory expressionFactory, ITimer timer)
 {
 this.timer = timer;
 this.expressionFactory = expressionFactory;
 StartCommand = new Command(StartRound);
 CheckAnswerCommand = new Command<int>(CheckAnswer);

 }

 void InitializePlayerStats()
 {
 PlayerStats = new PlayerStats()
 {
 Lives = 3,
 Score = 0,
 TimerCount = 5
 };
 }

 void CheckAnswer(int answer)
 {
 if (PlayerStats.Lives == 0) return;
 if (currentExpression.CheckAnswer(answer))
 {
 PlayerStats.Score++;
 }
 else
 {
 PlayerStats.Lives--;
 }
 DeployExpression();
 PlayerStats.TimerCount = 5;
 }

 void StartRound()
 {
 expressionFactory.Reset();
 IsInputEnabled = true;
 timer.Stop();
 InitializePlayerStats();
 DeployExpression();
 timer.Start(OnTick, TimeSpan.FromSeconds(1), TimeSpan.FromSeconds(1));
 }

 void DeployExpression()
 {
 if (PlayerStats.Lives != 0)
 {
 currentExpression = expressionFactory.CreateExpression();
 ExpressionString = currentExpression.ToString();
 }
 else
 {
 EndGame();
 }
 }

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 void EndGame()
 {
 timer.Stop();
 IsInputEnabled = false;
 ExpressionString = $"Game over. Your score: {PlayerStats.Score}";
 }

 public event PropertyChangedEventHandler PropertyChanged;

 [NotifyPropertyChangedInvocator]
 protected virtual void OnPropertyChanged([CallerMemberName]

string propName = null)
 {
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propName));
 }
 }
}

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 Code Listing: MainPage.xaml

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="TrainYourBrain.Core.MainPage">
 <StackLayout VerticalOptions="FillAndExpand">

 <Button Text="Start" Command="{Binding StartCommand}" Clicked="Start_OnClicked"/>
 <StackLayout Orientation="Horizontal" VerticalOptions="StartAndExpand">
 <Grid HorizontalOptions="FillAndExpand">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="auto"/>
 </Grid.ColumnDefinitions>
 <Label Grid.Column="0" Text="Lives:"/>
 <Label x:Name="Lives" Text="{Binding PlayerStats.Lives}" Grid.Column="1"/>
 <Label Grid.Column="2" Text="Timer:"/>
 <Label x:Name="Timer" Text="{Binding PlayerStats.TimerCount}" Grid.Column="3"/>
 <Label Grid.Column="4" Text="Score:"/>
 <Label x:Name="Score" Text="{Binding PlayerStats.Score}" Grid.Column="5"/>
 </Grid>
 </StackLayout>

 <Label Text="{Binding ExpressionString}"
 VerticalOptions="CenterAndExpand"
 HorizontalOptions="CenterAndExpand"
 FontSize="32"/>

 <Grid x:Name="InputGrid" VerticalOptions="EndAndExpand" >
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="*"/>
 <RowDefinition Height="*"/>
 <RowDefinition Height="*"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>

 <Label x:Name="AnswerField"
 FontSize="24"
 HorizontalTextAlignment="Center"
 Grid.Row="0"
 Grid.Column="0"
 Grid.ColumnSpan="3"/>
 <Button Text="←" Grid.Row="0" Grid.Column="3" Clicked="Erase_OnClicked"/>

 <Button Text="1" Grid.Row="1" Grid.Column="0" Clicked="AppendChar_OnClicked"/>
 <Button Text="2" Grid.Row="1" Grid.Column="1" Clicked="AppendChar_OnClicked"/>

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 <Button Text="3" Grid.Row="1" Grid.Column="2" Clicked="AppendChar_OnClicked"/>
 <Button Text="0" Grid.Row="1" Grid.Column="3" Clicked="AppendChar_OnClicked"/>
 <Button Text="4" Grid.Row="2" Grid.Column="0" Clicked="AppendChar_OnClicked"/>
 <Button Text="5" Grid.Row="2" Grid.Column="1" Clicked="AppendChar_OnClicked"/>
 <Button Text="6" Grid.Row="2" Grid.Column="2" Clicked="AppendChar_OnClicked"/>
 <Button Text="-" Grid.Row="2" Grid.Column="3" Clicked="AppendChar_OnClicked"/>

 <Button Text="7" Grid.Row="3" Grid.Column="0" Clicked="AppendChar_OnClicked"/>
 <Button Text="8" Grid.Row="3" Grid.Column="1" Clicked="AppendChar_OnClicked"/>
 <Button Text="9" Grid.Row="3" Grid.Column="2" Clicked="AppendChar_OnClicked"/>
 <Button Text="↵" Grid.Row="3" Grid.Column="3" Clicked="SubmitAnswer_OnClicked"/>
 </Grid>
 </StackLayout>
</ContentPage>

