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Abstract

Lying between the microwave and far infrared (IR) regions, the “terahertz gap” is a

relatively unexplored frequency band in the electromagnetic spectrum that exhibits a

unique combination of properties from its neighbors. Like in IR, many materials have

characteristic absorption spectra in the terahertz (THz) band, facilitating the spec-

troscopic “fingerprinting” of compounds such as drugs and explosives. In addition,

non-polar dielectric materials such as clothing, paper, and plastic are transparent to

THz, just as they are to microwaves and millimeter waves. These factors, combined

with sub-millimeter wavelengths and non-ionizing energy levels, makes sensing in the

THz band uniquely suited for many NDE applications.

In a typical nondestructive test, the objective is to detect a feature of interest with-

in the object and provide an accurate estimate of some geometrical property of the

feature. Notable examples include the thickness of a pharmaceutical tablet coating

layer or the 3D location, size, and shape of a flaw or defect in an integrated circuit.

While the material properties of the object under test are often tightly controlled

and are generally known a priori, many objects of interest exhibit irregular surface

topographies such as varying degrees of curvature over the extent of their surfaces.

Common THz pulsed imaging (TPI) methods originally developed for objects with

planar surfaces have been adapted for objects with curved surfaces through use of

mechanical scanning procedures in which measurements are taken at normal inci-

dence over the extent of the surface [1]. While effective, these methods often require

expensive robotic arm assemblies, the cost and complexity of which would likely be

prohibitive should a large volume of tests be needed to be carried out on a production

line.
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This work presents a robust and efficient physics-based image processing approach

based on the mature field of parabolic equation methods, common to undersea a-

coustics, seismology, and other areas of science and engineering. The method allows

the generation of accurate 3D THz tomographic images of objects with irregular,

non-planar surfaces using a simple planar scan geometry, thereby facilitating the in-

tegration of 3D THz imaging into mainstream NDE use.

The key contributions of this work are:

• The development of a parabolic equation-based processing method for focus-

ing terahertz (THz) phased array data through objects with irregular surface

topographies, including varying degrees of curvature. Parabolic equation (PE)

methods have been used for decades by the seismology, underwater acoustics,

and radar communities to model electromagnetic and acoustic wave propaga-

tion. Despite their long history, PE methods have only recently been applied

to imaging problems in ground-penetrating radar and medical ultrasound. This

work constitutes the very first application of PE methods to THz imaging.

• The design and implementation terahertz tomographic imaging experiments –

conducted using the Picometrix T-Ray 4000 pulsed THz time-domain imaging

system at the Northwest Electromagnetics and Acoustics Research Laboratory

(NEAR-Lab) as an experimental testbed – to demonstrate the method’s ability

to correct for refraction through curved dielectric boundaries and accurately

localize features of interest within the sample under test. Such features include

boundaries between curved dielectric layers, allowing the quantification of their

thickness.

• The design and implementation of numerical test simulations to quantify the
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influence of errors due to approximations made in the method’s derivation on

the accuracy of the resulting 3D tomographic images.

• The implementation and numerical validation of an analytic, Mie series model

for electromagnetic scattering from a layered dielectric sphere.
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Chapter 1

Introduction and Motivation

The “terahertz gap” lies between the microwave and infrared bands in the electro-

magnetic spectrum, shown in Fig. 1.1. Historically, the development of efficient (THz)

sources and receivers has lagged behind that of the neighboring microwave and in-

frared bands. However, recent advances in both microwave/RF and optical technolo-

gies have begun to fill in the gap, unlocking a host of new and potentially revolu-

tionary technologies and applications in a wide variety of scientific and engineering

disciplines.

The growing interest in THz technology is largely due to the unique combination of

properties exhibited by THz radiation. Like in the infrared band, many materials

have unique absorption spectra in the THz band, facilitating the spectroscopic fin-

Figure 1.1: The “Terahertz Gap” shown within the greater electromagnetic spectrum.
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gerprinting of compounds such as drugs and explosives [2, 3]. In addition, non-polar

materials such as clothing, paper, and plastic are transparent to THz, just as they are

to microwaves and millimeter waves. The relatively short wavelengths of THz waves

(0.1-1 mm) and broadband nature of many common THz systems also makes THz

technology attractive for imaging applications. These properties, combined with the

low (non-ionizing) energy levels of THz waves drove much of the early interest in THz

sensing for security screenings of mail or luggage and passengers in airports. How-

ever, these features also make THz waves uniquely suited for many non-destructive

evaluation (NDE) applications.

In most of these applications, an image of the internal structure of the object under

test is desired in order to detect the presence and determine the physical character-

istics of a feature of interest within the object. Real-world examples of such features

include pharmaceutical tablet coatings [4, 5], automotive paint layers [6, 7], as well

as faults or defects in polymer parts [8–10], integrated circuits [11–13], and aerospace

components [14–16].

A common approach to such THz NDE problems is THz pulsed imaging (TPI), al-

so known as THz time-of-flight (ToF) tomography [1, 17–22]. This process involves

focusing broadband THz pulses onto a section of the sample under test and coher-

ently detecting the reflected pulses in a manner similar to pulse-echo ultrasound [18,

20, 21]. The delay times of the returned echo pulses are then used to determine the

optical distances between dielectric interfaces along the beam path. This method

is illustrated in Fig. 1.2, which shows THz TPI data of an 8-pin integrated circuit

(IC) measured by the author using a THz imaging system described in Chapter 4.

Fig. 1.2b shows a top-down THz image, commonly referred to as a C-scan by the

2
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Figure 1.2: (a) Photograph of 8-pin integrated circuit (IC) measured by the author
using a THz imaging system to be described in a later section. (b) Top-down THz
image (C-scan) of IC. (c) Cross-sectional slice (B-scan) image taken along horizontal
line in THz C-scan. (d) THz time-domain waveforms (A-scans) taken along vertical
lines in THz B-scan.
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medical ultrasound community. The C-scan clearly shows the 8 metal pins as well as

the IC’s internal electrical contacts. The THz data in Fig. 1.2 actually represents a

3D cube of data, with each pixel in the C-scan representing a time domain waveform.

This allows viewing cross-sectional slices (B-scans) through the data, such as that in

Fig. 1.2c, taken along the horizontal yellow line shown in Fig. 1.2b. The B-scan shows

reflections from the front surface of the IC’s dielectric surface, followed by subsequent

echoes from the IC’s pins and conductive internal structures. Fig. 1.2d shows three

waveforms (A-scans), each individual columns of the B-scan data taken along the

vertical lines in Fig. 1.2c.

One limitation of TPI is that the returned echo pulses are assumed to originate from a

point along the optical axis of the focusing lens. This doesn’t typically cause problems

for TPI of objects with approximately planar surfaces such as the IC chip in Fig. 1.2,

provided the monostatic measurements are taken at normal incidence to the object’s

surface. In this case, refractive effects due to the dielectric material simply delay the

arrival of the echo pulses, making them appear later in time. This is shown clearly

in Figs. 1.2c and 1.2d, where the returns from the IC’s metal pins from within the

dielectric packaging at x = −2.2 mm appear displaced vertically from their positions

outside the dielectric packaging at x = −3.6 mm. Correcting for these refractive

delays is a relatively straightforward process of scaling the time axis to account for

the slower propagation velocity of the THz pluses. However, if the measurement is

taken at an oblique incidence, refraction will cause the beam path to be bent away

from the optical axis, resulting in distortions in the final image of the object’s internal

structure as illustrated in Fig. 1.3.

Furthermore, many objects of interest may present irregular surface topographies

4



Figure 1.3: Example of refractive distortion. The subject’s feet appear significantly
displaced from their actual location due to the oblique viewing angle from the surfaces
of the water tank.

with varying degrees of curvature or other features, which makes measurements at

normal incidence to the surface much more complicated. A prime example of this

arises in the NDE of pharmaceutical tablet coatings. In this case, the thickness

of the coating layers is sought and typically obtained using TPI [1, 19]. However,

the tablets themselves have curved outer surfaces as shown in Fig. 1.4. In order to

maintain normal alignment throughout the TPI measurement process, the pioneering

work by Zeitler et al. [1] employed a six-axis robotic arm to physically rotate and

translate the pill throughout the scanning process. Each side of the pill is scanned

in two steps, the first being the use of a laser profilometer to acquire the 3D spatial

location of the pill’s outermost surface, the second being a set of TPI measurements

over the extent of the pill’s surface to obtain a qualitative image of the layers of tablet

coating. Echo pulse delay times in the TPI data are scaled by a known or assumed

refractive index to provide an accurate estimate of the layer thicknesses. The pill is

5



Figure 1.4: Pharmaceutical tablets exhibit convex surfaces with layers of coating.

then flipped so the other side can be measured in an identical fashion, resulting in

a total of 40-60 minutes of scan time per pill. While effective, this method requires

a complicated and expensive setup and would be difficult to scale up should a large

volume of measurements need to be carried out on a production line.

Phased array techniques, such as THz synthetic aperture (SA) tomography [23, 24],

offer an alternative with several advantages over conventional TPI. Phased array

techniques allow a high degree of depth resolution without sacrificing spectral infor-

mation and enable dynamic focusing to multiple depths using a single data set [25].

In addition, as THz technology matures, transmitter and receiver arrays are expected

to decrease in cost and size while increasing in efficiency [26–28], enabling practi-

cal deployment on the production line. Two example configurations are depicted in

Fig. 1.5, in which pharmaceutical tablets (or other objects under test) are imaged

as they move down a conveyor belt either by a 2D physical planar array or by a

6



(a)

(b)

Figure 1.5: Diagram of possible THz phased array imaging configurations using either
a physical (a) or (inverse) synthetic (b) phased array.

1D linear array operating in an inverse synthetic aperture configuration as the pills

are conveyed beneath. While 3D THz SA tomographic imaging has already been

demonstrated on objects with planar boundaries [23, 24], the more general case of

objects with non-planar boundaries remains a significant barrier that will need to be

overcome before such methods can be integrated into standard practice in the field

of NDE.

1.1 Contributions and Significance

This dissertation advances the capabilities of THz 3D imaging technology by devel-

oping an efficient, physics-based image processing method capable of correcting for

refractive effects introduced in 3D THz tomographic images of transparent object-

s with irregular boundaries. Though the original motivation for this work was to
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allow focusing to within the curved layers of pharmaceutical tablets in order to non-

destructively estimate the thickness of the various enteric coating layers, the method

developed is much more broadly useful and is applicable to a far larger set of THz

imaging scenarios in which accurate 3D images of a transparent object’s internal

structure are sought.

The key contributions of this work are:

• The development of a parabolic equation-based processing method for focus-

ing terahertz (THz) phased array data through objects with irregular surface

topographies, including varying degrees of curvature. Parabolic equation (PE)

methods have been used for decades by the seismology [29, 30], underwater a-

coustics [31, 32], and radar communities [33, 34] to model electromagnetic and

acoustic wave propagation. Despite their long history, PE methods have only

recently been applied to imaging problems in ground-penetrating radar [35, 36]

and medical ultrasound [37, 38]. This work [39–41] constitutes the very first

application of PE methods to THz imaging.

• The design and implementation terahertz tomographic imaging experiments –

conducted using the Picometrix T-Ray 4000 pulsed THz time-domain imaging

system at the Northwest Electromagnetics and Acoustics Research Laboratory

(NEAR-Lab) as an experimental testbed – to demonstrate the method’s ability

to correct for refraction through curved dielectric boundaries and accurately

localize features of interest within the sample under test. Such features include

boundaries between curved dielectric layers, allowing the quantification of their

thickness.

• The design and implementation of numerical test simulations to quantify the
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influence of errors due to approximations made in the method’s derivation on

the accuracy of the resulting 3D tomographic images.

• The implementation and numerical validation of an analytic, Mie series model

for electromagnetic scattering from a layered dielectric sphere.

This work represents a novel combination of THz technology, phased array imaging,

reflection-mode diffraction tomography, and PE methods. The specific PE method

used in this work – the split-step Fourier method – was selected due to its compu-

tational efficiency and conceptual simplicity. However, many other PE methods in

common use today may also be applicable to 3D THz tomographic imaging problems.

The material presented in this dissertation represents the first step in this direction,

laying the foundation for further work in bringing the powerful family of PE methods

to bear on THz phased-array tomographic imaging problems.

1.2 Executive Summary

This section outlines the remainder of the dissertation, providing a brief summary of

each chapter for quick reference.

Chapter 2 provides an overview of the relevant literature on THz NDE (Sec. 2.1),

3D THz imaging (Sec. 2.2), and PE methods and related physics-based wave

propagation approaches (Sec. 2.3). In addition, Sec. 2.4 presents an overview

of the literature on analytic methods for modeling the scattering of electro-

magnetic waves from a layered dielectric sphere relevant to results presented in

Appendix A.
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Chapter 3 lays the theoretical framework for the topics combined in this work:

Sec. 3.1 provides a rigorous derivation and analysis of reflection-mode diffrac-

tion tomography, of which THz synthetic aperture tomography is a special

case.

Sec. 3.2 derives the PE formulations used throughout the rest of the disserta-

tion.

Sec. 3.2.1 introduces and discusses Fourier back-propagation (FBP) and

presents an intuitive geometric approach to determining imaging reso-

lution in a generalized broadband synthetic aperture imaging system.

Sec. 3.2.2 introduces the split-step Fourier (SSF) back-propagation method

and presents a rigorous analysis of the error introduced by approxi-

mations made in its derivation.

Chapter 4 presents details on the implementation of the methods introduced in

Chapter 3 using the THz imaging system at the Northwest Electromagnetics

and Acoustics Research Laboratory (NEAR-Lab).

Sec. 4.1 describes the Picometrix T-Ray 4000 system and presents details on

its use in implementing the methods described in Chapter 3. Sec. 4.1.1

discusses methods of preprocessing of THz waveforms to suppress noise

and improve temporal/range resolution.

Sec. 4.2 presents results from three experiments conducted using the Picometrix

T-Ray 4000 described in the previous section.

Sec. 4.2.1 describes the first experiment, carried out as a “proof of con-

cept,” on an over the counter pharmaceutical gelcap. As the con-

stituent materials of the gelcap are unknown, two further experiments
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were conducted on well-characterized test samples to demonstrate

and quantify the accuracy of the images produced using SSF back-

propagation.

Sec. 4.2.2 describes an experiment involving a well-characterized cylindrically-

curved high-density polyethylene sample with high-contrast copper

wires embedded within. Results from this experiment were presented

at the 2013 SPIE Optics and Photonics conference in San Diego, CA

[39].

Sec. 4.2.3 describes an experiment conducted on a specially-designed 3D-

printed test object. Results from this experiment were presented at the

2015 International Radar Symposium (IRS) in Dresden, Germany [40]

and are included in a manuscript recently submitted for publication

in the IEEE Transactions on Terahertz Science and Technology [41].

Sec. 4.3 relates the analytic expression for the SSF propagator error, presented

in Sec. 3.2.2, to the experimental results presented in Sec. 4.2.3. Idealized

simulations are then shown to further examine the influence of propagator

error on the SSF method’s ability to correctly localize the boundaries and

estimate the thickness of a dielectric layer in an object under test. These

results are featured in a manuscript recently submitted for publication in

the IEEE Transactions on THz Science and Technology [41].

Chapter 5 provides closing remarks, suggests avenues for future work in this area,

and presents a list of publications that were either authored or co-authored

during the course of conducting this research.

