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While around 20% of the Amazonian 

forest has been cleared for pastures 

and agriculture, one fourth of the 

remaining forest is dedicated to wood 

production [1]. Most of these production 

forests have been or will be selectively 

harvested for commercial timber, but 

recent studies show that even soon 

after logging, harvested stands retain 

much of their tree-biomass carbon and 

biodiversity [2,3]. Comparing species 

richness of various animal taxa among 

logged and unlogged forests across the 

tropics, Burivalova et al. [4] found that 

despite some variability among taxa, 

biodiversity loss was generally explained 

by logging intensity (the number of trees 

extracted). Here, we use a network of 79 

permanent sample plots (376 ha total) 

located at 10 sites across the Amazon 

Basin [5] to assess the main drivers of 

time-to-recovery of post-logging tree 

carbon (Table S1). Recovery time is of 

direct relevance to policies governing 

management practices (i.e., allowable 

volumes cut and cutting cycle lengths), 

and indirectly to forest-based climate 

change mitigation interventions. 

We found that the proportion of 

initial above-ground carbon stock lost 

(i.e., trees harvested and destroyed by 

logging operations) best predicted the 

time to recover initial carbon stocks. 

No other variables tested contributed 

substantially to the prediction of 

recovery time, despite the fact that the 

sampled plots span large geographic 

and environmental gradients across 

the entire Amazon Basin. These results 

reveal clear patterns that can clarify 

tradeoffs between short-term economics 

and long-term carbon storage/climate 

regulation for policy makers and forest 

managers.

While the REDD+ international 

agreement on climate change explicitly 

recognizes the contributions of 

sustainable management of forests and 

enhancement of forest carbon stocks in 

developing countries, less than 5% of 

tropical forest area is under some form 

of recognized sustainable management 

[1]. As a consequence, unplanned 

and destructive timber harvests are 

estimated to contribute 25% as much 

carbon loss as deforestation in the 

Amazon Basin [6]. Additionally, poorly 

managed forests are more susceptible 

to other threats, such as conversion to 

croplands or fi re [2]. To understand the 

impact of logging on the global carbon 
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cycle, a major gap in our knowledge 

must be fi lled, notably the rate at which 

this emitted carbon is recaptured by 

post-logging forest recovery across 

managerial, spatial, and environmental 

gradients. It is speculated that time to 

recover initial above-ground carbon 

stocks (ACS) varies with logging 

intensity and harvesting methods, along 

with initial forest structure and abiotic 

conditions [6]. In the present study, we 

use plot data to assess the effects of 

several biophysical variables, such as 

ACS lost due to logging (ACS
loss

), rainfall, 

and soil properties, on time to recover 

initial ACS (ACS
0
), hereafter recovery 

time (t
rec 

in year). These plots represent 

a breadth of logging intensities, soils, 

rainfall regimes, and forest structure 

and dynamics (Figure 1A) [5]. While 

reduced-impact logging (RIL) techniques 

were implemented at most sites, 

7 plots (7.7%) were conventionally 

logged. Due to limited numbers of plots 
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Figure 1. Assessing the main drivers of tree carbon recovery in managed forests in the 

Amazon Basin. 

(A) Site locations, census length (color) and area censused (size). (B) Relationship between time 

of recovery and percentage of initial above ground carbon stocks lost (ACS
0  

loss) due to selec-

tive timber harvests and damage-induced mortality at 10 sites across the Amazon Basin. OLS 

regression (solid) and 1:1 relationship (dashed) lines are shown. Sites are listed from northeast to 

southwest. (C) Frequency of selection of variables explaining t
rec

 (ACS
0
 loss (%), initial ACS lost; 

bulk density, soil bulk density; ACS
0
, initial ACS; CEC, cation exchange capacity; seasonality, co-

effi cient of variation in monthly means of precipitation; clay content (%), percentage clay content 

in soil; rainfall, average annual rainfall). (D) Relationship between timber volume extracted (m3/

ha) and initial ACS lost (%) at four sites under RIL management (y = 0.53*x, R2 = 0.88, P < 10-6).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2015.07.034&domain=pdf
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conventionally logged, and because 

our defi nition of logging accounts 

for most direct logging damages, 

we have decided not to include this 

term in our models, but a separate 

analysis is presented. We applied a 

standardized protocol to estimate ACS 

of live trees with stem diameters at 

breast height (DBH)  20 cm before 

(1–4 years) and after (1–33 years) 

selective logging. The main explanatory 

variables for t
rec

 and recovery rates 

(r
rec

 in Mg C/year) were selected using 

linear mixed models, treating sites as 

random effects to reduce pseudo-

replication (Supplemental Experimental 

Procedures). 