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 Code Listing: MainPage.xaml.cs

using System;
using Xamarin.Forms;

namespace TrainYourBrain.Core
{
 public partial class MainPage : ContentPage
 {
 public MainPage(MainPageViewModel viewModel)
 {
 BindingContext = viewModel;
 InitializeComponent();
 this.Padding = new Thickness(10, Device.OnPlatform(20, 0, 10), 10, 5);

 foreach (View view in InputGrid.Children)
 {
 view.SetBinding(View.IsEnabledProperty, "IsInputEnabled");
 }
 }

 void AppendChar_OnClicked(object sender, EventArgs e)
 {
 AnswerField.Text += (sender as Button)?.Text;
 }

 void SubmitAnswer_OnClicked(object sender, EventArgs e)
 {
 if (AnswerField.Text.Length == 0) return;
 var viewModel = BindingContext as MainPageViewModel;
 viewModel?.CheckAnswerCommand.Execute(int.Parse(AnswerField.Text));
 ClearAnswerField();
 }

 void Erase_OnClicked(object sender, EventArgs e)
 {
 if (AnswerField.Text.Length == 0) return;
 AnswerField.Text = AnswerField.Text.Remove(AnswerField.Text.Length - 1);
 }

 void Start_OnClicked(object sender, EventArgs e)
 {
 ClearAnswerField();
 }

 void ClearAnswerField()
 {
 AnswerField.Text = String.Empty;
 }
 }
}

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 Code Listing: AndroidTimer.cs

using System;
using System.Threading;
using TrainYourBrain.Core;

namespace TrainYourBrain.Xamarin.Droid
{
 public class AndroidTimer : ITimer
 {
 Timer timer;

 public void Start(Action toExecute, TimeSpan period, TimeSpan dueTime)
 {
 timer?.Dispose();
 timer = new Timer(state => toExecute(), null, dueTime, period);
 }

 public void Stop()
 {
 timer?.Dispose();
 }
 }
}

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 Code Listing: MainActivity.cs

using Android.App;
using Android.Content.PM;
using Android.OS;
using TrainYourBrain.Core;

namespace TrainYourBrain.Xamarin.Droid
{
 [Activity(Label = "TrainYourBrain.Xamarin", Icon = "@drawable/icon", MainLauncher =
true, ConfigurationChanges = ConfigChanges.ScreenSize | ConfigChanges.Orientation)]
 public class MainActivity :
global::Xamarin.Forms.Platform.Android.FormsApplicationActivity
 {
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 global::Xamarin.Forms.Forms.Init(this, bundle);
 LoadApplication(new App(new AndroidTimer()));
 }
 }
}

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 Code Listing: AppDelegate.cs

using Foundation;
using TrainYourBrain.Core;
using UIKit;

namespace TrainYourBrain.Xamarin.iOS
{
 [Register("AppDelegate")]
 public partial class AppDelegate :
global::Xamarin.Forms.Platform.iOS.FormsApplicationDelegate
 {
 public override bool FinishedLaunching(UIApplication app, NSDictionary options)
 {
 global::Xamarin.Forms.Forms.Init();
 LoadApplication(new App(new IosTimer()));

 return base.FinishedLaunching(app, options);
 }
 }
}

 Code Listing: Main.cs

using UIKit;

namespace TrainYourBrain.Xamarin.iOS
{
 public class Application
 {
 static void Main(string[] args)
 {
 UIApplication.Main(args, null, "AppDelegate");
 }
 }
}

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 Code Listing: Windows.App.cs

using System;
using Windows.ApplicationModel;
using Windows.ApplicationModel.Activation;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Navigation;
using XamarinForms = Xamarin.Forms;

namespace TrainYourBrain.Xamarin.Windows
{
 sealed partial class App : Application
 {
 public App()
 {
 Microsoft.ApplicationInsights.WindowsAppInitializer.InitializeAsync(
 Microsoft.ApplicationInsights.WindowsCollectors.Metadata |
 Microsoft.ApplicationInsights.WindowsCollectors.Session);
 this.InitializeComponent();
 this.Suspending += OnSuspending;
 }

 protected override void OnLaunched(LaunchActivatedEventArgs e)
 {

#if DEBUG
 if (System.Diagnostics.Debugger.IsAttached)
 {
 this.DebugSettings.EnableFrameRateCounter = true;
 }
#endif

 Frame rootFrame = Window.Current.Content as Frame;

 if (rootFrame == null)
 {
 rootFrame = new Frame();

 rootFrame.NavigationFailed += OnNavigationFailed;

 XamarinForms.Forms.Init(e);

 if (e.PreviousExecutionState == ApplicationExecutionState.Terminated)
 {
 //TODO: Load state from previously suspended application
 }

 Window.Current.Content = rootFrame;
 }

 if (rootFrame.Content == null)
 {
 rootFrame.Navigate(typeof(MainPage), e.Arguments);
 }
 Window.Current.Activate();
 }

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 void OnNavigationFailed(object sender, NavigationFailedEventArgs e)
 {
 throw new Exception("Failed to load Page " + e.SourcePageType.FullName);
 }

 private void OnSuspending(object sender, SuspendingEventArgs e)
 {
 var deferral = e.SuspendingOperation.GetDeferral();
 //TODO: Save application state and stop any background activity
 deferral.Complete();
 }
 }
}

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Denis Anchugov

 Code Listing: Windows.MainPage.xaml

<forms:WindowsPage
 x:Class="TrainYourBrain.Xamarin.Windows.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:TrainYourBrain.Xamarin.Windows"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:forms="using:Xamarin.Forms.Platform.UWP"
 mc:Ignorable="d">

 <Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">

 </Grid>
</forms:WindowsPage>