Appendix A describes work conducted in the implementation and testing of a Mie

series model for the electromagnetic scattering from a layered dielectric sphere.
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This model was originally intended to serve as a source of simulation data for

testing the ability of the split-step Fourier method from Sec. 3.2.2 to accurately

quantify the thickness of a curved dielectric layer. However, the analysis in

Sec. 4.3 proved to be more useful for this purpose. Nonetheless, the work in

Mie series scattering from a layered dielectric sphere represents a significant

body of the work completed as part of this research and is therefore included

in hopes that it may assist in future work in this area.
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Chapter 2

Literature Review

As mentioned in Sec. 1.1, this work represents a novel combination of THz technology,

phased array imaging, reflection-mode diffraction tomography, and parabolic equa-

tion (PE) methods. This section provides context for the contributions made in this

dissertation by summarizing the current state of research in these relevant fields. It

begins with an overview of THz NDE and its applications, followed by a discussion

of 3D THz imaging methods and a summary of relevant work in wave propagation

methods used in ultrasound NDE, medical imaging, underwater acoustics, and atmo-

spheric propagation of electromagnetic waves. Finally, an overview of the state of the

art in analytic modeling of electromagnetic scattering from a layered dielectric sphere

is provided.

2.1 Terahertz Non-Destructive Evaluation

Nondestructive evaluation is a very broad area of study for which a wide variety

of technologies have been developed. In NDE, either electromagnetic or ultrasonic

waves are passed through an object of interest in order to probe its structure with-
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out permanently altering it. In the case of THz NDE, the objects of interest are

typically composed non-polar dielectric materials, which are transparent to THz ra-

diation. This, combined with the relatively small wavelengths (0.1-3 mm) and broad

bandwidth of pulsed THz systems allow high resolution imaging of the objects under

test.

The earliest results demonstrating the potential of THz imaging for NDE application-

s were published in the mid to late 1990s, shortly after the development sufficiently

powerful THz sources and sensitive THz receivers. Electronics components, such as

packaged semiconductor integrated circuits and floppy disks along with leaf specimens

with varying moisture content were among the first objects to be imaged with THz

radiation [17, 18, 42]. These two cases spawned interest in both biomedical and NDE

applications of THz imaging: The ability of THz imaging to visualize spatially-varying

differences in moisture content along with its non-ionizing energy levels spurred inter-

est in THz imaging for biomedical applications [43, 44] while the potential to visualize

conductive electrical contacts and other internal structures within dielectric packaging

has driven the interest in THz NDE for electronics components [11–13, 45, 46].

In the wake of the 2003 space shuttle Columbia disaster, THz NDE was investigated

as a potential method of detecting cracks, voids, and debond defects (areas of poor

adhesion) in the foam insulation sprayed onto the space shuttle’s external fuel tank

[47–50] as well as the silica tiles that made up the shuttle’s heat shield [51–53]. Other

applications for THz NDE in the aerospace industry include inspection of thermal

barrier coatings applied to jet turbine blades [16] and aircraft composite parts [14,

15].

THz NDE has also been used by the polymer industry for detecting leaks in plastic
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food packaging [54, 55], determining the orientation of glass fibers in reinforced plas-

tics [56], and inspecting weld joints in polymer parts [8], among other applications [9,

10]. The automotive industry has investigated using THz to monitor the drying and

deposition of automotive paint [6, 7, 20]. The field of art history and preservation has

also been interested in the use of THz to analyze the materials used by artists [57]

and image hidden paint layers on canvas [58], wood [59], and murals [60, 61].

The most pertinent application to this body of work is the NDE of pharmaceutical

tablet coatings [4, 5, 62, 63]. Initial explorations into this area involved raster scanning

a THz pulsed transceiver (operating in reflection mode) over a small area of a biconvex

pharmaceutical tablet’s surface [19]. To limit refractive errors in the TPI data, the

scan area was restricted to a small patch near the center of the convex curved surface

where the surface normal was nearly vertical. Subsequent work utilized a six-axis

robotic arm to expand the scan area over the entire surface [1]. Currently, a typical

data collection with the robot arm assembly takes approximately 40-60 minutes per

pill. Throughput will need to be increased substantially in order for THz NDE of

pharmaceutical tablets to become standard practice.

2.2 3D Terahertz Imaging

Since the first 2D THz images were taken in the 1990s [42], researchers have used

various methods to produce 3D THz images of objects of interest, the first being the

aforementioned TPI of a floppy disk by Mittleman et al. in 1997 [18]. While THz

imaging can be done with continuous wave (CW) swept frequency systems [51, 64,

65], the broad bandwidth of pulsed time-domain systems allows a high degree of depth

resolution, making it preferable for many NDE applications. Much of the work in 3D
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THz imaging has consisted of adapting many well-established 3D imaging methods

from other fields such as medical imaging, radar, and ultrasound to the THz band.

This can be done with both transmission and reflection mode data.

Among the prime examples of transmission mode 3D THz imaging is the family of

methods that borrow from X-ray computed tomography (CT). These methods involve

taking transmission measurements, or projections, through the target at varying az-

imuthal angles. THz CT was first demonstrated by Ferguson et al. in 2002 [66,

67], who employed conventional X-ray CT techniques and filtered back projection to

generate images of a plastic tube, a sheet of polyethylene twisted into an s-shape,

and a turkey bone. Diffraction tomography (DT) – a more generalized version of

CT applicable to objects with features closer in scale to THz wavelengths – was soon

demonstrated by the same group [68] along with THz tomography using both Fres-

nel zone plate lenses and CCD cameras in a digital holography configuration [69,

70]. Transmission mode THz tomography has also been demonstrated using a par-

allel plate waveguide as the imaging aperture [71], a quantum cascade laser source

[72], an all-electronic THz-CT system operating in the 230-320 GHz band [73], and a

fixed-phase-shift method employing a phase-unwrapping algorithm [74]. In addition,

the efficiency of generating THz tomographic images has been increased by using

alternative tomographic image reconstruction methods such as tomosynthesis, which

allows image reconstruction from a much smaller number of projections than con-

ventional CT [75] as well as wavelet-based de-noising methods that allow faster data

acquisition and enhance tomographic images taken with pulsed THz sources [76, 77].

Although initially a promising approach, the pace of development in transmission

mode THz CD/DT methods has slowed due to Fresnel losses and refractive effects
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introduced by objects with moderate refractive indices (n ∼ 1.5 or greater) [78].

Though progress is being made in accounting for these effects [78, 79], they remain

among the primary technical obstacles to the mainstreaming of 3D transmission mode

imaging of THz-transparent objects.

For thick, lossy, or strongly refracting objects, or cases in which the features of interest

are close to the object’s outer surface, a reflection mode configuration is more practical

for 3D THz imaging. Though some work has been done adapting CT methods to

data collected in reflection mode [80], the bulk of 3D THz imaging in reflection mode

borrows heavily from the TPI methods pioneered by Mittleman et al. [18], which

operate in a similar manner to pulse-echo mode ultrasound. The delay times of the

returned THz echo pulses are mapped to a physical distance using a known or assumed

refractive index. The broad bandwidth of pulsed THz sources leads to a high degree

of range (depth) resolution while lateral resolution is determined by THz optics, such

as off-axis parabolic mirrors or focusing lenses. In a typical TPI system, THz pulses

from a single monostatic transceiver raster scanned over an object are used to generate

a 3D image [18, 20, 21, 62, 81]. However, as with any optical system, the focusing of

the THz beam limits the depth of focus. To image accurately over a greater range,

the focal spot size must either be widened, which limits lateral resolution, or the

transceiver must be raster scanned in three dimensions.

Phased array methods offer a promising alternative to conventional TPI. In the most

general sense of the term, phased-array methods encompass a wide variety of tech-

niques from a diverse range of fields, such as beamforming in underwater acoustics

[82, 83], synthetic aperture radar (SAR) in microwave remote sensing [84], Fourier

holography in optics [85], and phase migration in seismology [86]. Among the earliest
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examples of phased array imaging methods applied to pulsed THz data was the use of

the Huygens-Fresnel principle to back-propagate THz data collected in transmission

mode [87, 88]. Similarly, the use of Kirchhoff migration [89] to generate images from

data collected from a single fixed transmitter position and multiple receiver positions

and a quasi-optical configuration similar to that employed by optical telescope ar-

rays [90] are among the first demonstrations of reflection-mode THz phased array

imaging. More recently, a synthetic aperture method was developed that employs a

focal lens to effect a point-like virtual transceiver which, when raster scanned in two

dimensions, can be used to synthesize a 2D planar synthetic array. Delay-and-sum

beamforming methods were then used to generate images from the resulting data [91,

92]. Our own research group has also published results from a similar method – THz

synthetic aperture (SA) tomography – which applies a set of geometrically-derived

frequency domain phase shifts over a broad frequency band to focus the 2D synthetic

array to a given parallel plane below the array [23, 24]. Focusing to a number of

such focal planes allows the generation of 3D surface profiles of metallic objects as

well as 3D tomographic maps of the interior features of THz-penetrable dielectric

objects. While these early results demonstrate the potential of THz SA tomography,

a number of simplifying assumptions were made in the processing that limit its appli-

cability to objects with planar boundaries that lie parallel to the array plane. A THz

SA focusing method that can accommodate arbitrary, non-planar boundaries (such

as curved surfaces) has yet to be developed, and is the primary contribution of this

dissertation.
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2.3 Wave Propagation Methods

As mentioned previously, TPI borrows heavily from concepts in pulse-echo ultra-

sound, which is commonplace in NDE and medical applications. Similarly, the use

of a focal lens to effect a point-like virtual transceiver for use in synthetic aperture

imaging was first pioneered by researchers in ultrasound NDE [93–95] before being

adapted for use in THz imaging systems [23, 24, 91, 92]. Synthetic aperture focusing

techniques (SAFTs) are a common form of generating images from synthetic aper-

ture data in both ultrasound and microwave/mm-wave NDE [96–99]. The processing

can be accomplished either in the time domain [94, 95, 97, 100] or frequency domain

[96, 101, 102]. In the simplest case, SAFT processing assumes signals collected cor-

respond to waves propagating through a homogeneous medium with constant phase

velocity throughout the image space [92, 94, 95, 102]. Of more practical concern is

the case of an object whose refractive index is dissimilar from from the surrounding

medium. One simple case of such a situation would be an object with one or more

planar boundaries parallel to the aperture plane. This case can be handled using a

variety of methods, such as using Snell’s law to geometrically derive the time delays

[100] or frequency-domain phase shifts [23, 24] required to focus the phased-array

data to a point of interest, or by using Stolt transforms in an “Omega-K” algorithm

[103]. However, more complicated methods must be used for objects with non-planar

boundaries, which present laterally-varying refractive index variations.

For objects or environments with both axially and laterally-varying wave speeds, nu-

merical wave-equation based methods are often employed to either model the forward-

propagation of an excitation or back-propagate measured fields back to their points

of origin within an object or environment. One such class of techniques is based on a
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parabolic approximation of the Helmholtz equation. These parabolic equation (PE)

methods have been applied to a broad range of science and engineering disciplines

[32, 104–106] and may be solved using a variety of methods. Common approaches

include finite difference (FD) and finite element (FE) methods [32, 107, 108] and fast

Fourier transform (FFT) based methods [29, 31, 32, 109]. Historically, the two meth-

ods presented a tradeoff between accuracy (FD/FE) and efficiency (FD), however

the development of the split-step Padé method in the late 1990s provides a compro-

mise between the two [110–112]. While PE methods are typically applied to solve

2D propagation problems in underwater acoustics, recent work has been conducted

implementing 3D PE solutions using FFT and Padé methods [113–116].

One efficient FFT-based method, namely the split-step Fourier (SSF), is among the

most utilized approaches to PE methods, having been applied in medical ultrasound

imaging [37, 38], underwater acoustics [31, 32, 114, 116], seismic migration [29],

ground-penetrating radar imaging [35, 36], electromagnetic wave propagation in the

atmosphere [33, 104], and light propagation in optical fibers [109]. The novel adap-

tation of the SSF method to THz synthetic aperture imaging is one of the primary

contributions of this work [39–41].

2.4 Mie Series Solution for Layered Sphere Scattering

A large part of the work carried out as part of this research was the development

and Matlab implementation of an efficient, stable recursive method for calculating

the scattered fields from a layered dielectric sphere – a canonical object presenting

a multiply-layered, curved surface. This code was originally intended for use in gen-

erating simulation data for quantitative performance evaluation of the physics-based

20



synthetic aperture focusing method presented in this work. However, another line of

analysis, summarized in Sec. 4.3 eventually proved to be more useful for this pur-

pose. The results of the work on the Mie series scattering model are presented in

Appendix A.

Although the early work on the problem of electromagnetic scattering from a sphere

was carried out independently by Mie, Debye, and Lorentz [117], it was Mie’s name

that ended up being attached to the theory. Much of the work on the Mie series

solution is summarized by Bohren and Huffman [117]. Though the underlying theory

is the same, much of the subsequent work differs in implementation and assumptions

about material composition. The most common (“textbook”) case of interest assumes

plane wave excitation and a perfectly conducting sphere [118]. More general cases

of dielectric spheres and coated dielectric spheres are also common [117, 119, 120],

however most such resources focus on calculating scattering efficiencies and cross

sections as opposed to internal and external complex field amplitude calculations. The

complex field amplitudes include the phase of the scattered fields, which is essential for

use in generating simulation data suitable for performance evaluation of the physics-

based synthetic aperture focusing method.

There are many numerical approaches used to calculate the Mie series coefficients

that satisfy the electromagnetic boundary conditions in a layered dielectric sphere.

One of the simplest conceptually utilizes T-matrices [121–123]. However, due to ad-

vantages in computational efficiency, recursive methods are often used over T-matrix

methods [117, 124–127]. Another consideration is numerical stability of the numerous

spherical Bessel function calculations used in calculating the spherical harmonics in

the Mie series representation of the scattered and internal field amplitudes. While
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Matlab software (primarily used in this work) includes a standard package for cal-

culating Bessel functions, the implementations are computationally expensive and

may be prohibitively time consuming if many Bessel function calculations need to be

carried out. Luckily, alternative methods based on recursive algorithms and contin-

ued fractions have been reported on extensively in the literature [128–130]. Another

advantage of the published recursive methods [117, 124–127] is their utilization of

spherical Bessel function ratio and logarithmic derivative calculations, which are gen-

erally more efficient and numerically stable than calculating the functions themselves

[128, 130].
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Chapter 3

Theoretical Background

This chapter lays the theoretical framework for the contributions made in this dis-

sertation. As THz synthetic aperture tomography can be considered a special case of

reflection mode diffraction tomography, the section begins with a theoretical treat-

ment of the latter. Parabolic equation methods are then introduced along with the

derivation of two special cases – Fourier back-propagation and split-step Fourier back-

propagation – that form the basis of the image processing methods introduced in this

dissertation. A simple geometrical approach to determining imaging resolution in

a generalized broadband synthetic aperture imaging system is presented as well as

an analysis of the error introduced by approximations made in the derivation of the

split-step Fourier method.

3.1 Reflection Mode Diffraction Tomography

The word “tomography” is derived from the Greek word tomos, which means slice,

and the suffix -graphy, which generally refers to the process of generating an image

(i.e. photography, sonography, holography, etc.). The term therefore refers to the
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process of generating a 3D image of an object under test from a stack of 2D image

slices. Typically in the context of 3D THz imaging, the term “tomography” is used

to describe the generation of a 3D image using TPI data or by adapting methods

from X-Ray computed tomography (CT) [22], in which the tomographic slices are

reconstructed from data collected from a sensor rotating around the object (or person)

under test (i.e. [70, 80]).

The term “diffraction tomography” as used in this section refers to a generalized

inverse scattering problem originally treated by Emil Wolf in 1969-70 [131, 132]. One

special case of diffraction tomography, often referred to as the synthetic aperture

focusing technique (SAFT) in the ultrasound NDE community [96, 97, 101, 133,

134], operates in reflection mode using a single monostatic transceiver element with

a diverging beam. A specific implementation of ultrasound SAFT that utilizes the

diverging beam below the focal point of a focused ultrasonic transceiver [95] forms

the basis of subsequent work in THz SA tomography [23, 24, 91, 92]. As such, the

THz SA tomography method presented in this and previous works can be considered

a special case of reflection mode diffraction tomography.

