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Abstract: Investment on soil survey has become 

scarce over the past decades. Digital Soil Mapping 

(DSM) techniques emerged as an economic 

alternative to produce soil maps. We applied a 

classification tree algorithm to predict soil suborders 

in a tropical dry forest area with 102 km
2 

in the north 

of Minas Gerais state, Brazil. We tested 

environmental covariates with different spatial 

resolutions as predictors, and used 361 

observations to train the model and 64 independent 

observations to validate the map. Prediction models 

included three decision trees and one logistic 

regression model. The results showed that freely 

available environmental covariates with coarser 

spatial resolution can produce as good or better 

suborder predictions than more expensive 

covariates with finer resolution. 
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INTRODUCTION 

Brazil has less than 3% of the territory with soil 

mapped in scales of 1/50.000 or more (Santos et al., 

2013), although soil maps are very important for 

land planning and management (Silva et al., 2014). 

Digital Soil Mapping (DSM) has been proposed as 

an alternative to represent continuous soil variation 

in space, as opposed to discrete maps produced by 

traditional soil survey. Moreover, DSM has potential 

to reduce the time of soil surveying (Zijl et al., 

2014). 

Approaches for soil class prediction based on 

point support (Brungard et al., 2015) or by 

disaggregating legacy soil maps (Collard et al., 

2014) have been tested in different places, but to 

our knowledge soil suborder-environmental 

correlations in tropical dry forests have not been 

studied using DSM methods. 

Our objective were to: 1) predict soil classes at 

the suborder level according to the Brazilian System 

of Soil Classification (Embrapa, 2006) in an area of 

tropical dry forest using environmental covariates 

with different spatial resolutions; and 2) validate the 

results using independent validation samples. 
 

METHODS 

Study area 

The Parque Estadual da Mata Seca (PEMS; Dry 

Forest State Park) spans across 102 km
2 

in the 

county of Manga in the north of Minas Gerais state, 

Brazil (Figure 1). The relief in the park is flat (64%) 

and undulating (31%). 
 

 
Figure 1 – Parque Estadual da Mata Seca (PEMS) in north of 

Minas Gerais (MG) state; and PEMS limits with the training (black 

dots) and validation (yellow dots) observations, Landsat 8 

Operational Land Imager is shown in false color (RGB = 6,5,4). 

 

The main soils that occur in the PEMS according 

to the polygon soil map of Coelho et al., (2013) are 

Gleissolo Háplico (GX), Neossolo Flúvico (RY) and 

Cambissolo Flúvico (CY) in the floodplain and 

terrace of the São Francisco River, presence of 

riparian forest. Under Carrasco vegetation, small 

vegetation that occurs in arid highlands, there is a 

presence of Latossolo Amarelo (LA) and Latossolo 

Vermelho-Amarelo (LVA). In the great area of 

Dense Arboreal Caatinga between the Carrasco and 

the floodplain, Latossolo Vermelho (LV) and 

Cambissolo Háplico (CX) dominate, followed by 

Chernossolo Háplico (MX) and Vertissolo Háplico 

(VX) (Figure 2;). The soil map of PEMS was classify 
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according the Brazilian Soil System of Classification 

(Embrapa, 2006). 
 

 
Figure 2 – Polygon soil map of PEMS at suborder categorical level 

(Coelho et al., 2013). 

 

Soil sampling 

In the first field work 361 training sites were 

visited, where soils were sampled and classified at 

the suborder level (Embrapa, 2006). They were 

located using a combination of purposive (261 sites) 

and conditioned Latin Hipercube (Minasny & 

McBratney, 2006) samples (100 sites). In the last 

field campaign the 64 validation sites were visited, 

which were located using stratified sampling, with 

strata defined as the combination of density of 

training sites and environmental heterogeneity. 

Suborder class Gleissolo Melânico (GM) with only 2 

observations were grouped with the most similar 

suborder class Chernossolo Háplico (MX).  

 

Environmental covariates 

Two sets of environmental covariates were 

prepared with different spatial resolutions, namely: 

detailed (10 m), and regional (30 m). The detailed 

set was derived from Ikonos and RapidEye imagery, 

whereas the regional set was derived from SRTM 

(30 m) and Landsat 8 (L8) Operational Land Imager 

(OLI) imagery, respectively. 

