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The selectivity of various entomopathogens and one insecticide (chlorpyr-
ifos = positive control) to Trichogramma pretiosum Riley (Hymenoptera:
Trichogrammatidae) was evaluated in the laboratory, using the protocol
established by the Working Group on “Pesticides and Beneficial Organ-
isms” of the IOBC. The evaluated parameters were parasitism (%), adult
emergence (%), and product repellency to the parasitoid when sprayed on
host eggs prior to parasitism (free-choice and no-choice tests). Most of the
studied entomopathogens (Bacillus thuringiensis var. kurstaki, Bacillus
thuringiensis var. aizawai, Beauveria bassiana, Metarhizium anisopliae,
and Trichoderma harzianum) had no effects on biological parameters
and were classified as harmless to T. pretiosum. Emergence of parasitoids
(progeny viability) was reduced, but remained above 90%, when host eggs
were sprayed with Baculovirus anticarsia prior to parasitism in the free-
choice test, and B. anticarsia was therefore considered harmless. Chlor-
pyrifos (positive control) caused high adult parasitoid mortality in all bio-
assays. While T. pretiosum and the tested entomopathogens may be used
simultaneously in integrated pest management programs, the use of
chlorpyrifos should be avoided.

Introduction

Egg parasitoids of the genus Trichogramma are used as
biological control agents in agriculture worldwide due to
the simplicity of production and their efficient control of
pests (Parra & Zucchi 2004). They have been used in Latin
America to fight pests which damage crops such as cot-
ton, sorghum, soybean, and sugarcane. In Mexico, for
example, about 1.5 million hectares is treated with
Trichogramma spp. They have also been applied to large
areas of Colombia and Cuba but limited in other Latin
American countries partially due to the lack of selective
pesticides that ensure their preservation (Van Lenteren &
Bueno 2003). It is important to emphasize that
Trichogramma is a biological control agent primarily of
eggs of lepidopterans, but as agroecosystems are

represented by a number of different pests and that dam-
age can still be induced by immatures escaping egg para-
sitization, the use of integrated strategies for efficient
pest control is still mandatory (Monnerat et al 2007).

The spraying of synthetic insecticides is the most common
control method for Lepidoptera management in agriculture
worldwide. It may have various unwanted effects on the
agroecosystem and may reduce or disable biological control
by egg parasitoids (Bueno et al 2011). However, a combina-
tion of various control methods within integrated pest man-
agement is possible and has been recommended. The inte-
gration of different control methods in sustainable agricul-
ture allows the suppression of agricultural pest populations
below the threshold of economic damage, thereby preserv-
ing the environment and benefiting beneficial arthropods
(Van Lenteren & Bueno 2003).
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Entomopathogens are another control method that may
be used in the management of various agricultural pests
(Magalhães et al 1998). Entomopathogens of agricultural im-
portance include Baculovirus anticarsia (AgMNPV), sprayed
to control the velvetbean caterpillar Anticarsia gemmatalis
Hübner (Lepidoptera: Eribidae) in soybean (Hoffmann-
Campo et al 2003); Bacillus thuringiensis, which causes mor-
tality in more than 1000 species of insects from various or-
ders (Glare & O’Callaghan 2000); the fungus Beauveria
bassiana, which has a wide geographic distribution and
causes disease in orders including Lepidoptera, Coleoptera,
Hemiptera, Diptera, Hymenoptera, and Orthoptera (Alves
1998); Metarhizium anisopliae, one of the most important
species of entomopathogenic fungi that may infect more
than 300 species of insects from various orders (Alves
1998); and Trichoderma harzianum, a necrotrophic microor-
ganism that is effective in controlling some phytopathogenic
fungi (Melo 1998), but that may also have adverse effects on
insects as previously reported for Myzus persicae Sulzer
(Homoptera: Aphididae) (Ganassi et al 2009), Spodoptera
littoralis Boisduval (Lepidoptera: Noctuidae) (El-Katatny
2010), and Gryllotalpa gryllotalpa L. (Orthoptera:
Gryllotalpidae) (Veena-Bhamrah 2007).