The collection geometry for this method is illustrated in Fig. 3.1.1. An isotropic

point source lies in the xy plane at r0 = (x, y, z0) where it illuminates an object with

broadband THz pulses whose complex spectrum S (ω) is a function of the temporal

angular frequency ω in radians/second, where time dependence is assumed to be

given by e−iωt. The object under test is represented by a localized 3D region of

refractive index n (r) > 1 in an otherwise free space medium with n (r) = 1, where

r = (x, y, z > z0) is the 3D position vector in the region below the array plane. While

in general, the refractive index n (r) may also be dependent on the temporal frequency
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Figure 3.1.1: Imaging geometry assumed in THz SA tomography formulation. The
object under test, represented by a closed region of refractive index n (r) > 1, is
illuminated by an isotropic point transceiver at r0 = (x, y, z0) in the xy plane.

ω, it is assumed here to be frequency independent for simplicity of notation.

From scalar diffraction theory [85, 131], the complex field amplitudes ψ (r, ω) in the

region are treated as solutions to the inhomogeneous Helmholtz equation,

[
∇2 + n2 (r) k2

]
ψ (r, ω) = −S (ω) δ (r− r0) , (3.1.1)

where the term on the right hand side represents the isotropic point transceiver source

at r0. By defining the scattering potential,

f (r) ≡ n2 (r)− 1, (3.1.2)

the inhomogeneous Helmholtz equation (3.1.1) can be rewritten as

[
∇2 + k2

]
ψ (r, ω) = −S (ω) δ (r− r0)− k2f (r)ψ (r, ω) , (3.1.3)

where the second term on the right-hand side takes the form of an additional equiv-

alent source that accounts for all the secondary scattering sources introduced by the
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object. The solution to (3.1.3) can be expressed as a sum of incident and scattered

components, respectively, as

ψ (r, ω) = ψi (r, ω) + ψs (r, ω) , (3.1.4)

where

ψi (r, ω) = S (ω) g (r0 − r,k) , (3.1.5)

ψs (r, ω) = k2

∞∫∫∫
−∞

f (r′)ψ (r′, ω) g (r− r′,k) d3r′, (3.1.6)

and the 3D scalar Green’s function is given by

g (r,k) =
eik·r

4π |r|
(3.1.7)

in terms of the position vector r and the wave vector k = (kx, ky, kz), whose magnitude

is given by the wavenumber k = ω/c = |k|. Under the Born approximation [96], weak

scattering is assumed such that |ψi (r)| >> |ψs (r)|, which linearizes (3.1.6), allowing

it to be rewritten in terms of (3.1.5) as

ψs (r, ω) ≈ k2

∞∫∫∫
−∞

f (r′)ψi (r
′, ω) g (r− r′,k) d3r′

= k2S (ω)

∞∫∫∫
−∞

f (r′) g (r0 − r′,k) g (r− r′,k) d3r′. (3.1.8)

For the case of monostatic backscatter, the source and receiver are collocated and the
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scattered fields detected by the receiver are given by

ψs (r0, ω) = k2S (ω)

∞∫∫∫
−∞

f (r′) g2 (r0 − r′,k) d3r′, (3.1.9)

where the squared Green’s function in the integrand can be expressed as

g2 (r0 − r′,k) =
ei2k|r0−r

′|

(4π |r0 − r′|)2 (3.1.10a)

=
g (r0 − r′, 2k)

4π |r0 − r′|
. (3.1.10b)

From (3.1.10), it can be seen that monostatic backscatter measurements introduce

an effective doubling of the phase term in the Green’s function due to the round-trip

travel of each scattered pulse from the transceiver to the scatterer and back. In the

time domain, this phase shift is equivalent to a time delay t0, i.e.

ωt0 = 2k |r0 − r′| . (3.1.11)

Solving (3.1.11) for the range |r0 − r′| yields

|r0 − r′| = c

2
t0. (3.1.12)

Thus, this doubling of the wavenumber is equivalent of the halving of the phase

velocity typically used to determine the range to the scatterer in a typical monostatic

measurement (such as in TPI, radar, active sonar, etc.). The round-trip travel also

introduces an additional factor of 4π |r′ − r0| in the denominator due to the additional

spherical spreading of the wavefront. Dividing both sides of (3.1.9) by k2S (ω) and
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substituting (3.1.10a) yields

ψs (r0, ω)

k2S (ω)
=

∞∫∫∫
−∞

f (r′)
ei2k|r0−r

′|

(4π |r0 − r′|)2d
3r. (3.1.13)

In practice, the division by S (ω) amounts to deconvolution with the source spectrum

– often a Wiener deconvolution for noisy band-limited signals [135], the process of

which will be described in Sec. 4.1.1. Taking the derivative of (3.1.13) with respect

to k yields

∂

∂k

[
ψs (r0, ω)

k2S (ω)

]
=

∞∫∫∫
−∞

f (r′)
∂

∂k

ei2k|r0−r
′|

(4π |r0 − r′|)2d
3r

=
i

2π

∞∫∫∫
−∞

f (r′)
ei2k|r0−r

′|

4π |r0 − r′|
d3r. (3.1.14)

By the differentiation property of the Fourier transform, this differentiation in k (ap-

plied in the frequency domain) becomes a range-dependent amplification (i.e. mul-

tiplication by ct/2 in the time domain) that compensates for the |r0 − r′| in the de-

nominator of (3.1.10) [135]. After scaling both sides of (3.1.14) by −2πi, the resulting

preprocessed signals are given by

ψp (r0, ω) ≡ −2πi
∂

∂k

[
ψs (r0, ω)

k2S (ω)

]

=

∞∫∫∫
−∞

f (r′) g (r0 − r′, 2k) d3r′. (3.1.15)

From (3.1.15), the fields in the aperture plane (under the Born approximation) are the

superposition of the fields emanating from a distribution of isotropic Huygens’ point
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reflectors (Green’s functions with wavenumber 2k) below the array, each weighted by

the scattering potential f (r), which falls to 0 outside the object. Equivalently, (3.1.15)

can be seen to be a 3-dimensional spatial convolution of the scattering potential in

(3.1.2) with the monostatic Green’s function (whose wavenumber is 2k).

At this point in the derivation, it’s helpful to introduce the 2D spatial Fourier trans-

form,

h̃ (kx, ky, z) = Fx,y
{
h (x, y, z)

}
=

∞∫∫
−∞

h (x, y, z) e−i(kxx+kyy)dxdy (3.1.16)

and the corresponding 2D inverse Fourier transform,

h (x, y, z) = F−1
kx,ky

{
h̃ (kx, ky, z)

}
=

1

(2π)2

∞∫∫
−∞

h̃ (kx, ky, z) e
i(kxx+kyy)dkxdky, (3.1.17)

where kx = 2k sin θ cosφ and ky = 2k sin θ sinφ are the Fourier spatial frequencies

in the x and y directions, which correspond to plane-wave components (represented

by the complex exponential Fourier kernel) propagating in the direction specified in

spherical coordinates by the zenithal angle θ from the z axis and the azimuthal angle φ

from the x axis as shown in Fig. 3.1.2. The inverse Fourier transform (3.1.17) therefore

represents the function h (x, y, z) as a superposition of plane waves, each with complex

amplitude h̃ (kx, ky, z). Conversely, the Fourier transform (3.1.16) decomposes the

function h (x, y, z) into the angular spectrum of plane waves h̃ (kx, ky, z).
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Figure 3.1.2: Wave vector shown in terms of spherical coordinates.

By decomposing ψp (r0, ω) into its angular plane wave spectrum via (3.1.16), the 3D

convolution integral in (3.1.15) can be reduced to a 1D convolution in z,

ψ̃p (kx, ky, z0, ω) = f̃ (kx, ky, z) ∗ Fx,y {g (r, 2k)} , (3.1.18)

where

f̃ (kx, ky, z) = Fx,y {f (x, y, z)} (3.1.19)

is the 2D Fourier transform of the scattering potential. The 2D Fourier transform of

the Green’s function can be obtained from the Weyl identity [136],

ei2kr

4πr
=

i

8π2

∞∫∫
−∞

eikxx+ikyy+iγ|z|

γ
dkxdky

=
1

(2π)2

∞∫∫
−∞

i

2

eiγ|z|

γ
eikxx+ikyydkxdky

= F−1
kx,ky

{
i

2

eiγ|z|

γ

}
, (3.1.20)
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where r =
√
x2 + y2 + z2 and [96, 137]

γ = kz (k, kx, ky) =
√

(2k)2 − k2
x − k2

y. (3.1.21)

Suppressing the functional dependence of kz in (3.1.21) for simplicity of notation, the

convolution in (3.1.18) can be rewritten as

ψ̃p (kx, ky, z0, ω) =
i

2

∞∫
−∞

f̃ (kx, ky, z
′)
eikz |z0−z

′|

kz
dz′. (3.1.22)

Since the array plane lies above the object as shown in Fig. 3.1.1, z′ > z0 and

|z0 − z′| = z′−z0 in the complex exponential of (3.1.22), which can then be rewritten

as

ψ̃p (kx, ky, z0, ω) =
i

2kz
e−ikzz0

∞∫
−∞

f̃ (kx, ky, z
′) eikzz

′
dz′. (3.1.23)

The remaining integral in (3.1.23) can be seen to be in the form of a Fourier transform

in z, which by invoking the Fourier conjugation property yields

∞∫
−∞

f̃ (kx, ky, z
′) eikzz

′
dz′ =

 ∞∫
−∞

f̃ ∗ (kx, ky, z
′) e−ikzz

′
dz′

∗

=
[
f̃ ∗ (kx, ky,−kz)

]∗
= f̃ (kx, ky,−kz) , (3.1.24)

where the superscript “∗” represents complex conjugation. Substituting (3.1.24) back
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into (3.1.23) yields

ψ̃p (kx, ky, z0, ω) =
i

2kz
e−ikzz0 f̃ (kx, ky,−kz) , (3.1.25)

which relates the 2D Fourier transform of the preprocessed fields in the array plane,

ψ̃p (kx, ky, z0, ω), to the 3D Fourier transform of the scattering potential f̃ (kx, ky,−kz),

whose −kz dependence is due to the fact that only fields propagating in the −z di-

rection will be received by the array, given the e−iωt time convention. Ignoring the

decaying evanescent field components for which (2k)2 < k2
x + k2

y results in

ψ̃p (kx, ky, z0, ω) =
i

2kz
e−ikzz0 f̃ (kx, ky,−kz)u

[
(2k)2 − k2

x − k2
y

]
, (3.1.26)

where u
[
(2k)2 − k2

x − k2
y

]
is the unit step function.

In this final form, (3.1.26) can be considered a statement of the Fourier slice theorem

as it applies to reflection mode diffraction tomography [96, 135]: At each temporal

frequency component ω, the 2D spatial Fourier transform of the data in the array

plane samples a hemispherical “slice” of radius 2k = 2ω/c through the 3D Fourier

transform of the scattering potential f̃ (kx, ky,−kz). This so-called Ewald hemisphere

[96] is illustrated in Fig. 3.1.3. For broadband data, this information is ‘filled in’ by

sampling over multiple hemispherical slices in the 3D Fourier domain, each with

a different radius, corresponding to a different temporal frequency ω. Though in

principle it would be possible to construct an image of the scattering potential by

applying an inverse 3D Fourier transform of the data in (3.1.26), it is much more

practical to carry out the image reconstruction by applying back-propagation methods

such as those to be described in the following section [135, 137]. It should also be

noted that the 2k radius in the Fourier domain corresponds directly to the twofold
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Figure 3.1.3: Illustration of the Ewald hemisphere given by the support of (3.1.26)
over which the 3D Fourier transform of the scattering potential is sampled.

improvement in imaging resolution (for a given aperture size) often associated with

synthetic aperture imaging [137, 138]. This improvement comes at a price however,

as the spatial sampling frequency must also be doubled, reducing the maximum array

spacing from λ/2 to λ/4 [137, 138].

3.2 Parabolic Equation Methods

Having collected the data in the array plane as described in Sec. 3.1, the attention

turns to converting the data into information about the structure of the object as

represented by its scattering potential (3.1.2). This is accomplished by numerically

propagating the fields received coherently in the array plane shown in Fig. 3.1.1 back

to their points of origin within the object. This is easily accomplished using the

exploding reflector model commonly used in seismology [29], in which the object is

assumed to scatter the THz pulses as if it were composed of a distribution of isotropic

Huygens point reflectors that scatter the fields back to their points of origin in the

array plane. The scattered fields, sampled in the array plane and preprocessed as
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described in Sec. 3.1, are treated as solutions to the scalar Helmholtz equation,

[
∇2 +

ω2

v2
p (r)

]
ψ (r, ω) = 0, (3.2.1)

where the subscript p applied to the preprocessed fields in (3.1.15) has been dropped

for simplicity of notation and the phase velocity

vp (r) =
c

2n (r)
(3.2.2)

depends on the refractive index distribution n (r) within the object space. The fac-

tor of 2 in the denominator accounts for the round-trip travel time from each point

transceiver to each scatterer and back. Substituting (3.2.2) into (3.2.1) allows rewrit-

ing the Helmholtz equation as

[
∇2 + (2k)2 n2 (r)

]
ψ (r, ω) = 0. (3.2.3)

Following the common derivations in the literature [29, 32, 109], the operator

Q (r) ≡

√
(2k)2 n2 (r) +

∂2

∂x2
+

∂2

∂y2
, (3.2.4)

is then defined such that

[
∂

∂z
+ iQ (r)

] [
∂

∂z
− iQ (r)

]
=

∂2

∂z2
+Q2 (r) + i

[
Q
∂

∂z
− ∂Q

∂z

]
. (3.2.5)

For weakly z-dependent propagation, the cross terms on the right hand side can be

neglected [32, 33], resulting in the parabolic form of the homogeneous Helmholtz
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equation, [
∂

∂z
+ iQ (r)

] [
∂

∂z
− iQ (r)

]
ψ (r, ω) = 0, (3.2.6)

in terms of the operator Q (r) in (3.2.4). This effectively decomposes the 2nd-order

partial differential equation (Helmholtz equation) into the product of two 1st-order

partial differential equations, representing two field components propagating in the

positive and negative z-directions. Given the e−iωt time dependence, the fields in the

array are related to those in an arbitrary plane (z = z′) in the half space below the

array (see Fig. 3.1.1) by

ψ (x, y, z′, ω) = ψ (x, y, z0, ω) exp

i z′∫
z0

Q (x, y, ζ) dζ

 . (3.2.7)

The fields ψ (x, y, z0, ω) collected in the array plane can therefore be numerically ex-

trapolated backward in time (and space) to the image plane z′ by applying a complex

exponential of the form of that in (3.2.7) [29, 36]. In practice, the propagation opera-

tor (3.2.4) is approximated in various ways to simplify the integral in (3.2.7) [32, 34].

Two such approximations are introduced in the following sections – namely, Fouri-

er back-propagation (FBP), which assumes the fields are back-propagated through

free space [85] and therefore does not correct for refraction within the scatterer, and

Split-Step Fourier (SSF) back-propagation [29]; an implementation of a wide-angle

parabolic equation (PE) method that does account for refraction.

3.2.1 Fourier Back-Propagation

In Fourier back-propagation (FBP), the image space is treated as being composed

entirely of free space
(
n (r) = 1

)
, which removes the spatial dependence of the prop-
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agation operator (3.2.4) and allows the propagation in (3.2.7) to be easily applied in

the spatial frequency domain. Under these conditions, the second derivative terms

∂2/∂x2 and ∂2/∂y2 in (3.2.4) simplify to −k2
x and −k2

y, respectively, resulting in

Q (r) ≈
√

(2k)2 − k2
x − k2

y

= kz. (3.2.8)

The integral in (3.2.7) then simplifies, turning the complex exponential into a phase

shift eikz(z′−z0) that can easily be applied in the 2D spatial frequency domain [85], i.e.