In the detailed set, a Digital Elevation Model 

(DEM) was obtained from a 1-m Ikonos stereo pair, 

which was resampled to 10-m resolution and then 

corrected by filling spurious depressions (Planchon 

& Darboux, 2002). Sixteen terrain derivatives were 

derived from the DEM: Slope (SLO), Profile 

Curvature (PFCV), Plan Curvature (PLCV), Aspect 

(ASP), LS-Factor (LSF), Valley Depth (VDP), 

Relative Slope Position (RSP), Multiresolution Index 

of Valley Flatness (MRVBF), Multiresolution 

Ridgetop Flatness Index (MRRTF), Topographic 

Position Index (TPI), Terrain Ruggness Index (TRI), 

Terrain Surface Texture (TST), Slope Length (SLG), 

Slope Height (SHT), Mid Slope Position (MSP), and 

Topographic Wetness Index (TWI). Two RapidEye 

(RE) images taken in the wet (REWet; May, 2013) 

and dry (REDry; August
,
 2012) periods were 

orthorectified, atmospherically corrected, resampled 

from 5- to 10-m resolution, and then used to derive: 

Normalized Difference Vegetation Index (NDVI), 

Ratio Vegetation Index (RVI), and Soil Adjusted 

Vegetation Index (SAVI) for both periods. 

The regional set was initially composed of the 

same set of covariates of the detailed set, but they 

were derived from coarser imagery with 30-m 

resolution, and included: a SRTM DEM and 16 

terrain derivatives, and two L8 OLI images from the 

wet (L8Wet; March, 2014) and dry (L8Dry; July, 

2014) periods with the same three vegetation 

indices from both periods. The same preprocessing 

steps were applied to the regional imagery. In 

addition, three indices related to parental material 

were added to the regional set: Normalized 

Difference Ratio Carbonate (NDRC), Ratio 

Carbonate Index (RCI), and Ratio Hydroxyl Index 

(RHI) (Boettinger et al., 2008). 

 

Modeling and validation 

Four models were created considering the soils 

classified in suborder categorical level (Embrapa, 

2006): M1 using the detail set, M2 using the 

regional set, and M3 and M4 using both detail and 

regional covariates. Models 1 through 3 were 

derived using the C5.0 decision tree algorithm 

(QUINLAN, 1993), and 10-fold cross-validation. 

Model 4 was derived using multinomial logistic 

regression with stepwise selection with p-value 

threshold of 0.25 to enter variables and 0.10 to 

remove them. 

The overall prediction errors calculated from the 

confusion matrices were used for model 

comparison. The best model was the one with the 

lowest prediction error of external validation. 

Visually evaluate the resulted maps from models 

M1 to M4 against polygon soil map (Coelho et al., 

2013) into a geographical information system (GIS). 

 

RESULTS AND DISCUSSION 

In general, only model M2 was not able to predict 

all the nine-suborder soil class, however presented 
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good results (Table 1). According to the external 

validation errors, the best models were M2 and M3, 

with a validation error of 42% (Table 1). Compared 

to M1 and M2, M3 had all predictors with different 

resolutions to choose from, resulting in a map that is 

a combination of fine and coarse spatial patterns 

observed from the detailed and regional covariates, 

respectively (Figure 3c). From M3, some classes 

were underestimated (MX and VX) and some were 

overestimated (LV and CX), compared to Coelho et 

al. (2013; Figure 2).  

The equally accurate M2 was more parsimonious 

than M3, however it did not predict the VX suborder 

in the study area (Figure 3b). Due to the coarser 

spatial resolution of the covariates (30 m), M2 found 

it difficult to correctly predict MX and VX, which 

occur in small areas in the park. On the other hand, 

M2 produced a simpler map that shows smoother 

soil variation, without loss of prediction quality. This 

can be appealing to users.  

Model 1 produced the suborder map with most 

variation at the short scale (Figure 3a), because it 

only used detailed covariates with 10-m resolution. 

However, this was the worst map according to 

external validation, even though these covariates 

were more detailed. Thus, whether to invest in 

covariates that are more detailed for DSM should be 

decided carefully and on a case-by-case basis 

(Samuel-Rosa et al., 2015). 