Notwithstanding the efficiency of these entomopathogens,
they may also negatively impact the performance and/or ef-
ficiency of egg parasitoids, or even infect them directly
(Magalhães et al 1998). Therefore, selectivity is crucial for a
harmonious integration of these different management tools
in integrated pest management (IPM) approaches aimed at
reducing the population of harmful insects with the fewest
possible changes in other components of the agroecosystem
and the environment in general. Therefore, only insecticides
with some degree of selectivity may be used together with
other adopted IPM methods (Van Den Bosch et al 1982), in-
cluding biological control by Trichogramma pretiosum Riley
(Hymenoptera: Trichogrammatidae).

Thus, selectivity and/or possible harmful nontarget effects
of entomopathogens on the efficiency of egg parasitoids
must be taken into account when defining the best biological
control strategies. In this context, our study aimed to assess
the selectivity of different entomopathogens to the egg par-
asitoid T. pretiosum. Four different bioassays were per-
formed to study pesticide effects when applied on host eggs
before and after parasitismwith the aim to analyze the direct
effects as well as possible repellence to parasitism, triggered
by entomopathogens.

Material and Methods

Four different bioassays were conducted in the laborato-
ry to assess the impact of different entomopathogens
(Table 1) on pupae and adults of T. pretiosum, as well

on parasitization of treated host eggs under free-choice
and no-choice conditions. Trials were carried out under
controlled conditions (25±2°C; 70±10% RH; 14L:10D h
photoperiod) with five replicates in a completely ran-
domized design, in accordance with the protocols pro-
posed by the “International Organization for Biological
Control” (IOBC) (Hassan 1992, Hassan et al 1985,
Manzoni et al 2007). Each replicate consisted of a cage
with more than 200 adults for which all evaluations were
performed.

Parasitoid and host colonies

Eggs of Anagasta kuehniella (Zeller) (Lepidoptera: Pyralidae)
used as hosts and specimens of the egg parasitoid Tg.
pretiosum were obtained from insect colonies of Embrapa
Soybean (Brazilian Agricultural Research Corporation—
Soybean), where they had been reared according to Parra
(1997) for nearly 6 years.

Bioassay 1: impact of pupal exposure to entomopathogens

The selectivity of entomopathogens to T. pretiosum pupae
was tested according to the standard protocols established
by the IOBC (Hassan 1992, Hassan et al 1995, Manzoni et al
2007). Briefly, 3-cm2 cards (1 card per replicate) holding ap-
proximately 500 0–24-h-old eggs of A. kuehniella were ex-
posed to newly emerged (0–24-h-old females), mated T.
pretiosum females. Parasitization was allowed for 24 h.
Subsequently, the cards were transferred to vials and kept
under controlled conditions until parasitoid pupation, as in-
dicated by the darkening of the host egg (nearly 192 h after
parasitization) (Cônsoli et al 1999). Parasitized host egg con-
taining the parasitoid pupae was then sprayed with solutions
of the different entomopathogens tested (Table 1) as speci-
fied inManzoni et al (2007). Treatment with chlorpyrifos was
chosen as the positive control according to Bueno et al
(2008).

Egg spraying was performed using a Potter spray tower
calibrated to deposit a volume to correspond to 1.25±
0.25 mg cm−2, in accordance with the norms established
by the IOBC (Hassan 1992, Hassan et al 1995, Manzoni
et al 2007). This volume was controlled by weighing the
cards with the parasitoid pupae before and after the ap-
plication of treatments. The sprayed eggs with Tg.
pretiosum pupae were kept at 25±2°C and 70±10% RH
for approximately 2 h to remove excessive moisture.
Subsequently, the treated cards were placed into cages
made of glass plates (13×13 cm) prepared according to
the method proposed by Hassan (1992) where they
remained until the emergence of adults, which were then
fed with honey.
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After adult emergence, cards containing approximately
200 A. kuehniella eggs (less than 24 h after oviposition) were
introduced into the cages (one card on the first day and a
second card on the fifth day). A drop of honey was provided
to the parasitoids on the first and the fifth day after the
emergence of adults. Both cards remained in the cages for
6 days after adult emergence (one card remained for 5 days
and the other for 1 day). On the sixth day after adult emer-
gence, both cards were removed and stored in air-filled plas-
tic bags under controlled conditions (25±2°C; 70±0% RH;
14L:10D h photoperiod) until assessment of the parasitoid
biological parameters. Parasitoid host egg ratio used (1 fe-
male per 40 host eggs) results in egg parasitization in be-
tween 80 and 100% in the control treatment (water), essen-
tial to evaluate the impact of the pesticide on the parasitoid
(Hassan et al 1985).