ψFBP (x, y, z′, ω) = F−1
kx,ky

{
Fx,y

{
ψ (x, y, z0, ω)

}
eikz(z′−z0)

}
, (3.2.9)

where Fx,y {·} and Fkx,ky {·} are the forward and inverse Fourier transforms in (3.1.16)

and (3.1.17), respectively. After back-propagating the fields to the desired image

plane, the image intensity is obtained by integrating over temporal frequency,

IFBP (x, y, z′) =

∣∣∣∣∣∣ 1

2π

∞∫
−∞

ψFBP (x, y, z′, ω) dω

∣∣∣∣∣∣
2

. (3.2.10)

The process is then repeated for multiple depths z′ until a full 3D tomographic image

is constructed.

Previous work in 3D THz synthetic aperture imaging [23, 24, 91] has demonstrat-

ed focusing methods very similar to FBP to be well-suited to imaging conductive

and/or opaque objects, as well as transparent dielectric objects with planar bound-

aries aligned parallel to the array plane. However, generating accurate 3D tomo-

graphic images of transparent objects with non-planar or curved boundaries requires
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correcting for refraction within the object. Given knowledge of the refractive indices

of the object’s constituent materials (likely to be known a priori in a manufacturing

application) and the 3D location of its boundaries (obtainable from FBP-processed

3D tomographic images), the refraction can be quickly and efficiently be corrected for

by reprocessing the THz SA data using the split-step Fourier (SSF) back-propagation

method described in Sec. 3.2.2.

Broadband Imaging Resolution: A Geometrical Interpretation

Typical discussions of imaging resolution assume narrow band illumination from con-

tinuous wave sources such as lasers. As a result, the imaging resolution is often given

in terms of the optical or acoustic wavelength, λ. Though useful, this line of analysis is

slightly cumbersome and unintuitive for imaging systems that use broad band pulsed

sources such as THz time domain imaging systems. In this case, the signals trans-

mitted are typically time domain waveforms consisting of pulses whose time duration

τ , or equivalently, bandwidth B = 1/τ , determines the range resolution according to

the classical radar range resolution equation,

δr =
c

2
τ =

c

2B
. (3.2.11)

For a transceiver at the point r0 = (x, y, z0) in the array plane in Fig. 3.1.1 and a

point scatterer in free space below at r′ = (x′, y′, z′), the reflected echo pulse will

arrive at time t = 2
c
|r0 − r′|. For a single isotropic transceiver, this echo pulse can

be thought of as being effectively projected over a sphere of radius |r0 − r′| centered

at the transceiver’s location r0. Furthermore, given the range resolution in (3.2.11),

the support of this spherically-projected waveform can be confined to the spherical
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Figure 3.2.1: Image of a point scatterer at (x′, z′) = (4 mm, 15 mm) from 2D simula-
tion data. (a) shows the resulting image along with annular arcs of radial thickness
δr = 0.41 mm extending from elements of the array to the location of the scatterer.
The rectangle around the scatterer indicates the bounds of the zoomed image (b)
which shows the point spread function (PSF) centered at the scatterer’s location.
The four points bounding the PSF correspond to the intersection points of the annuli
from the outermost array elements.

shell with outer radius |r0 − r′|+ δr/2 and inner radius |r0 − r′| − δr/2. The process

of image reconstruction can then be conceptualized as applying a time delay (or

equivalently, a phase shift) to each waveform from each sensor in the array such that

their spherical projections overlap and add coherently at the image point [135, 138].

This is illustrated in Fig. 3.2.1 for a set of 2D simulation data in which a 300-

element linear array was used to image a point scatterer below the array at (x′, z′) =

(4 mm, 15 mm). The excitation waveforms used in the simulation were Gaussian puls-

es with τ = 2.73 ps, full-width at half-max (FWHM), which from (3.2.11) corresponds

to a range resolution δr = 0.41 mm. The backscattered fields on the array of length

Lx = 17.9 mm were then calculated and used to form an image via FBP as described

above. In the 2D simulation, the spherical shells indicating the projection bounds
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|r0 − r′| ± δr/2 become annular arcs centered at the array elements and extending to

the point scatterer as shown in Fig. 3.2.1a.

Imaging system performance is typically characterized in terms of a point spread

function (PSF), which quantifies the imaging resolution in terms of its impulse re-

sponse – i.e., the extent to which the image of a point of zero size (such as a delta

function) is blurred by the imaging system [85]. Fig. 3.2.1b shows a zoomed in view

of the region around the image of the point scatterer, indicated by the rectangle in

Fig. 3.2.1a. The image’s color map is scaled to omit any pixels whose value is less

than half the maximum. Fig. 3.2.1b is therefore an image of the PSF (FWHM) of the

SA tomography method for the array configuration and excitation waveform used in

the simulation space.

From Fig. 3.2.1b, it can be seen that the PSF is bounded by four points corresponding

to the points of intersection of the annuli centered at the outermost array elements.

The lateral and axial distances between these four points can therefore be used to

quantify the axial and lateral extent of the PSF in terms of the range resolution δr

of the excitation waveform and the lateral extent Lx of the aperture. Specifically, the

lateral resolution is given by

xres = xright − xleft, (3.2.12)

where

xleft =

(
r− + δr

2

)2 −
(
r− − δr

2

)2

2Lx
(3.2.13)
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and

xright =

(
r− − δr

2

)2 −
(
r− + δr

2

)2

2Lx
(3.2.14)

are the x coordinates of the points to the left and right side of the scatterer in Fig. 3.2.1

given in terms of

r− =

√(
x′ +

Lx
2

)2

+ z′2, (3.2.15)

the radial distance from the leftmost array element to the image point in Fig. 3.2.1,

and

r+ =

√(
x′ − Lx

2

)2

+ z′2, (3.2.16)

the radial distance from the rightmost array element to the image point. Likewise,

the axial resolution is given by

zres = zbelow − zabove, (3.2.17)

where

zbelow =

√√√√(r− +
δr

2

)2

−

[(
r− + δr

2

)2 −
(
r+ + δr

2

)2
+ L2

x

2Lx

]2

(3.2.18)

and

zabove =

√√√√(r− − δr

2

)2

−

[(
r− − δr

2

)2 −
(
r+ − δr

2

)2
+ L2

x

2Lx

]2

(3.2.19)
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Figure 3.2.2: Axial (a) and lateral (b) resolution calculated for the simulation space in
Fig. 3.2.1 using expressions (3.2.12) and (3.2.17). The red “×” indicates the location
of the scatterer in Fig. 3.2.1 in the parameter space.

are the z coordinates of the points above and below the scatterer in Fig. 3.2.1.

As the expressions indicate, the resolution varies spatially as shown in Fig. 3.2.2

for the 2D simulation data shown in Fig. 3.2.1. The figure also indicates where

the point scatterer in Fig. 3.2.1 falls in the parameter space. From Fig. 3.2.1b, the

lateral PSF bounds appear at x = 3.593 and 4.407 mm, for a lateral resolution of

0.814 mm. This is consistent with Fig. 3.2.2a, which shows a lateral resolution of 0.814

at (3.99 mm, 14.99 mm), the closest image point to the scatterer. Likewise, (3.2.1b)

shows the axial PSF bounds at z = 14.77 and 15.23 mm, for an axial resolution

of 0.46 mm, which is consistent with Fig. 3.2.2b, which shows an axial resolution of

0.46 mm at (3.99 mm, 14.99 mm). Fig. 3.2.2b also shows blank regions near the array

corresponding to image points for which (3.2.17) takes imaginary values. However,

in SA tomography, it’s more likely that objects to be imaged will be placed farther

away from the array to be illuminated by the diverging beams.
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3.2.2 Split-Step Fourier Back-Propagation

The more general case of spatially-varying refractive index adds a degree of complexity

as the x and y second derivatives in the PE operator (3.2.4) are coupled with the

refractive index n (r) by the square root operation. In order to make use of efficient

fast Fourier transform (FFT) algorithms to carry out the back-propagation, these

derivative terms must be decoupled from the refractive index. This is typically done by

successive Taylor expansions of the square root operator around a spatially-invariant

reference refractive index, n0. The first Taylor expansion yields

Q (r) =

√
(2k)2 n2

0 +
∂2

∂x2
+

∂2

∂y2
+

(2k)2 n0√
(2k)2 n2

0 + ∂2

∂x2
+ ∂2

∂y2

[n (r)− n0] + · · · ,

(3.2.20)

the first term of which depends only on n0. Decoupling the second term requires

Taylor expanding it as well. Defining the refractive index perturbation

δn (r) ≡ n (r)− n0, (3.2.21)

we can make use of the Taylor series expansion

1√
1 +X

= 1− X

2
+ · · · (3.2.22)
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to rewrite the second term in (3.2.20) as

(2k)2 n0δn (r)√
(2k)2 n2

0 + ∂2

∂x2
+ ∂2

∂y2

=
2kδn (r)√

1 + 1
(2k)2n2

0

[
∂2

∂x2
+ ∂2

∂y2

]
= 2kδn (r)− 1

2

2kδn (r)

(2k)2 n2
0

[
∂2

∂x2
+

∂2

∂y2

]
+ · · ·

(3.2.23)

Keeping only the first term in the expansion of (3.2.23), the operator is given approx-

imately by

Q (r) ≈

√
(2k)2 n2

0 +
∂2

∂x2
+

∂2

∂y2
+ 2kδn (r) . (3.2.24)

Under these approximations, the spatially-varying refractive index term is completely

decoupled from the spatial second derivative terms, which are easily applied in the

spatial frequency domain using −k2
x and −k2

y as before in (3.2.8). This results in the

final form of the SSF operator,

QSSF (r) ≈
√

(2k)2 n2
0 − k2

x − k2
y + 2kδn (r)

= kz0 + 2kδn (r) . (3.2.25)

The SSF operator is accurate subject to the approximations made in its derivation,

namely:

1. Propagation is weakly z-dependent, made in allowing the commutator term to

be ignored in (3.2.5), resulting in (3.2.6).
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2. Refractive index perturbations are relatively small, allowing the 2nd-order and

higher terms in (3.2.20) to be ignored.

3. Low angular frequencies, or equivalently, low lateral propagation angles, which

makes the first term in (3.2.23) dominant.

Implementation

For practical implementation, the spatially-varying refractive index n (r) = n (x, y, z)

is separated into a laterally-invariant reference refractive index n0 (z) and a laterally-

varying perturbation,

δn (x, y) ≡ n (x, y, z)− n0 (z) (3.2.26)

as in (3.2.21). The two terms in (3.2.25) are then applied in two “split” steps to

propagate the fields back a small distance ∆z, over which the refractive index is

assumed to be constant [32]:

Step 1: Propagate the fields from the z plane to the z + ∆z plane by applying a

phase shift corresponding to the first term in (3.2.25). This is carried out in

the spatial frequency domain by first applying a 2D spatial Fourier transform

in (3.1.16) along the x and y dimensions:

ψ̂ (kx, ky, z + ∆z, ω) = Fx,y {ψ (x, y, z, ω)} eikz0(z)∆z (3.2.27)

Step 2: Apply a phase correction corresponding to the second term in (3.2.25) to

the result of the previous step. This is carried out in the spatial domain by first

applying a 2D inverse spatial Fourier transform in (3.1.17) along the kx and ky
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dimensions:

ψSSF (x, y, z + ∆z, ω) = F−1
kx,ky

{
ψ̂ (kx, ky, z + ∆z, ω)

}
ei2kδn(x,y)∆z (3.2.28)

After the fields have been back-propagated to the z + ∆z plane, the image intensity

is calculated by integrating over temporal frequency as in (3.2.10), resulting in

ISSF (x, y, z) =

∣∣∣∣∣∣ 1

2π

∞∫
−∞

ψSSF (x, y, z, ω) dω

∣∣∣∣∣∣
2

. (3.2.29)

The process is then repeated until a full 3D tomographic image is constructed.

From (3.2.26), it can be seen that for the special case of n (x, y, z) = 1, (3.2.25)

simplifies to (3.2.8) and split-step Fourier back-propagation reduces to Fourier back-

propagation.

Error Analysis: Propagation Step Size

With reference to (3.2.7), the fields back-propagated from the z plane to the z + ∆z

plane using the exact operator (3.2.4) can be written as

ψQ (x, y, z + ∆z, ω) = ψ (x, y, z, ω) exp

i z+∆z∫
z

Q (x, y, ζ) dζ

 . (3.2.30)
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Likewise, the fields back-propagated using the SSF propagator (3.2.25) can be written

as

ψQSSF
(x, y, z + ∆z, ω) = ψ (x, y, z, ω) exp

i z+∆z∫
z

QSSF (x, y, ζ) dζ

 . (3.2.31)

The relative error between ψQ and ψQSSF
can therefore be written as

Eψ (x, y, z + ∆z, ω) ≡ ψQSSF
(x, y, z + ∆z, ω)− ψQ (x, y, z + ∆z, ω)

ψQ (x, y, z + ∆z, ω)

=
ψQSSF

(x, y, z + ∆z, ω)

ψQ (x, y, z + ∆z, ω)
− 1

= exp

i z+∆z∫
z

QSSF (x, y, ζ)−Q (x, y, ζ) dζ

− 1.

(3.2.32)

From the mean value theorem for definite integrals [139], there exists at least one set

of points z ≤ ζ (x, y) ≤ z + ∆z for which the integral satisfies

i

z+∆z∫
z

QSSF (x, y, ζ)−Q (x, y, ζ) dζ = µ (x, y, ω) ∆z, (3.2.33)

which allows rewriting (3.2.32) as

Eψ (x, y, z + ∆z, ω) = exp
(
µ (x, y, ω) ∆z

)
− 1. (3.2.34)
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Expanding the exponential function to 3rd order then yields

Eψ (x, y, z + ∆z, ω) = µ (x, y, ω) ∆z

+
1

2
µ2 (x, y, ω) (∆z)2 +

1

6
µ3 (x, y, ω) (∆z)3 + · · · .

(3.2.35)

The error in the propagated fields is therefore first order in ∆z [139]. Common treat-

ments of the split-step Fourier method often introduce four alternative ways to split

the operator either symmetrically or asymmetrically to achieve second or third order

errors in ∆z at the expense of computational complexity (i.e. more Fourier trans-

forms) [32]. The analysis here, which closely follows that in [139], demonstrates these

alternatives provide no advantages in accuracy, as the error is always first order in

∆z. The SSF back-propagation method described above is the least computationally

expensive and was therefore chosen for this work.

In practice, a reasonable upper limit for ∆z is given by

∆zmax =
π

4 max |kδn (x, y)|
, (3.2.36)

which ensures that the phase correction applied in (3.2.28) doesn’t introduce any

phase changes greater than π/2 radians.
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Error Analysis: Propagation Angle and Refractive Index Perturbation

For a medium characterized by an arbitrary, spatially-invariant refractive index n,

the propagator in (3.2.4) can be expressed as

Q =
√

(2k)2 n2 − k2
x − k2

y

= 2kn cos θp, (3.2.37)

where θp is the propagation angle from the z-axis [139]. Similarly, the split-step Fourier

propagator from (3.2.25) can be expressed as

QSSF =
√

(2k)2 n2
0 − k2

x − k2
y + 2kδn

=

√
(2k)2 n2

0 − sin2 θp + 2kδn, (3.2.38)

where n = n0 + δn as in (3.2.26). Using (3.2.37) and (3.2.38), the relative propagator

error can then be quantified in terms of the propagation angle θp and relative refractive

index perturbation δn/n0 as [139]

EQ (θp, δn/n0) ≡ QSSF −Q
Q

=
QSSF

Q
− 1

=

√
(1 + δn/n0)−2 − sin2 θp + δn/n0

1+δn/n0

cos θp
− 1. (3.2.39)

Under the tangent plane approximation, a sensor in the array plane at x0 as shown

in Fig. 3.2.3 will receive a specular return from the curved surface of radius a at

an angle of θp to the z-axis. The figure also shows that θp is equal to the angle of
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Figure 3.2.3: Diagram illustrating the tangent plane approximation, under which a
sensor at x0 in the array plane will receive a specular reflection from the curved surface
at an angle θp from the z-axis, which is equal to the tilt angle of the tangent plane.

tilt of the tangent plane. Fig. 3.2.4 shows a contour plot of the relative propagator

error in (3.2.39) calculated over a range of propagation angles and refractive index

perturbations. As will be shown in Sec. 4.3, this relative propagator error in (3.2.39),

combined with the observation from Fig. 3.2.3 that the propagation angle θp is equal

to the tangent plane tilt angle allows the formulation of simulation test scenarios that

enable the investigation of the influence of approximation error on thickness estimates

from SSF-processed image data.