The percentage of initial ACS lost 

(ACS
loss

/ACS
0
; Figure 1B) is the best 

predictor of t
rec

 with a signifi cant 

interaction (goodness of fi t, R2 = 0.994); 

no other variables tested contributed 

signifi cantly to the predictions (Figure 

1C and Table S2). More practically, 

t
rec 

= (100*ACS
loss

/ACS
0
), where  = 1.106 ± 0.022. This result implies 

that losses of 10, 25 or 50% of pre-

logging ACS would require 12, 43 

or 75 years, respectively, to recover 

regardless of location in the Amazon 

region. In contrast, r
rec

 was more 

complex to predict, as it was positively 

correlated with initial ACS (i.e., forests 

with larger biomass stocks recover 

faster), but with a lower goodness of fi t. 

Our r
rec

 estimates (0.04–2.96 Mg C ha-1 

yr-1 , mean = 1.33 Mg C ha-1 yr-1) sits 

at the lower bound of those reported 

in bookkeeping approaches (1.5–5.5 

Mg C ha-1 yr-1 [7]). Although there is an 

apparent geographical uniformity of t
rec

 

across the region, our results suggest 

that recovery rates correlate with the 

regional distribution of biomass stocks. 

We also expect that post-logging tree 

demography (growth, recruitment and 

mortality) will follow a similar pattern 

as that observed for structure and 

dynamics of unmanaged forests [8]. 

For instance, northeastern Amazonian 

forests with higher carbon stocks (initial 

ACS) are subjected to higher logging 

intensities, but tend to regenerate at 

faster rates than in the southwest. 

Forest management regulations 

vary among Amazonian countries, but 

generally set minimum cutting cycles 

at 30–60 years, with harvests of 10–30 

m3 ha-1. While these cutting cycles 

are generally insuffi cient to recover 

commercial timber stocks [9], such 

harvest intensities require 7 and 21 

years, respectively, to recover their initial 

ACS, assuming ACS losses proportional 

to harvested timber volumes (Figure D) 

and linear biomass aggradation over 

time. Our results are likely to represent 

optimal recovery processes, given that 

plots that experienced negative r
rec 

over 

the study period were disregarded and 

most plots are located in well-managed 

areas. Accounting for further post-

logging disturbances (e.g., fi re or illegal 

logging), which many logged forests are 

experiencing [2,3], would undoubtedly 

extend the recovery times presented 

here. Nevertheless, these results reveal 

the overwhelming importance of logging 

intensity in the recovery capacity of 

Amazonian forests. If logging intensity 

is such a main driver of recovery 

rates in other tropical forests, such as 

Borneo, where high logging intensities 

can reach 150 m3 ha-1, often followed 

by other disturbances, there will likely 

be dramatic consequences for future 

carbon sequestration. Additionally, 

we propose our data-driven results to 

be used as cost-effi cient estimates of 

post-logging carbon recovery instead of 

regional default values [7,10].

Globally, half of the remaining tropical 

forests (~400 million ha) is allocated 

for timber production [1] and there is 

growing evidence that these forests 

will play a crucial role in future timber 

supply and climate change mitigation 

[2,3,5]. However, forest managers 

and decision makers still lack the 

information and practical guidance to 

defi ne sustainable harvest intensities 

or cutting rotations that at the same 

time ensure long-term timber harvest, 

maintenance of biodiversity and carbon 

stocks. Our results provide forest 

managers and policy makers with a new 

tool to make informed decisions, but 

also stress that forest management has 

to be effective on a regional scale where 

alternative management may coexist 

to maximize a compromise between 

timber production and preservation of 

essential environmental services.
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Table S1: Information on ACS stocks over time and recovery rates for each of the 90 plots included in this study 

(provided as an Excel file). Eleven (11) plots (in italic) were discarded from the analysis  

 

 

Table S2: Alternative models with ΔBIC < 5. 