Adult emergence from sprayed parasitized host eggs was
calculated by dividing the number of A. kuehnilla eggs with
emerged parasitoid adults by the total number of parasitized
eggs, multiplied by 100. The parasitization capacity of the F0
generation (adults originating from treated eggs containing
the parasitoid at the pupal stage) and the transgenerational
effects on the percentage of emergence of the F1 generation
(progeny of the treated generation) were determined using a
stereomicroscope.

Bioassay 2: impact of adult exposure to the dry residue
of entomopathogens

Duran tubes (emergence vials, 0.6 cm diameter×6 cm
height) containing a droplet of honey and approximately
200 A. kuehniella eggs parasitized by newly emerged,
mated T. pretiosum females were sealed with a plastic
film and stored under controlled conditions (25±2°C; 70
± 10% RH; 14L:10D h photoperiod) until parasitoids
emerged. After emergence, the glass plates (13×13 cm)
used to make the cages were sprayed with suspensions
of entomopathogens (a single entomopathogen per

treatment, Table 1), using the Potter spray tower set to
deposit a suspension volume to correspond to 1.25±
0.25 mg cm−2. Following the application, plates were
dried for 2 h at 25±2°C and 70±10% RH and subsequently
fixed in aluminum frames in a flow of circulating air ac-
cording to the method proposed by Hassan (1992). In the
next step, 200 parasitoids were released into the cages
with the treated glass plates (Hassan 1992).

Cards containing A. kuehniella eggs (approximately 200
eggs, less than 24 h after oviposition) with trickles of honey
were provided 1 and 5 days after the release of adults into
the cages. Both cards were removed 6 days after adult emer-
gence (see also bioassay 1), placed in transparent air-filled
plastic bags and stored under the controlled conditions ear-
lier mentioned until the emergence of parasitoids for the
subsequent evaluation of parasitism and progeny viability,
as described in bioassay 1.

Bioassay 3: impact of host egg exposure
to entomopathogens on parasitism by T. pretiosum
(free-choice test)

Cards (3 cm2) holding approximately 200 A. kuehniella eggs
(less than 24 h after oviposition) were sprayed with
entomopathogens as earlier described. Subsequently, indi-
vidual cards with treated eggs were introduced into the
cages using circulating airflow as proposed by Hassan
(1992). Each cage was supplied with a card sprayed with a
single entomopathogen and a card sprayed with water (con-
trol card), placed next to each other, and exposed to approx-
imately 300 parasitoids (newly emerged, mated T.
pretiosum). On the fifth day after the start of the bioassay,
a second card with the same amount of eggs and recently
sprayed with the same products was introduced into the test
cage. Both cards were removed on the sixth day (see also
bioassays 1 and 2) and stored for later evaluation as before
(bioassay 1).

Table 1 Commercial products
and commercial doses evaluated
for selectivity to the egg
parasitoid Trichogramma
pretiosum under controlled
laboratory conditions.