49



-0
.2

-0
.2

-0
.1

-0
.1

-0.05

-0
.0

5

-0.01

-0
.0

1

-0
.0

1

-0.01 -0.001

-0
.0

0
1

-0
.0

0
1

-0.001 0000

0
.0

0
1

0.001
0.001

0
.0

0
1

0
.0

1

0.01

0.01

0
.0

1

0
.0

5

0.0
5

0
.1

0
.1

0
.2

0
.2

θp(
◦)

-60 -40 -20 0 20 40 60

δ
n
/
n
0

-0.3

-0.2

-0.1

0

0.1

0.2

Figure 3.2.4: Relative error in the SSF propagator (3.2.39) as a function of propaga-
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50



Chapter 4

Implementation, Demonstration, and Analysis

This chapter presents details on the implementation of the THz imaging methods

described in Chapter 3 using the Picometrix T-Ray 4000 THz imaging system at

the Northwest Electromagnetics and Acoustics Research Laboratory (NEAR-Lab).

Experimental results demonstrating the ability of the SSF back-propagation method

to generate accurate 3D THz tomographic images of a pharmaceutical tablet as well

as more well-characterized test objects are presented, followed by simulation results

that quantify and characterize the influence of approximation error in the SSF back-

propagation method on thickness estimates of a dielectric layer. Results shown in

this chapter were presented at the 2013 SPIE Optics and Photonics conference in San

Diego, CA [39]; the 2015 International Radar Symposium (IRS) in Dresden, Germany

[40]; and were included in a manuscript recently submitted for publication in the IEEE

Transactions on Terahertz Science and Technology [41].
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Figure 4.1.1: Picometrix T-Ray 4000 THz time-domain imaging system.

4.1 Picometrix T-Ray 4000 Imaging System

While phased-array methods can be applied to data collected using physical sensor

arrays, such as those depicted in Fig. 1.5, potentially in multistatic configurations,

the measurements presented in this work employ the Picometrix T-Ray 4000 THz

time-domain imaging system shown in Fig. 4.1.1 – a convenient experimental testbed

for the imaging methods introduced in Sec. 3.2. The T-Ray 4000 records a 4096-

point waveform every 10 ms. The internal delay line allows a time-domain sampling

interval of 78.125 ps, for a Nyquist frequency of 6.4 THz. As the zero-mean random

noise is uncorrelated from one waveform to the next, multiple waveforms are typical-

ly averaged to increase signal-to-noise ratio (SNR). In the imaging setup shown in

Fig. 4.1.1, both the transmitting and receiving antennas are contained in the collinear

head, which uses a beam splitter to allow monostatic measurements through a com-

mon high-density-polyethylene (HDPE) focusing lens. In addition to the random

noise reduced by averaging multiple waveforms, the beam splitter, lenses, and other

internal components introduce a coherent background waveform that must be record-
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Figure 4.1.2: Example waveforms and amplitude spectra generated using T-Ray 4000
operating in monostatic reflection mode with a 1′′ focal length lens. Waveforms shown
in (a) are the coherent average of 100 and 10,000 waveforms. Coherent averaging in
this way increases signal-to-noise ratio. This is more evident in (b), which shows the
corresponding Fourier amplitude spectra on a log scale. As the figure shows, the noise
floor is relatively flat across the THz spectrum.

ed separately (with significant averaging to minimize the reintroduction of random

noise) and subtracted from the measured data prior to use in image processing. Two

example waveforms generated in this manner are shown in Fig. 4.1.2a. These wave-

forms were obtained using the collinear head, equipped with a 1′′ focal length HDPE

lens to focus the THz pulses onto a gold reference mirror. The waveforms shown are

the coherent average of 100 and 10,000 waveforms. The resulting increase in SNR is

most evident in the Fourier amplitude spectra, obtained via FFT of the time-domain

waveforms and shown on a log scale in Fig. 4.1.2b. As the figure shows, the noise floor

is easily identifiable and relatively flat across the THz spectrum. The dashed lines

indicating the noise floors were generated by incoherently averaging the amplitudes

of the frequency components above 2 THz.

As synthetic aperture methods require a diverging beam, the 1′′ focal length HDPE

lens is employed to effect a point-like “virtual transceiver” at the lens’s focal point

53



Collinear Head

HDPE Lens
1′′

Focal Point
(Virtual Transceiver)

Phase Fronts

(a)

x

y

z

∆x
∆y

Virtual Transceiver Positions

(b)

Figure 4.1.3: (a) Point-like virtual transceiver at focal point of 1′′ lens [91]. (b) Syn-
thetic array formed by raster scanning virtual transceiver laterally in the xy-plane
[23, 24].

below the collinear head, as depicted in Fig. 4.1.3a [23, 24, 39, 91]. The computer-

controlled imaging gantry then allows the virtual transceiver to be raster scanned

laterally in the xy plane as illustrated in Fig. 4.1.3b, collecting data much like in

stripmap-mode SAR. The array spacing ∆x and ∆y are set by the λ/4 spatial Nyquist

limit for monostatic synthetic aperture measurements as described in Sec. 3.1.

Two additional measurements must be made for each THz SA image: a measurement

of the background waveform described above and a reference measurement with the

gold mirror like those shown in Fig. 4.1.2. The planar surface of the gold mirror used

in the reference measurement is also used to align the sample stage with the imaging

gantry’s translation in x and y prior to scanning. As the background waveform is

common to both the SA data and the reference waveform, it is used to correct for drift

in the T-Ray 4000’s delay line. This is done by aligning the SA and reference data with

the background waveform prior to subtraction. After the background subtraction,
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the reference waveform is used for preprocessing the measured data using methods

described in the following section.

4.1.1 Waveform Preprocessing

The reference waveform measured from the reflective mirror can be expressed as [22]

wr (t) = ψi (t) + nr (t) , (4.1.1)

where ψi (t) is the incident waveform and nr (t) is the additive zero-mean Gaus-

sian noise in the reference measurement. In many Terahertz pulsed imaging and

spectroscopy applications, the sample under test is assumed to behave like a linear

time-invariant system with impulse response h (t), which acts to generate delayed and

attenuated copies of the transmitted waveform [22]. The resulting waveform recorded

in the sample measurement can be expressed as a convolution of the incident pulse

with the sample’s impulse response,

ws (t) = h (t) ∗ ψi (t) + ns (t) , (4.1.2)

where ns (t) is additive zero-mean Gaussian noise in the sample measurement. In a

typical SA imaging experiment, the reference waveform used in preprocessing is the

average of 10,000 waveforms, whereas the sample measurement is the average of only

100 or so waveforms. The reference measurement therefore has a much (100×) higher

signal-to-noise ratio (SNR) than the sample measurement over the band of interest,

as shown in Fig. 4.1.2b. In this case, the reference measurement provides a good

estimate of the transmitted waveform and can be used as such in preprocessing of the
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sample waveforms.

One common preprocessing method comes from signal processing in radar and ac-

tive sonar, in which received signals are cross-correlated with the known transmitted

waveform to suppress noise and decrease the temporal pulse width in a process com-

monly referred to as pulse compression or matched filtering [140]. In the preprocessing

of THz signals, the known transmitted waveform is given by the reference waveform

[141] and the matched filter’s transfer function is given in the frequency domain by

bMF (ω) = w∗r (ω) . (4.1.3)

where the superscript “∗” denotes complex conjugation. This conjugation results in

a simple cross-correlation of the sample and reference waveforms when the matched

filter is applied.

In contrast to matched filtering, preprocessing of the waveforms often involves nor-

malizing the data by the incident spectrum as described in Sec. 3.1. This method,

often referred to as deconvolution, attempts to estimate h (t) given the reference and

sample measurements [22]. Taking the ratio of wr (t) and ws (t) in the frequency

domain yields

ws (ω)

wr (ω)
=

h (ω)ψi (ω)

ψi (ω) + nr (ω)
+

ns (ω)

ψi (ω) + nr (ω)
. (4.1.4)

As the reference measurement typically has a much higher signal-to-noise ratio (SNR)

than the sample measurement over the band of interest, ψi (ω) >> nr (ω) and (4.1.4)

can be approximated as

ws (ω)

wr (ω)
≈ h (ω) +

ns (ω)

ψi (ω)
. (4.1.5)

If the SNR in the sample measurement is sufficiently high (i.e., |h (ω) | >> ns(ω)
ψi(ω)

),
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(4.1.5) provides a good estimate of the transfer function h (ω). However, for large

|ns (ω) | or small |ψi (ω) |, the noise term dominates and the result becomes unreliable.

In most pulsed THz time domain systems, SNR decays with increasing frequency as

shown in Fig. 4.1.2b, so various low-pass filters, such as the double Gaussian (DG)

or customized skewed Gaussian (CSG) filters are often applied to (4.1.5) to suppress

the noisy parts of the spectrum [22]. Another standard approach is to use the Wiener

deconvolution filter,

bWD (ω) =
w∗r (ω)

|wr (ω) |2 + |ns (ω) |2
, (4.1.6)

which provides the minimum mean square estimate of the transfer function in the

presence of additive noise [22, 142]. As the numerator of the Wiener deconvolution

filter is in fact the matched filter (4.1.3), the two filters have an identical phase

response [141].

The behavior of the Wiener deconvolution filter in (4.1.6) can be analyzed by express-

ing it as the product of a deconvolution filter and a de-noising filter, i.e.

bWD (ω) = bdeconv. (ω) bde-noise (ω)

=
1

wr (ω)

|wr (ω) |2

|wr (ω) |2 + |ns (ω) |2
. (4.1.7)

The de-noising filter can be rewritten as

bde-noise (ω) =
|wr (ω) |2

|wr (ω) |2 + |ns (ω) |2

=
1

1 +
∣∣∣ ns(ω)
wr(ω)

∣∣∣2 . (4.1.8)

From this expression, it can be seen that for frequency components with low SNR,
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1 << |ns (ω) /wr (ω) |2 in the denominator, and (4.1.7) reduces to

bWD (ω) ≈ 1

wr (ω)

∣∣∣∣wr (ω)

ns (ω)

∣∣∣∣2 . (4.1.9)

The deconvolution filter is therefore weighted by the (low) SNR, which suppresses the

output. Conversely, for frequency components with high SNR, 1 >> |ns (ω) /wr (ω) |2

in the denominator, reducing (4.1.8) to unity and (4.1.7) to the simple deconvolution

filter,

bWD (ω) ≈ 1

wr (ω)
. (4.1.10)

For the intermediate case of unit SNR, |wr (ω) /ns (ω)|2 = 1 in the denominator and

(4.1.7) reduces to

bWD (ω) ≈ 1

wr (ω)

1

2
. (4.1.11)

This shows that while Weiner deconvolution provides the optimal trade off (in the

least squares sense) between deconvolution and noise suppression, the de-noising term

only suppresses the output by a factor of 2 for signals at the noise floor.

In practice, Wiener deconvolution is often implemented as

bP (ω) =
w∗r (ω)

|wr (ω) |2 + η
, (4.1.12)

where the regularization parameter η is “tuned” manually to achieve a balance be-

tween deconvolution and de-noising. A simple, intuitive parameterization of this filter

can be obtained by selecting η such that the de-noising filter component applies a se-

lectable level of attenuation α to frequency components at a cutoff power level Pc (ω),

i.e.

bde-noise (ω) =
Pc (ω)

Pc (ω) + η
=

1

α
. (4.1.13)
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Figure 4.1.4: Comparison of the amplitude response of the matched filter bMF (ω)
from (4.1.3), the deconvolution filter bdeconv. (ω) from (4.1.7), the Wiener deconvo-
lution filter bWD (ω) from (4.1.6) and the parameterized Wiener deconvolution filter
bPD (ω) in (4.1.14), where wr (ω) is given by the 10,000 reference waveform average in
Fig. 4.1.2. For bPD (ω), α = 100 and the power cutoff level was set to the noise floor
in the 100-waveform average in Fig. 4.1.2

Solving for η and substituting into (4.1.12) results in

bPD (ω) =
w∗r (ω)

|wr (ω) |2 + (α− 1)Pc (ω)
. (4.1.14)

For the special case of α = 2 and Pc (ω) = |ns (ω) |2, this filter simplifies to the

classical Wiener deconvolution filter (4.1.6).

Fig. 4.1.4 shows a comparison of the amplitude response of the matched filter bMF (ω)

from (4.1.3), the deconvolution filter bdeconv. (ω) = 1/wr (ω) from (4.1.7), the Wiener

deconvolution filter bWD (ω) from (4.1.6) and the parameterized Wiener deconvolution

filter bPD (ω) in (4.1.14). The reference waveform wr (ω) used in this analysis is

the 10,000-waveform average shown in Fig. 4.1.2. For the parameterized Wiener
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deconvolution, α = 100 and the power cutoff level was set to the noise floor in the

100-waveform average in Fig. 4.1.2. The figure shows that the matched filter acts to

suppress any frequency components that weren’t sent out by the system while the

deconvolution filter acts to “whiten” the signal by flattening the frequency spectrum

over the entire band, amplifying the noise floor in the process. In contrast, the

Wiener deconvolution filters flatten the frequency spectrum where the SNR is high

and suppress the output where the SNR is low. This whitening effectively increases

the bandwidth of the THz pulses, which improves the range resolution (3.2.11) of the

THz imaging system. This can be demonstrated by applying these transfer functions

to the 100-waveform averaged signal w100 (t) in Fig. 4.1.2 and taking the squared

envelope of the resulting analytic signals, i.e.

ĥ (t) =
∣∣∣(w100 (t) +H

{
w100 (t)

})
∗ b (t)

∣∣∣2, (4.1.15)

where H{·} indicates a Hilbert transform and the impulse response b (t) corresponds

to the transfer functions shown in Fig. 4.1.4. The normalized output of (4.1.15)

for each filter shown in Fig. 4.1.4 is shown in Fig. 4.1.5. As the figure shows, the

matched filter does no whitening of the signal and therefore produces the broadest

pulse (τ ≈ 1.8 ps) and coarsest range resolution (δr ≈ 0.27 mm). As expected,

the deconvolution filter acts to whiten the entire signal spectrum, amplifying even

the noisiest frequency components and obscuring the pulse altogether. The Wiener

deconvolution outputs both show narrower pulses than the matched filter output and

a reduction in noise over the deconvolution filter. Specifically, the FWHM pulse

widths τ were ≈ 0.94 and 0.55 ps, corresponding to range resolutions δr ≈ 0.140

and 0.083 mm for bWD (ω) and bPD (ω), respectively. These results show how the

range resolution can be improved with preprocessing, however the amplitude in most
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sample signals ws (t) will be much lower than w100 (t) in Fig. 4.1.2, so the actual gains

in resolution may be less than the above analysis indicates.