 

Model  
ACS0 lost 

(%) 
ACS0 

bulk 

density 
CEC  clay  rainfall  seasonality  BIC  delta  AIC  delta  df  logLik  weight 

2  1.1064 

           

248.9015  0  241.79  0  3.0000  ‐117.8966  0.1443 

6  0.9978 

 

0.2537 

       

252.5302  3.629  243.05  1.48  4.0000  ‐117.5262  0.0688 

66  1.0443 

         

0.0032  252.6067  3.705  243.13  1.556  4.0000  ‐117.5644  0.0662 

4  1.0332  0.0518 

         

253.0193  4.118  243.54  1.969  4.0000  ‐117.7707  0.0539 

18  1.1230 

     

‐0.0014 

   

253.1164  4.215  243.64  2.066  4.0000  ‐117.8193  0.0513 

34  1.1131 

       

0.0000 

 

253.2668  4.365  243.79  2.216  4.0000  ‐117.8945  0.0476 

10  1.1038 

   

0.0003 

     

253.2670  4.366  243.79  2.217  4.0000  ‐117.8946  0.0476 

 

 

Supplemental Experimental Procedure 

1. Site selection and biometric data collection  

Ten (10) sites spread across the Amazon Basin and the Guiana Shield were selected based on the following 

criteria: (i) located in tropical forests with a total area inventoried ≥ 1 ha; (ii) mean annual rainfall ≥ 1000 mm 

(Fig. S1); (iii) consistent and detailed information about logging treatments (e.g. number of stems harvested and 

correspondent biomass removal) and logging impacts (e.g. logging damages assessment); (iv) at least one pre-

logging and (v) at least two post-logging censuses. As sites were generally established by different organizations, 

there is no standardized protocol for data collection among sites, but all sites comply with generally agreed 

standards [S1]. A general description of the sites can be found in [S2]. In all plots, trees ≥ 20 cm DBH (diameter 

at breast height) had their girth measured at 130 cm or above buttresses/deformations, and were tagged and 

identified to the lowest taxonomical level.  

2. Data quality checking and biomass computation 

To avoid bias due to discrepancies in data quality (e.g. difference in botanical identification or tree species wood 

density information), a standardized protocol was applied to each site. At first, botanical identification was 

checked to match the Global Wood Density Database (GWDD) classification [S3]. Tree species present in 

GWDD were assigned correspondent dry wood density (WD, gr.cm
-3

). When only the genus was present, genus-

average WD was assigned and for unidentified species and species not present in the GWDD, plot-average WD 

was attributed. In the absence of tree height measurements, tree above-ground biomass (AGB) was estimated 



using the generic allometric model developed by Chave et al. [S4] and including WD, DBH and a synthetic 

climatic index (E). 

 

Above-ground carbon density (ACS) was obtained by multiplying tree biomass by 0.47 [S5]. ACS stock of each 

plot was further computed as the sum of ACS of live trees DBH ≥ 20 cm divided by the plot surface and 

expressed in Mg C ha
-1

.  

3. Definition of logging intensity and biomass recovery 

The same definition of logging intensity was applied at all sites. Due to varying interval length (1 to 4 years) 

between pre- and post-logging censuses and application of silvicultural treatments (i.e. poisoning, girdling, 

understorey clearing) at three sites (Paracou, Tapajos and la Chonta), we estimated the minimum carbon stock 

(ACSmin, Fig. OS2) attained at last within 4 years after logging and computed the difference with initial carbon 

stock (ACS0). This initial ACS drop off, referred to as ACSloss, is due to both timber harvest and  mortality of 

damaged trees (that can affect up to 46% of remaining trees [S6]). As residual mortality peaks within the first 

years preceding logging [S7-8], this approach allows most of logging-induced mortality to be accounted. 

 

We found no evidence of deviation from linearity; therefore, we estimated the annualized ACS recovery rates 

(Mg C ha
-1

 yr
-1

) per plot using linear models among all post-logging censuses spreading between tmin and tfinal 

(Figure OS3).  

 

Recovery time (trec in years) refers to the estimated time needed to recover initial ACS stock, given by dividing 

initial ACS loss by the average recovery rate. 

4. Relationship between recovery times and recovery rates 

While ACS recovery rates are related to the capacity of a given forest to recover from a disturbance, the recovery 

time trec accounts for both the recovery rate and the disturbance intensity (see above). The below demonstration 

reveals how both variables are mechanically related. By definition:  
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From our results, θ was found to be N (1.106, 0.022) close to 1, meaning that we are very close to 

          �������� ����  ∝ ���!   

Mechanically, recovery rates could thus depend directly on initial ACS stocks. However, recovery rate relates to 

more complex mechanisms of forest productivity (i.e. growth, recruitment and mortality) and deserves a separate 

thorough analysis. 