Finally, M4 was the most parsimonious model, 

with 24 predictors. Most predictors (14 out of 24) 

were selected from the detailed set, and three 

covariates were selected from both sets with 

different resolutions: TWI, VDP, and infra-red band 

from the wet images (L8WetB5 and REWetB5). 

 

Table 1 – Summary of model results. 

Model Number of 

covariates 

Training 

error (%) 

Validation 

error (%) 

M1 33 50.7 51.5 

M2 43 48.5 42.2 

M3 76 51.0 42.2 

M4 24 44.3 48.4 

 

CONCLUSIONS 

Soil suborder variations in the Brazilian dry 

forest relate to relief and vegetation patterns at 

different spatial resolutions. 

In DSM, using more detailed environmental 

predictors, which usually cost more, does not 

necessarily mean achieving better predictions. 

Along the same lines, combining covariates with 

different spatial resolutions may or not improve 

model quality. 

REFERENCES 
BOETTINGER, J. L.; RAMSEY. R. D.; BODILY, J. M. et 
al. Landsat spectral data for digital soil mapping. In: 
HARTEMINK, A. E.; MCBRATNEY, A. B.; MENDONÇA-

SANTOS, M. L. (Eds.). Digital soil mapping with limited 

data. Amsterdam: Springer, 2008. p. 193-202. 
 
BRUNGARD, C. W.; BOETTINGER, J. L.; DUNIWAY, M. 
C. et al. Machine learning for predicting soil classes in 

three semi-arid landscapes. Geoderma, 239–240:68-83, 
2015. 
 
COELHO, M. R.; DART, R. O.; VASQUES, G. M. et al. 
Levantamento pedológico semidetalhado (1:30.000) do 
Parque Estadual da Mata Seca, município de Manga - 

MG. Boletim de Pesquisa e Desenvolvimento, Rio de 
Janeiro, n. 217, 264 p: Embrapa Solos, 2013. 
 
COLLARD, F.; KEMPEN, B.; HEUVELINK, G. B. M. et al. 
Refining a reconnaissance soil map by calibrating 
regression models with data from the same map 

(Normandy, France). Geoderma Regional, 1:21-30, 2014. 
 

EMBRAPA. Sistema Brasileiro de Classificação de 

Solos. 2. ed. Rio de Janeiro: Embrapa Solos, 2006. 306p. 
 
MINASNY, B. & MCBRATNEY, A. B. A conditioned Latin 
hypercube method for sampling in the presence of 

ancillary information. Computers & Geosciences, 
32:1378-1388, 2006.  
 
PLANCHON, O. & DARBOUX, F. A fast, simple and 
versatile algorithm to fill the depressions of digital 

elevation models. Catena, 46:159-176, 2002.  
 
QUINLAN, J. R. C4.5: programs for machine learning. 
San Francisco: Morgan Kaufmann Publishers, 1993. 
302p. 
 
SAMUEL-ROSA, A.; HEUVELINK, G. B. M.; VASQUES, 
G. M. et al. Do more detailed environmental covariates 

deliver more accurate soil maps? Geoderma, 243-
244:214-227, 2015. 
 
SANTOS, H. G.; ÁGLIO, M. L. D.; DART, R. O. et al. 
Distribuição espacial dos níveis de levantamento de solos 
no Brasil. In: CONGRESSO BRASILEIRO DE CIÊNCIA 
DO SOLO, 34., Florianópolis, 2013. Anais. Florianópolis: 
Sociedade Brasileira de Ciência do Solo, 2013. 
 
SILVA, A. F. PEREIRA, M. J.; CARNEIRO, J. D. et al. A 
new approach to soil classification mapping based on the 

spatial distribution of soil properties. Geoderma, 219-220: 
106-116, 2014. 
 
ZIJL, G. M. V.; BOWVER, D.; TOL, J. J. V. et al. 
Functional digital soil mapping: A case study from 

Namarroi, Mozambique. Geoderma, 219-220:155-161, 
2014. 
 



 

 

4 

 
Figure 3 – Soil suborder maps at the Parque Estadual da Mata Seca produced by the different models: A) 

M1; B) M2; C) M3; and D) M4. 