4.2 Experimental Results

This section presents results from three experiments conducted using the Picometrix

T-Ray 4000 described in the previous section. The first experiment, described in

Sec. 4.2.1, features measurement results from an over the counter pharmaceutical

gelcap and is presented as a “proof of concept.” As the constituent materials of the

gelcap are unknown, two further experiments were conducted on well-characterized

test samples to demonstrate and quantify the accuracy of the images produced using

SSF back-propagation. The first of these experiments, described in Sec. 4.2.2, involved

a cylindrically-curved high-density polyethylene sample with high-contrast copper
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(a) (b)

Figure 4.2.1: Over-the-counter gelcap tablet imaged using the Picometrix T-Ray 4000
imaging system described in Sec. 4.1. Emptying the gelcap of its liquid contents was
found to enhance the THz reflection from the inner surface.

wires embedded within. Results from this experiment were presented at the 2013

SPIE Optics and Photonics conference [39] in San Diego, CA. The second of these

experiments, described in Sec. 4.2.3, was conducted on a specially-designed 3D-printed

test object. Results from this experiment were presented at the 2015 International

Radar Symposium (IRS) in Dresden, Germany [40] and were included in a manuscript

recently submitted for publication in the IEEE Transactions on Terahertz Science and

Technology [41].

4.2.1 Pharmaceutical Tablet

This section describes an experiment carried out as a “proof of concept,” which

employed the over-the-counter gelcap tablet shown in Fig. 4.2.1. Emptying the gelcap

of its liquid contents was found to enhance the THz reflection from the inner surface.

As shown in the figure, the gelcap is ellipsoidal, approximately 2 cm long along the

y direction and with a maximum diameter of ≈ 1 cm in the xz-plane. The hollow

gelcap was imaged using the Picometrix T-Ray 4000 THz time domain system to

form a 300× 300-element planar synthetic aperture approximately 15 mm above the
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Figure 4.2.2: Axial slices through the FBP-processed (a) and SSF-processed (b) 3D
image data along with the depths of the top boundary and inner boundaries.

sample as described in Sec. 4.1. The array spacing in x and y was kept to 0.060 mm

to satisfy λ/4 spatial sampling up to ≈1.25 THz, and 100 waveforms were averaged

at each sensor location to increase SNR.

After preprocessing the waveforms using the modified Wiener deconvolution described

in Sec. 4.1.1, the data were processed using FBP as described in Sec. 3.2.1 with depth

resolution ∆z = 12.7 µm, corresponding to 1/8th of the upper limit in (3.2.36).

Fig. 4.2.2 shows a cross-sectional slice through the resulting 3D image data along the

axis of the gelcap, corresponding to the orientation in Fig. 4.2.1a. As described in

Sec. 3.2.1, the 3D image resulting from FBP is used to localize the object’s upper

surface boundary, shown as a dashed purple line in Fig. 4.2.2a along with the apparent
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location of the inner boundary, shown as a dotted green line.

Having localized the object’s upper boundary using the FBP-processed 3D image, the

data can be reprocessed using the SSF method as described in Sec. 3.2.2, provided the

refractive index of the object under test is known. Mismatch between the actual and

assumed refractive index used in SSF back-propagation will introduce a proportional

mismatch between the actual and apparent vertical location of the inner boundary.

The limiting case of this mismatch, in which free space is assumed throughout the

image volume, is represented by FBP processing. Therefore, SSF processing using any

assumed refractive index between unity (free space) and the actual refractive index

will produce a more accurately reconstructed image than FBP processing. Likewise,

if a refractive index greater than the actual refractive index is assumed, the SSF

processing will over-correct for the refraction, resulting in a less accurate image. In

the case of the gelcap in this experiment, the refractive index of the sample was not

known and was therefore assumed to be 1.53; a value taken from the literature [1].

Fig. 4.2.2b shows a cross-sectional slice through the resulting SSF-processed image

data at the same location as Fig. 4.2.2a. The figure also shows the apparent location

of the inner boundary in the SSF-processed image data.

Fig. 4.2.2 shows the layer appears to be thinner in the SSF-processed data than in

the FBP-processed data, as is to be expected due to refraction within the sample.

Specifically, the layer’s radial thickness (mean ± standard deviation) was found to be

0.792±0.025 mm for the FBP-processed data compared to the 0.520±0.018 mm for the

SSF-processed data. These numbers are consistent with the radial thickness of 0.484±

0.009 mm obtained from micrometer measurements of a separate gelcap from the same

lot as that shown in Figs. 4.2.1 and 4.2.2. However, without an accurate estimate of
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(a) (b) (c)

Figure 4.2.3: HDPE test object with cylindrically-curved top surface and protruding
copper wires A, B, and C. (a) Diagram of test object. (b) xz-view showing curved
top surface. (c) yz-view showing protruding copper wires.

the gelcap’s refractive index, it is impossible to determine whether the difference in

the thickness estimates is due to refractive index mismatch in the SSF processing, an

actual difference in thickness between the two gel caps, or the approximation error

in the SSF back-propagation described in Sec. 3.2.2. The following sections present

results of experiments designed specifically to disentangle these sources of error.

4.2.2 High-Density Polyethylene Test Object

This section describes results from an experiment designed to demonstrate the ability

of SSF back-propagation to correctly localize defects within a dielectric object with a

curved surface. These results were presented at the 2013 SPIE Optics and Photonics

conference in San Diego, California in August 2013 and published in the conference

proceedings [39].

The dielectric test object, shown in Fig. 4.2.3, was fabricated from a 2′′-diameter high-

density polyethylene (HDPE) rod. HDPE is commonly used in THz lenses and other
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THz optical components due to its transparency and relatively constant refractive

index of 1.55 across the THz band. The rod was cut and milled down to a roughly

1 cm3 cube with a cylindrically-curved top surface with a 1′′ (2.54 cm) radius of

curvature. Internal “defects” were introduced by drilling three holes through which

copper wires were fed as shown in Fig. 4.2.3. The ends of the copper wires were left

protruding to provide a “ground truth” of the wires’ actual location. The wires were

designated wire A, wire B, and wire C, as indicated in Fig. 4.2.3, with wire A being

closest to the curved top surface, wire C being farthest from the top surface, and

wire B at an intermediate distance from the top surface. The object was then imaged

using the T-Ray 4000 imaging system described in Sec. 4.1 to synthesize a 200× 200

synthetic array approximately 10 mm above the object. The synthetic array elements

spaced 0.1 mm in x and y, corresponding to a λ/4 spacing up to ≈ 0.75 THz.

FBP was then applied to the measured data to generate a 3D THz SA image consisting

of 200 slices with z values ranging from 8.2 to 17.6 mm below the array, a full 3D

rendering of which is shown in Fig. 4.2.4. The curved surface is clearly resolved, as

are the protruding ends of wires A, B, and C. Wire returns from within the HDPE

are attenuated relative to those from the protruding ends due to transmission and

reflection losses through the HDPE surface. The shapes of the wires are also distorted

within the object due to the HDPE’s refractive index causing the segments of the wires

inside the HDPE volume to appear farther below the surface than the ends protruding

into free space.

The 3D location of the curved top surface boundary was obtained using the 3D

image data shown in Fig. 4.2.4, after which the data were reprocessed using SSF

back-propagation assuming HDPE (n = 1.55) in the space below the profiled surface
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Figure 4.2.4: Volume rendering of THz SA tomographic data of HDPE test object
obtained using FBP shown at 3 different angles. Returns from the curved HDPE
surface and wires A, B, and C (see Fig. 4.2.3) are labeled.
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as in Fig. 4.2.3a. The resulting image data are shown in Fig. 4.2.5. The curved

surface and protruding wire ends are again clearly resolved, however the images of

the wires appear to be continuous, unlike in Fig. 4.2.4.

This is emphasized in Fig. 4.2.6, which shows a side-by-side comparison of cross-

sectional slices through the volumetric data produced by both methods. The slices

are taken at x = −3.65 mm, −0.45 mm, and 2.75 mm, corresponding to the locations

of wires A, B, and C, respectively. Fig. 4.2.6a shows slices through the volumetric

data in Fig. 4.2.4, obtained using FBP. As in Fig. 4.2.4, the apparent locations of the

wires within the HDPE are displaced, as indicated by the arrows. The correct loca-

tions of the wires (i.e., where the wire images would be had no distortion occurred)

are indicated by the dotted lines that connect the images of the protruding wire ends.

Fig. 4.2.6b shows slices through the volumetric data in Fig. 4.2.5, resulting from SSF

back-propagation. As in Fig. 4.2.5, the downward shift of the apparent wire loca-

tions (shown in Fig. 4.2.6a) has been largely corrected for by SSF back-propagation,

resulting in a higher-fidelity image (i.e. the internal structures are correctly localized).

4.2.3 3D-Printed Test Object

This section describes results from an experiment designed to demonstrate the ability

of SSF back-propagation to correctly estimate the thickness of a curved dielectric

layer. These results were presented at the 2015 International Radar Symposium (IRS)

in Dresden, Germany in June 2015 and published in the conference proceedings [40].

They are also featured in a manuscript recently submitted for publication in the IEEE

Transactions on THz Science and Technology [41].
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Figure 4.2.5: Volume rendering of THz SA tomographic data of HDPE test object
obtained using SSF back-propagation shown at 3 different angles. Returns from the
curved HDPE surface and wires A, B, and C are labeled.
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(a) Fourier Back-Propagation (b) SSF Back-Propagation

Figure 4.2.6: Side-by-side comparison of cross-sectional slices of THz SA tomographic
data obtained using (a) FBP and (b) SSF back-propagation. Slices are shown at
x = −3.65 mm, −0.45 mm, and 2.75 mm, corresponding to wires A, B, and C,
respectively. Returns from the HDPE surface are labeled and arrows indicate the
downward shift of the internal wires from their correct location (dotted lines) due to
refractive effects. The image distortions introduced by the HDPE have been largely
corrected by the SSF method, as indicated by the continuity of the bright returns
from the protruding ends of the wires and the segments of the wires within the HDPE.
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In order to demonstrate the ability of the SSF method to quantify the thickness of

a curved dielectric layer, the hollow, hemicylindrical dielectric test object shown in

Fig. 4.2.7 was fabricated using a 3D printer and smoothed in a room temperature

acetone vapor bath. The object was designed with a 5 mm outer radius and an axially-

sloped inner radius, ranging from 4 mm on one end to 3.5 mm on the other, as shown

in Fig. 4.2.7a. The object therefore constitutes a smooth, curved, dielectric layer with

axially-varying thickness. As shown in Fig. 4.2.7b and c, a piece of reflective copper

tape was applied to the interior of the sample to provide a high-contrast return from

the inner layer boundary. The ends of copper tape were intentionally left protruding

from either end of the sample as shown in Fig. 4.2.7c to provide unrefracted points

of reference for estimating the true location of the inner surface – the closest possible

“ground truth” of the inner surface boundary’s location in the experimental data.

The object was imaged using a Picometrix T-Ray 4000 THz time domain system,

which was also used to carry out a separate transmission-mode measurement of a

planar sample of the plastic extruded by the 3D printer, from which the material’s

THz refractive index was determined to be n ≈ 1.59. As described in Sec. 4.1, the

HDPE focusing lens with a 1′′ focal length was used in the T-Ray 4000’s monostatic

transceiver head to focus the THz beam into a point-like virtual transceiver at the

focal point with a diverging THz beam below. This virtual transceiver was then

raster scanned approximately 16 mm above the object’s front surface to form a 300×

300-element planar synthetic aperture. While the autocorrelation of the THz pulses

produced by the system have a full width at half maximum of 2.7 ps, corresponding

to a maximum bandwidth of 0.37 THz, the aperture spacing in x and y was kept to

0.060 mm to satisfy λ/4 spatial sampling up to ≈1.25 THz.
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(a)

(b)

(c)

Figure 4.2.7: (a) Diagram of 3D printed hemicylindrical test object with 5 mm outer
radius and axially-sloped inner radius, ranging from 4 mm on one end to 3.5 mm on
the other. Copper tape was affixed to the inside of the sample to provide a high-
contrast return as shown in the photographs (b) and (c).
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Figure 4.2.8: Cross-sectional slice images through 3D THz tomographic images pro-
duced using FBP (a) and SSF (b) methods at the same y value. The top boundary
ztop (x, yslice) and inner boundaries, estimated from the depth of the protruding ends
zinner (x, yslice) are visible in both images as dashed blue and solid orange lines, re-
spectively. In the FBP-processed data (a), the inner surface zFBP (x, yslice) (dotted
purple line) appears displaced vertically from zinner (x, yslice) due to refraction. In
the SSF-processed data (b), the refraction is corrected, bringing the inner surface
zSSF (x, yslice) (dot-dashed green line) into alignment with zinner (x, yslice).

The data were first processed using FBP as described in Sec. 3.2.1 with depth reso-

lution ∆z = 12.7 µm, corresponding to 1/8th of the maximum step size in (3.2.36).

Fig. 4.2.8a shows a cross-sectional slice through the resulting 3D image data along

the axial (x) direction, corresponding to the orientation in Fig. 4.2.7c. As the cross-

sectional images show, the locations of the upper surface boundary, inner boundary,

and protruding copper tape ends are easily identifiable in the 3D data sets. This al-

lows curves to be fit to the boundary locations in the image, resulting in a 2D surface
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profile for each interface. For the upper surface, the 2D profile is given by ztop (x, y),

a corresponding slice through which is shown as a dashed line in Fig. 4.2.8a. For the

protruding copper tape ends, a linear fit was applied to connect the separate surface

profiles to either side of the object, resulting in zinner (x, y), shown in Fig. 4.2.8a as a

solid line. As mentioned previously, the protruding copper tape ends provide unre-

fracted points of reference that enable estimation of the copper tape’s true location

within the object. The profile zinner (x, y) is therefore treated as the “ground truth,”

i.e. the inner surface’s true location. Applying the fitting process to the inner surface

boundary in the FBP-processed data results in zFBP (x, y), a slice through which is

shown as the dotted line in Fig. 4.2.8a. The figure clearly shows that zFBP (x, y)

appears displaced vertically from zinner (x, y) due to refraction from the plastic layer,

which is not corrected for by FBP processing.

Having localized the object’s upper boundary ztop (x, y) using the FBP-processed 3D

image, the data were reprocessed using the SSF method, as described in Sec. 3.2.2,

assuming the experimentally-determined refractive index of n = 1.59 for the region

below the upper surface and n = 1 elsewhere in the image space. Fig. 4.2.8b shows

a cross-sectional slice through the resulting SSF-processed data at the same location

as Fig. 4.2.8a. The slices through ztop (x, y) and zinner (x, y) are overlaid for reference.

As Fig. 4.2.8b shows, the inner surface boundary in the SSF-processed data is much

closer to the ground truth zinner (x, y) than that in the FBP processed data shown

in Fig. 4.2.8a. This is due to the SSF method’s correcting for refraction within the

dielectric object. Applying the fitting process to the inner surface boundary in the

SSF-processed data results in zSSF (x, y), a slice through which is shown as the dot-

dashed line in Fig. 4.2.8b. With the exception of some edge effects at y ≈ ±5 mm,

the SSF processing brings the apparent depth zSSF (x, y) of the inner boundary into
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much closer alignment with the ground truth zinner (x, y) from the protruding ends.

The thickness of the curved dielectric layer can be obtained from the vertical distance

between the object boundaries in the image space. This can be done using the ground

truth from the protruding tape ends, resulting in

dtrue (x, y) = zinner (x, y)− ztop (x, y) , (4.2.1)

and the apparent locations of the inner boundaries in the FBP and SSF-processed

data, i.e.

dFBP (x, y) = zFBP (x, y)− ztop (x, y) , (4.2.2)

dSSF (x, y) = zSSF (x, y)− ztop (x, y) . (4.2.3)

Fig. 4.2.9 shows these thicknesses calculated for the cross-sectional image slices shown

in Fig. 4.2.8. The figure shows dSSF (x, yslice) is in much greater agreement with

the ground truth dtrue (x, yslice) than dFBP (x, yslice), as would be expected given the

improvement in accuracy provided by SSF processing.