5. Explanatory variables 

Several explanatory variables were calculated at each site: (1) average pre-logging ACS stock (ACS0 in Mg C ha
-

1
); (2) Basal Area-weighted wood density (or community wood density, WDBA in g.cm

-3
); (3) stem density (ha

-1
); 

(4) average annual rainfall (mm yr
-1

) that arose from local weather stations; (5) rainfall seasonality (annual 

standard deviation) were extracted at each site using WorldClim data [S9] using highest resolution (30 arc-

seconds or ~1 km). Due to lack of information at all sites, soil properties were extracted from the Harmonized 

World Soil raster at a resolution of 30 arc-seconds [S10]. Information on top soil (0-30 cm) quality was extracted 

at each site: texture, drainage, available water content (range), clay, silt and sand content (%), cation-exchange 

capacity (CEC, cmol/kg) and bulk density (kg/dm
3
). 

 



To test for possible circularity between the synthetic climatic index (E) used to compute ACS and the climatic 

explanatory variables, all analysis were recomputed with another generic allometric model [S11], based on local 

WD and DBH only. All pattern and variables significance remained unchanged (data not shown).        

6. Plot selection and weighing 

To ensure that observed biomass recovery was mainly related to logging and to avoid bias due to stochastic 

natural mortality (e.g. the 2005 drought and fires), we selected only plots (79 out of 90) with positive recovery 

rates (e.g. that gain biomass/carbon over the monitored period), as a detailed checking revealed that those 11 

plots suffered from wildfires and droughts. As our sample plots and sites vary in both total area and length of 

time monitored for, the contribution of each site was weighted by the monitoring effort (number of censuses x 

plot size), as recommended by [S12]. Hence, sites with longer and larger monitoring (more prone to capture and 

depict forest recovery) are given more weight. To avoid artificial inflation of the variance of random effects, the 

sum of weights was set to 1. Table S1 provides information on initial and final ACS, ACS loss, recovery rate and 

recovery time for each plot (N=90). 

7. Variable selections 

Our main point was to understand generic drivers that led recovery time and recovery rate among all sites. We 

developed a linear mixed model (LMM, package lme4 [S13]) in which recovery time and rate were tested over 

the different biometric response variables defined above. To account for the site effect, we introduced a random 

site effect. Indeed, most sites are constituted of several contiguous plots in which silviculture treatments (e.g. 

logging, girdling or understorey clearing) of varying intensities were applied. Such experimental design ensures 

a relative homogeneity in environmental conditions and forest structure, but might also induce pseudo-

replication. Pseudo-replication occurs when multiple samples from a single treatment unit are analyzed, as if 

they were independent replicates and embed to distinguished the effect due to treatment from other sources of 

variation [S14]. To avoid this bias, a “site-effect” was introduced in the LMM and pre-logging forest structures 

were accounted for as explanatory variables in the analysis.  

 

The best models are found through conducting an exhaustive screening and ranking using Bayesian Information 

Criterion (BIC) (package lmerTest [S15]). Instead of picking a single “best” model, we averaged the fits of a 

number of “good” models (model averaging) based on Bayesian Information Criterion (BIC) weights, thereby 

stressing prediction over precision [S16]. Very good fits were effectively found at each site (Figure OS3). To 

reduce residual heteroscedasticity, recovery time along with two explanatory variables (ACS logged and number 

of trees harvested) was log-transformed. Table S2 shows alternative models with ΔBIC < 4. 

 

All analyses were carried out with R language and environment [S 17]. 

 

8. Assessing the effect of logging techniques  

We ran a second analysis including logging techniques (conventional (CL) and reduced impact (RIL) logging), 

as a binary variable with an interaction with ACS loss. We found that logging techniques had a significant effect 

and improved predictions of trec (BIC = 244.26 vs. 248.9, OS). However, we highly doubt the validity of this 

result, as conventional (CL) logging was applied at only 2 sites (Paragominas and Tabocal), representing only 

7.7% of all plots used in our study. Moreover, both techniques were implemented at Paragominas only, with 

marked difference in post-logging dynamics [S18]. Due to its size (24.5 ha), this site has a strong leverage in our 

analysis, leading to conclusions that have little ecological meaning and robustness. 

 

While an increasing number of studies reveals the benefit of RIL techniques for preserving vital environmental 

services [S19–21], we believe that our dataset is not robust enough to efficiently test for such an effect. Our sites 

were implemented over the past 30 years, while the concept of RIL techniques emerged in the 90’s.. However, 

we do not believe that such a simple dichotomy might reflect the differences in logging techniques, intensity and 

damages found among our sites. For this reason, we have adopted a broad definition of ‘ACS loss’ that account 

for both tree harvested and injured/killed and form a gradient of intensity sensus largo, at which RIL forms the 

lower bound. We think that this approach reflects better the diversity of logging types encountered in our dataset.  
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