Defining the thickness error in the FBP and SSF-processed data as

∆dFBP (x, y) = dFBP (x, y)− dtrue (x, y)

= zFBP (x, y)− zinner (x, y) (4.2.4)
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Figure 4.2.9: Layer thickness estimates calculated using (4.2.1)–(4.2.3) for the image
data in Fig. 4.2.8.

and

∆dSSF (x, y) = dSSF (x, y)− dtrue (x, y)

= zSSF (x, y)− zinner (x, y) , (4.2.5)

respectively, allows quantifying the thickness error over a range of y values cen-

tered about the apex of the object’s cylindrically-curved upper surface, as shown

in Fig. 4.2.10. Fig. 4.2.10a shows a general increase in ∆dFBP (x, y) with increasing

x and decreasing y (i.e. in the direction of the upper right corner of the image). The

increasing error along the x direction is due to refractive effects causing the appar-

ent axial slope of the inner surface boundary to be steeper than that of the ground

truth, as shown in Figs. 4.2.8a and 4.2.9. As Fig. 4.2.8b shows, SSF back-propagation

corrects for this refraction, bringing zinner (x, y) and zSSF (x, y) into closer alignmen-

t, reducing the discrepancy in the axial slope, which in turn reduces the x-varying

76



Figure 4.2.10: Contour plots of layer thickness error in millimeters. (a) Layer thick-
ness error from FBP-processed data calculated using (4.2.4). (b) Layer thickness
error from SSF-processed data calculated using (4.2.5). While some error remains,
SSF processing significantly reduces thickness error.

77



change in the thickness error from that shown in Fig. 4.2.10a to that in Fig. 4.2.10b.

The increase in ∆dFBP (x, y) in the −y direction in Fig. 4.2.10a is due to the fact

that the 3D-printed sample’s outer and inner surface boundaries are not exactly

coaxial – i.e. the centers of curvature of ztop (x, y) and zinner (x, yslice) are located at

slightly different y values. This axial asymmetry combined with the refractive effects

results in zFBP (x, y) having a center of curvature at y ≈ −0.20 mm compared to y ≈

−0.30 mm for zinner (x, y). This ≈ 0.1 mm misalignment of the centers of curvature

then maps into (4.2.4) and gives rise to the asymmetry along the y dimension shown

in Fig. 4.2.10a. In contrast, SSF processing largely mitigates these refractive effects,

resulting in zSSF (x, y) having a center of curvature at y ≈ −0.29 mm. With the

misalignment of the centers of curvature reduced to ≈ 0.01 mm, the asymmetry in

Fig. 4.2.10b is decreased significantly from that in Fig. 4.2.10a.

The overall increase in accuracy due to SSF processing is also evident in the mean of

the thickness error, ± one standard deviation, which is approximately 0.0362± 0.0217 m-

m for ∆dSSF (x, y), compared to 0.817 ± 0.112 mm for ∆dFBP (x, y). The remaining

error due to approximations made in the derivation of the SSF-operator will be dis-

cussed in greater detail in the following section.

4.3 Error Analysis Simulations

As mentioned in Sec. 3.2.2, the SSF method is based on approximations that are

valid for small lateral changes in the refractive index and small lateral propagation

angles. This section relates the analytic expression (3.2.39) for the SSF propagator

error, presented in Sec. 3.2.2, to the experimental results presented in Sec. 4.2.3.
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Idealized simulations are then shown to further examine the influence of propagator

error on the SSF method’s ability to correctly localize the boundaries and estimate

the thickness of a dielectric layer in an object under test. These results are featured

in a manuscript recently submitted for publication in the IEEE Transactions on THz

Science and Technology [41].

From Fig. 3.2.3, the propagation angle θp is equal to the tilt angle of a curved surface’s

tangent plane. Given the profile ztop (x, y) of the cylindrically-curved upper surface

of the 3D printed test object described in Sec. 4.2.3, the surface’s tangent plane tilt

angle was calculated over the extent of the surface using

θp (x, y) = tan−1

[
∂

∂y
ztop (x, y)

]
, (4.3.1)

which was found to be approximately bounded by |θp| ≤ 32◦. This range of prop-

agation angles combined with the refractive indices of the plastic (n ≈ 1.59) and

surrounding air (n = 1) allows calculation of the propagator error using (3.2.39).

Fig. 4.3.1 shows lines corresponding to the resulting error in the data overlaid on

the relative propagator error shown in Fig. 3.2.4. These lines indicate the relative

propagator error in the experimental data stays within approximately ±0.05 (±5%).

While this analysis puts the experimental data in context with respect to the error

described in Sec. 3.2.2, the cylindrically-curved surface presents a y-varying change in

the tangent plane tilt angle, as shown in Fig. 3.2.3, and therefore a laterally-varying

change in θp. In order to quantify the effect of propagation angle-induced error on

the layer thickness estimate, the simulation test scenario, shown in Fig. 4.3.2 was

devised. The test case consists of a 1 mm-thick tilted planar dielectric layer with top
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Figure 4.3.1: Relative error in the SSF propagator (3.2.39) as a function of prop-
agation angle θp and relative refractive index perturbation δn/n0 along with lines
representing where the error in the data set presented in Sec. 4.2.3 falls.

and bottom boundaries at

ztop (x, θp) = z1 − x tan θp (4.3.2)

and

zbottom (x, θp) = z2 − x tan θp, (4.3.3)

where z1 = 15 mm and z2 = 16 mm as shown in Fig. 4.3.2. The fields on the

array reflected from the front and back surfaces of the tilted layer (ignoring etalon

reflections reverberating within the layer for simplicity) are given by

ψr (x, θp) = R1e
−i2kr(x,θp)

+R2T1T2e
−i2k
(
r(x,θp)+n∆r(θp)

)
, (4.3.4)
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Figure 4.3.2: Diagram of tilted dielectric layer assumed in simulations.

where

R1 =
1− n
1 + n

, (4.3.5)

R2 =
n− 1

1 + n
, (4.3.6)

and

T1,2 = 1 +R1,2, (4.3.7)

are the Fresnel reflection and transmission coefficients, respectively, at normal inci-

dence for the upper and lower boundaries. From the geometry in Fig. 4.3.2,

r (x, θp) = z1 cos θp − x sin θp (4.3.8)

and

∆r (θp) = (z2 − z1) cos θp. (4.3.9)

Reflected fields on the array were calculated using (4.3.4) assuming spectrally-flat
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incident pulses with a bandwidth of 1.25 THz, corresponding to the λ/4 limit for

0.060 mm array spacing used in the experimental data described in Sec. 4.2.3. The

simulation data were then processed with both FBP and SSF back-propagation using

a propagation step size ∆z = 12.7 µm as in the measured data from Sec. 4.2.3.

Fig. 4.3.3 shows the images resulting from θp = 32◦, the ‘worst-case’ relative prop-

agation error in the experimental data along with lines corresponding to the up-

per surface ztop (x, θp = 32◦) and lower surface zbottom (x, θp = 32◦). Just as in the

experimental results in Fig. 4.2.8, the lower surface boundary appears lower than

zbottom (x, θp = 32◦) in the FBP-processed image (Fig. 4.3.3a) due to refraction, which

is largely corrected for by SSF processing, as shown in Fig. 4.3.3b. However, Fig. 4.3.3b

also illustrates the effect of propagator error, which gives rise to a laterally-varying

difference in the correct and apparent boundary locations in the image. This later-

al increase in boundary location mismatch is due to the fact that propagator error

accumulates in regions in which the refractive index varies laterally. In the case of

a tilted planar dielectric layer, error begins accumulating when the propagation step

z + ∆z reaches the upper-left edge of ztop (x, θp) in Fig. 4.3.2. As the fields are back-

propagated through the layer, the error accumulates, resulting in an increase in total

error with increasing z. The apparent boundary locations in the resulting image

(Fig. 4.3.3b) are therefore increasingly displaced from ztop (x, θp) and zbottom (x, θp)

with increasing z. While the accuracy of the boundary localization suffers slightly

from the SSF propagator error, the estimated location of the lower surface is still

much more accurate than for FBP.

Applying linear fits to the apparent locations of the upper and lower boundaries in the

2D image space allows calculation of the apparent layer thicknesses in a similar fashion
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Figure 4.3.3: Imaging results from simulated data from tilted dielectric slab shown
in Fig. 4.3.2 for the case of θp = 32◦, shown with ztop (x, θp) and zbottom (x, θp) for
reference. (a) Results of FBP processing, which doesn’t correct for refraction within
the object. (b) Results of SSF processing given the layer’s THz refractive index
n = 1.59.
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data.

to that described for the experimental data in Sec. 4.2.3. The resulting estimates

of the boundary locations are given by ẑFBP
top (x, θp), ẑ

FBP
bottom (x, θp), ẑ

SSF
top (x, θp), and

ẑSSF
bottom (x, θp), where the superscript indicates the processing applied to the data from

which the estimates originate. This allows estimating the thickness errors in the

simulated data using

∆dFBP (x, θp) = ẑFBP
bottom (x, θp)− ẑFBP

top (x, θp)− dtrue (4.3.10)

and

∆dSSF (x, θp) = ẑSSF
bottom (x, θp)− ẑSSF

top (x, θp)− dtrue, (4.3.11)

where dtrue = z2 − z1 = 1 mm is the true thickness of the dielectric layer. Fig. 4.3.4

shows plots of the mean thickness error, calculated by averaging (4.3.10) and (4.3.11)

over x, for θp ranging from 0◦ to 32◦. In both the FBP and SSF results in Fig. 4.3.4,
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the image pixel size (∆x = 60 µm × ∆z = 12.7 µm) introduces artifacts in the lin-

ear fit routine used to localize the boundaries, which give rise to small deviations in

the thickness error. In spite of these small deviations however, two main conclusions

can be drawn from the results shown in Fig. 4.3.4. First and foremost, the perfor-

mance of SSF decreases with increasing θp, as would be expected from the analysis in

Sec. 3.2.2. Beginning around the θp ≈ 12◦ mark, propagator error combined with the

aforementioned artifacts in the linear fit routine act to increase the thickness error,

which reaches local maxima at θp ≈ 16◦ and 24◦, before increasing monotonically with

increasing θp. Second, even though the performance of SSF processing suffers with

increasing θp, the thickness error remains much lower than that from FBP processing.
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Chapter 5

Conclusions and Future Work

The ability of THz waves to penetrate many non-polar dielectric materials combined

with their sub-millimeter wavelengths and the coherent, broadband nature of many

THz systems makes the technology uniquely suited for many nondestructive evalua-

tion applications. However, conventional THz imaging methods such as TPI are not

easily adapted for generating 3D images of objects with curved interfaces. Terahertz

SA tomography offers several advantages over more conventional TPI methods, in-

cluding a simplified scan geometry and dynamic numerical focusing to multiple depths

with a single data set. However, the irregular surface topographies of some objects of

interest complicate numerical focusing, resulting in refractive effects that distort the

tomographic images of the object’s interior.

This work addresses this issue by introducing parabolic equation (PE) methods –

namely, the split-step Fourier method – as a means of correcting for the refraction

introduced by such curved boundaries. As such, this work represents a novel combi-

nation of THz technology, phased array imaging, reflection-mode diffraction tomog-

raphy, and PE methods. The last of these subjects – PE methods – are a family of

wave-equation based propagation techniques commonly used to model electromagnet-

86



ic and acoustic wave propagation through inhomogeneous media and/or environments

by researchers in the underwater acoustics, seismology, and atmospheric electromag-

netic propagation communities. Despite its nearly 70-year history [104], PE methods

have only relatively recently been applied to signal processing for applications in

ground-penetrating radar [35, 36] and medical ultrasound [37, 38]. To the author’s

knowledge, this work [39–41] is the first time PE methods have been applied to the

THz frequency band.

5.1 Broader Impacts and Future Work

This dissertation advances the capabilities of THz 3D imaging technology by de-

veloping an efficient, physics-based image processing method capable of correcting

for refractive effects introduced in 3D THz tomographic images of transparent ob-

jects with irregular boundaries. Though the original motivation for this work was

to allow focusing to within the curved layers of pharmaceutical tablets in order to

non-destructively estimate the thickness of the various enteric coating layers, the

method developed is much more broadly useful and is applicable to a far larger set of

THz imaging scenarios in which accurate 3D images of a transparent object’s inter-

nal structure are sought. Other applications of this method could include NDE and

watermarking of IC chips or diagnostic imaging of dental caries.

The specific PE method used in this work – the split-step Fourier method – was se-

lected due to its computational efficiency and conceptual simplicity. However, many

other PE methods in common use today may also be applicable to 3D THz tomo-

graphic imaging problems. One logical next step of this work would be applying the

split-step Padé parabolic equation method [110, 111] developed by Michael Collins.
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This method is used exclusively by the underwater acoustics community and the U.S.

Navy due to its combination of accuracy and computational efficiency [112, 143, 144].

Though typically applied in 2D acoustic simulations, more recent work has extended

it to the 3D case [115]. The material presented in this dissertation represents the first

step in this direction, laying the foundation for further work in bringing the powerful

family of PE methods to bear on THz phased-array tomographic imaging problems.

5.2 Publications

Below is a list of publications in which the author of this dissertation proposal either

authored or co-authored during the course of conducting this research.
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• G. P. Kniffin and L. M. Zurk, “Terahertz Non-Destructive Sensing of Layered

Materials with Curved Surfaces,” Proceedings of the 16th International Radar

Symposium (IRS), 2015.

• S. Schecklman, L. M. Zurk, and G. Kniffin, “Terahertz Scattering from Con-

taminants Embedded in Textile Rope and Sling Materials,” IEEE Symposium

on Antennas and Propagation and North America Science Meeting, Session:

Subsurface Remote Sensing, 2015

• S. Schecklman, G. Kniffin, and L. M. Zurk, “Terahertz Non-destructive Eval-

uation of Layered Media with the Maximum Likelihood Estimator,” Proceed-

88



ings of the International Symposium on Optomechatronic Technologies (ISOT),

2014.

• S. Schecklman, G. Kniffin, and L. M. Zurk, “Terahertz Non-destructive Eval-

uation of Ropes and Slings,” Proceedings of the International Symposium on

Optomechatronic Technologies (ISOT), 2014.

• G. Kniffin, L. M. Zurk, S. Schecklman, S. C. Henry, “3D Terahertz Synthetic

Aperture Imaging of Objects with Arbitrary Boundaries,” Proceedings of SPIE

- The International Society for Optical Engineering, 2013.

• S.C. Henry, G. Kniffin, L.M. Zurk, “3-D Broadband Terahertz Synthetic Aper-

ture Imaging,” IRMMW-THz, Sept, 2012.

• G. P. Kniffin, L. M. Zurk, “Model-Based Material Parameter Estimation for

Terahertz Reflection Spectroscopy,” IEEE Transactions on Terahertz Science

and Technology, Vol. 2, No. 2, pp. 231-241, March 2012.

• L.M. Zurk, S.C. Henry, G. P. Kniffin, “Terahertz material detection from

diffuse surface scattering,” Journal of Applied Physics, Vol. 109, No. 9, May 1,

2011.

• S. Schecklman, L. M. Zurk, S. Henry, G. Kniffin, D. Duncan, “Terahertz

reflection spectroscopy for random rough surfaces,” Journal of Applied Physics,

Vol. 109, No. 9, May 1, 2011.

• G. Kniffin, S. Schecklman, J. Chen, L. M. Zurk, B. Pejcinovic, A. Timchenko,

“Measurement and Modeling of THz Spectral Signatures from Layered Mate-

rial,” Proceedings of SPIE - The International Society for Optical Engineering,

2010.

89



• S.C. Henry, G. Kniffin, S. Schecklman, and L. M. Zurk, “Measurement and

Modeling of Rough Surface Effects on Terahertz Spectroscopy,” Proceedings of

SPIE - The International Society for Optical Engineering, 2010.

90



Bibliography

[1] J. A. Zeitler, Y. Shen, C. Baker, P. F. Taday, M. Pepper, and T. Rades, “Anal-

ysis of coating structures and interfaces in solid oral dosage forms by three

dimensional terahertz pulsed imaging,” Journal of Pharmaceutical Sciences,

vol. 96, no. 2, pp. 330–340, 2007.

[2] M. Kemp, P. Taday, B. Cole, J. Cluff, A. Fitzgerald, and W. Tribe, “Securi-

ty applications of terahertz technology,” English, Proceedings of SPIE - The

International Society for Optical Engineering, vol. 5070, pp. 44 –52, 2003.

[3] J. Chen, Y. Chen, H. Zhao, G. J. Bastiaans, and X.-C. Zhang, “Absorption

coefficients of selected explosives and related compounds in the range of 0.1-2.8

thz,” English, Optics Express, vol. 15, no. 19, pp. 12060 –12 067, 2007.

[4] S. Zhong, Y.-C. Shen, L. Ho, R. May, J. Zeitler, M. Evans, P. Taday, M. Pep-

per, T. Rades, K. Gordon, R. Muller, and P. Kleinebudde, “Non-destructive

quantification of pharmaceutical tablet coatings using terahertz pulsed imaging

and optical coherence tomography,” English, Optics and Lasers in Engineer-

ing, vol. 49, no. 3, pp. 361 –5, 2011.

[5] R. May, M. Evans, S. Zhong, C. Byers, L. Gladden, Y. Shen, and J. Zeitler,

“Terahertz pulsed imaging of surface variations on pharmaceutical tablets,”

English, Piscataway, NJ, USA, 2010, pp. 1–2.

91



[6] T. Kurabayashi, S. Yodokawa, and S. Kosaka, “Terahertz imaging through

paint layers,” in 2012 37th International Conference on Infrared, Millimeter,

and Terahertz Waves, 2012.

[7] T. Kurabayashi, S. Sakai, and K. Fujino, “Sub-terahertz imaging of a painted

steel,” in Infrared Millimeter and Terahertz Waves (IRMMW-THz), 2010 35th

International Conference on, IEEE, 2010, pp. 1–2.

[8] S Wietzke, N Krumbholz, C Jördens, B Baudrit, M Bastian, and M Koch,

“Inspection of plastic weld joints with terahertz imaging,” in Optical Metrology,

International Society for Optics and Photonics, 2007, 66163N–66163N.
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Appendix A

Mie Series Model for Scattering from a Layered Dielectric Sphere

This appendix describes work conducted in the implementation and testing of a Mie

series model for the electromagnetic scattering from a layered dielectric sphere, which

was originally intended to serve as a source of simulation data for testing the ability of

the split-step Fourier method from Sec. 3.2.2 to accurately quantify the thickness of a

curved dielectric layer. However, the analysis in Sec. 4.3 proved to be more useful for

this purpose. Nonetheless, the work in Mie series scattering from a layered dielectric

sphere represents a significant body of the work completed as part of this research

and is therefore included in hopes that it may assist in future work in this area.

A.1 Mie Series Model Derivation

The basic concept of the Mie formulation of electromagnetic scattering from a sphere

is to decompose the fields into a sum of spherical harmonics, each of which are weight-

ed by a corresponding Mie coefficient. Mie coefficients are obtained by enforcing the

boundary conditions, i.e. by ensuring that the tangential components of the elec-

tric and magnetic fields are continuous across the boundaries between media. This
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Figure A.1.1: Dielectric sphere illuminated by a plane wave propagating in the −z
direction, whose phase is 0 in the z0 plane.

appendix gives an overview of the methods used in implementing the Mie series cal-

culations in Matlab. The formulation is based on references [125–127].

For the unit-amplitude, x-polarized plane wave Ei with zero phase at z = 0 illustrated

in Fig. A.1.1, the Mie series expansion is given by [117, 125]

Ei = x̂eik(z−z0)

= e−ikz0
∞∑
m=1

2m+ 1

m (m+ 1)
im
(
M

(1)
o1m − iN

(1)
e1m

)
. (A.1.1)

Similarly, the scattered electric fields are given by

Es = e−ikz0
∞∑
m=1

2m+ 1

m (m+ 1)
im
(
amM

(3)
o1m − ibmN

(3)
e1m

)
. (A.1.2)

Outside the sphere, the total electric fields are given by the sum of the incident and

scattered fields,

E = Ei + Es, (A.1.3)
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Figure A.1.2: L-layered dielectric sphere. Each layer has outer radius rl and refractive
index nl. Outside the sphere, l = L+ 1 and nL+1 = 1 (free space).

while inside the sphere – which is assumed to be composed of L layers of dielectric

material as shown in Fig. A.1.2 – the total electric and magnetic fields in the lth layer

are given by

El = e−ikz0
∞∑
m=1

2m+ 1

m (m+ 1)
im
[
A(l)
m

(
M

(1)
o1m + a(l)

mM
(3)
o1m

)
− iB(l)

m

(
N

(1)
e1m + b(l)

mN
(3)
e1m

)]
,

(A.1.4a)

Hl = −ke
−ikz0

ωµ0

∞∑
m=1

2m+ 1

m (m+ 1)
im
[
B(l)
m

(
M

(1)
e1m + b(l)

mM
(3)
e1m

)
+ iA(l)

m

(
N

(1)
o1m + a(l)

mN
(3)
o1m

)]
,

(A.1.4b)

where A
(l)
m , B

(l)
m , a

(l)
m , and b

(l)
m are the Mie coefficients in the lth layer and the vector
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spherical harmonics are given by [117]

Mo1m = cosφ πm (θ) zm (nkr) θ̂ − sinφ τm (θ) zm (nkr) φ̂,

Me1m = − sinφ πm (θ) zm (nkr) θ̂ − cosφ τm (θ) zm (nkr) φ̂,

No1m = sinφ m (m+ 1) sin θ πm (θ)
zm (nkr)

nkr
r̂

+ sinφ τm (θ)
ẑ′m (nkr)

nkr
θ̂ + cosφ πm (θ)

ẑ′m (nkr)

nkr
φ̂

Ne1m = cosφ m (m+ 1) sin θ πm (θ)
zm (nkr)

nkr
r̂

+ cosφ τm (θ)
ẑ′m (nkr)

nkr
θ̂ − sinφ πm (θ)

ẑ′m (nkr)

nkr
φ̂. (A.1.5)

The superscripts applied to the spherical harmonics in (A.1.4) indicate the type of

spherical Bessel function represented by zm (ρ) in (A.1.5), i.e.

zm (ρ) =


jm (ρ) for M(1) and N(1),

h
(1)
m (ρ) for M(3) and N(3).

(A.1.6)

In addition, the Riccati-Bessel functions and their derivatives are given by

ẑm (ρ) = ρzm (ρ) , (A.1.7)

ẑ′m (ρ) =
∂

∂ρ
ẑm (ρ) . (A.1.8)

Substituting (A.1.5) into (A.1.4a) and (A.1.4b) yields the r, θ, and φ components of
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the electric fields [125],

Er = −ie−ikz0 cosφ sin θ

[n (r) kr]2

∞∑
m=1

im (2m+ 1)Tm (r) πm (θ) , (A.1.9a)

Eθ = e−ikz0
cosφ

kr

∞∑
m=1

im
2m+ 1

m (m+ 1)

[
Sm (r) πm (θ)− i

kn2 (r)
T ′m (r) τm (θ)

]
(A.1.9b)

Eφ = −e−ikz0 sinφ

kr

∞∑
m=1

im
2m+ 1

m (m+ 1)

[
Sm (r) τm (θ)− i

kn2 (r)
T ′m (r) πm (θ)

]
,

(A.1.9c)

and magnetic fields [125],

Hr = −ike
−ikz0

ωµ0

sinφ sin θ

(kr)2

∞∑
m=1

im (2m+ 1)Sm (r) πm (θ) , (A.1.10a)

Hθ =
ke−ikz0

ωµ0

sinφ

kr

∞∑
m=1

im
2m+ 1

m (m+ 1)

[
Tm (r) πm (θ)− i

k
S ′m (r) τm (θ)

]
(A.1.10b)

Hφ =
ke−ikz0

ωµ0

cosφ

kr

∞∑
m=1

im
2m+ 1

m (m+ 1)

[
Tm (r) τm (θ)− i

k
S ′m (r) πm (θ)

]
, (A.1.10c)

where the πm and τm terms are given by

πm (θ) =
1

sin θ
P 1
m (cos θ) , (A.1.11)

τm (θ) =
d

dθ
P 1
m (cos θ) , (A.1.12)

and P 1
m (cos θ) is the associated Legendre function of order 1 and degree m. The radial

dependence in (A.1.9) and (A.1.10) is given by the Debye potentials Sm (r) and Tm (r),

their radial derivatives S ′m (r) and T ′m (r), and the radially-varying refractive index
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n (r). In the lth layer, the Debye potentials and their derivatives are given by

S(l)
m (r) = A(l)

m

[
ĵm (nlkr) + a(l)

m ĥm (nlkr)
]
,

T (l)
m (r) = B(l)

m

[
ĵm (nlkr) + b(l)

m ĥm (nlkr)
]
, (A.1.13)

and

S ′(l)m (r) ≡ ∂

∂r
S(l)
m (r) , (A.1.14)

T ′(l)m (r) ≡ ∂

∂r
T (l)
m (r) . (A.1.15)

Given that the tangential (θ and φ) components must be continuous across the bound-

aries, (A.1.9b) and (A.1.9c) imply that Sm (r) and T ′m (r) /n2 (r) must also be contin-

uous across the boundaries. Likewise, (A.1.10b) and (A.1.10c) imply that Tm (r) and

S ′m (r) must also be continuous across the boundaries. The Mie coefficients are solved

by enforcing these continuity conditions, starting with the logarithmic derivatives of

the Riccati-Bessel functions

D(1)
m (ρ) ≡ ĵ′m (ρ)

ĵm (ρ)
, (A.1.16)

D(2)
m (ρ) ≡ ĥ′m (ρ)

ĥm (ρ)
, (A.1.17)

and the ratio

Rm (ρ) ≡ ĵm (ρ)

ĥm (ρ)
. (A.1.18)

Calculations of (A.1.16), (A.1.17), and (A.1.18) are more efficient and numerically

stable than that of the Riccati-Bessel functions or their derivatives themselves [124–
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126] and can be easily implemented using the methods in [127]. Taking the ratios of

the continuous terms scaled by 1/k yields the modified logarithmic derivatives of the

Debye potentials [125],

Ha
m (r) =

1

k

S ′m (r)

Sm (r)
, (A.1.19)

Hb
m (r) =

1

kn2 (r)

T ′m (r)

Tm (r)
, (A.1.20)

which at just inside of the lth boundary (in the lth region) can be rewritten in terms

of Rm (nlkrl), D
(1)
m (nlkrl), and D

(2)
m (nlkrl) as [125]

Ha
m (rl) = nl

Rm (nlkrl)D
(1)
m (nlkrl) + a

(l)
mD

(2)
m (nlkrl)

Rm (nlkrl) + a
(l)
m

, (A.1.21)

Hb
m (rl) =

1

nl

Rm (nlkrl)D
(1)
m (nlkrl) + b

(l)
mD

(2)
m (nlkrl)

Rm (nlkrl) + b
(l)
m

. (A.1.22)

As these expressions are the same just outside the lth boundary (in the l+1th region),

they can be set equal to one another across the boundary and solved for a
(l+1)
n and

b
(l+1)
n , resulting in [125]

a(l+1)
m = −Rm (nl+1krl)

Ha
m (nlkrl)− nl+1D

(1)
m (nl+1krl)

Ha
m (nlkrl)− nl+1D

(2)
m (nl+1krl)

, (A.1.23)

b(l+1)
m = −Rm (nl+1krl)

nl+1H
b
m (nlkrl)−D(1)

m (nl+1krl)

nl+1Hb
m (nlkrl)−D(2)

m (nl+1krl)
. (A.1.24)

Using these terms, the Mie coefficients for each layer can be determined recursively,

starting with the innermost layer, where l = 1 and

a(1)
m = b(1)

m = 0, (A.1.25)
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which zeros out the influence of the spherical Hankel functions, whose imaginary parts

go to −∞ at the origin [125–127]. From (A.1.21) and (A.1.22), this also results in

Ha
m (n1kr1) = n1D

(1)
m (n1kr1) , (A.1.26)

Hb
m (n1kr1) =

1

n1

D(1)
m (n1kr1) . (A.1.27)

Once the Mie coefficients a
(L+1)
m and b

(L+1)
m in the background medium have been

determined, the scattered electric fields can be calculated by substituting am = a
(L+1)
m

and bm = b
(L+1)
m into (A.1.2).

A.2 Mie Series Model Validation

This section outlines numerical tests of the Matlab implementation described in the

previous section conducted to verify that the code is generating results comparable

to published results from the literature.

Two publications in particular, [127] and [125], provide useful results for validating

sphere model calculations described in Sec. A.1. The first reference, a 2009 paper

by Peña and Pal [127], presents an algorithm for calculating the Mie coefficients am

and bm for a layered dielectric sphere, which are then used to calculate the extinction

cross section Cext, scattering cross section Csca, and albedo A as a function of the size
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Table A.2.1: Refractive indices and fractional volumes used in calculations for 5-
layered sphere shown in Fig. A.2.1 [127].

Layer, l 1 2 3 4 5
Refractive Index, 1.8 + i1.7 0.8 + i0.7 1.2 + i0.09 2.8 + i0.2 1.5 + i0.4

nl
Fractional Volume, 0.1 0.26 0.044 0.3666 0.2294

Vl/Vtotal

parameter krL using

Cext =
2

(krL)2

∞∑
m=1

(2m+ 1) Re (am + bm) , (A.2.1)

Csca =
2

(krL)2

∞∑
m=1

(2m+ 1)
(
|am|2 + |bm|2

)
, (A.2.2)

A =
Csca
Cext

. (A.2.3)

The paper also provides an implementation of these calculations in ANSI C, which

allows a convenient means of comparing the results side-by-side with those from the

Matlab implementation of the algorithm in Sec. A.1. One benchmark calculation

from [127] is the case of a lossy 5-layered sphere characterized by refractive indices

and fractional volumes summarized in Table A.2.1. The calculated cross sections

and albedo are plotted in Fig. A.2.1 as a function of the size parameter using both

implementations. The results are shown to be in close agreement.

As SA imaging requires coherent field measurements rather than just the scattering

cross sections from (A.2.3), simulations of SA data require coherent calculations of

the scattered electric fields. One benchmark for these calculations is provided in a

1996 paper by B. R. Johnson [125] for the case of a Luneburg lens, which has a
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Figure A.2.1: Comparison of (a) extinction cross section Cext, (b) scattering cross
section Csca, and (c) albedo A as a function of size parameter krL using (A.2.3) from
Mie coefficients am and bm calculated using ANSI C code from Peña, 2009 [127] and
Matlab implementation of layered sphere model described in Sec. A.1.
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Figure A.2.2: Internal and external fields calculated using Matlab implementation
of Mie series calculations described in Sec. A.1 for validation against Fig. 7 of [125].

radially-varying refractive index profile given by

n (r) =

√
2−

(r
a

)2

. (A.2.4)

This refractive index profile acts to focus an incident plane wave to a point on the

back surface of the spherical lens. Fig. 7 in [125] gives a surface plot of the electric

field amplitude both inside and outside of the Luneburg lens. The simulation was

carried out with the refractive index in (A.2.4) approximated as a 500-layer sphere

with size parameter ka = 60. These calculations were duplicated using the Matlab

implementation for comparison, the results of which are shown in Fig. A.2.2. Fig. 7

in [125] is nearly identical to the result in the figure, with the prominent 30 V/m

amplitude spike occurring in the same place for both results. Also, the electric field
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“ripples” are similarly behaved, indicting the Matlab implementation from Sec. A.1

is operating consistently with the published results from [125].
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