Commercial product (c.p.) Formulation Active ingredient (a.i.) a.i. 100 L−1 H2O

Water – Distilled water –

Baculovirus AEE® 0.6 WP AgMNPV 1.4×1011 PIB

Thuricide® 3.2 WP Bacillus thuringiensis var. kurstaki 9.6×109 IU

Agree® 50 WP Bacillus thuringiensis var. aizawai 5×109 IU

Dipel® 3.2 WP Bacillus thuringiensis var. kurstaki 6.2×109 IU

Boveril® 5 WP Beauveria bassiana 1×1013 conidia

Metarril® 5 WP Metarhizium anisopliae 1.6×1012 conidia

Trichodermil® 48 SC Trichoderma harzianum 5×1012 conidia

Lorsban® 480 EC Chlorpyrifos 240 g

PIB polyhedral inclusion bodies, IU international units,WP wettable powder.
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Bioassay 4: impact of host egg exposure
to entomopathogens on parasitism by T. pretiosum
(no-choice test)

No-choice tests were carried as in bioassay 3 with the excep-
tion that parasitoids were exposed to a single treatment in
each cage.

Statistical analysis

Data obtained were subjected to exploratory analysis to eval-
uate normality assumptions for the residuals (Shapiro &Wilk
1965), homogeneity of variance between treatments (Burr &
Foster 1972), and additivity of the model in order to be sub-
jected to analysis of variance (ANOVA). Data not following
normality assumptions or homogeneity of variance were
transformed. Data on adult emergence (%) from treatments
in which the egg host containing the parasitoid pupae was

sprayed were arcsine
ffiffiffiffiffiffiffiffiffiffiffiffiffi

X=100
p

transformed before ANOVA.

Means were compared using Tukey’s HSD test (5% error
probability) implemented in SAS (SAS Institute 2001).

In addition, the effect of each pesticide on T. pretiosum
was determined by comparison with a negative control (dis-
tilled water) and calculated using the formula proposed by
Hassan et al (1985): E%=(1−Parasitism in the treatment/
Parasitism in the control)×100 for adult assays and EP%=(1
−Adult emergence from sprayed pupae/Adult emergence
from pupae treated with the control)×100 for pupa assays.
Treatments were classified as follows: class 1 = harmless
(E/EP<30%), class 2 = slightly harmful (30%≤E/EP<80), class
3 =moderately harmful (80%≤E/EP<99), and class 4 = harm-
ful (E/EP≥99%).

Results

Bioassay 1: impact of pupal exposure to entomopathogens

The entomopathogens applied to host eggs containing T.
pretiosum pupae inside had no effect on parasitoid emer-
gence. Furthermore, parasitism and progeny viability of F1
individuals sprayed as pupae with entomopathogens did
not differ between treatments and control (water) on any
eva luated day (Tab le 2) . There fore , a l l tes ted
entomopathogens (Table 3) were classified as harmless (class
1, Hassan et al 1985) to the pupal stage of parasitoid devel-
opment. Only chlorpyrifos (positive control) negatively af-
fected parasitism and adult emergence with significant dif-
ferences to the control and other treatments (Table 2).
Therefore, this chemical was classified asmoderately harmful
(class 3) or harmful (class 4) to T. pretiosum pupae (Hassan
1985) (Table 3).

Bioassay 2: impact of adult exposure to the dry residue
of entomopathogens

Parasitism and progeny viability of T. pretiosum on
A. kuehniella eggs were assessed on the first and fifth days
after the emergence of adults exposed to treatments by
wa lk ing on the sprayed sur face . None o f the
entomopathogen treatments differed from the control
(Table 4) and, therefore, were all classified as harmless (class
1, Hassan 1985) on both evaluation days and for both vari-
ables analyzed (Table 3). Furthermore, parasitism did not
occur in the chlorpyrifos treatment (positive control) at both
periods analyzed (Table 2) as a consequence of the high
mortality of adults caused by the insecticide. Therefore, this
chemical was classified as harmful (class 4, Hassan 1985)
(Table 3).

Bioassay 3: impact of host egg exposure
to entomopathogens on parasitism by T. pretiosum
(free-choice test)

When T. pretiosum adults were allowed to choose between
cards sprayed either with a treatment or with water, we
detected a significantly lower progeny viability (91.8%) on
the first day after spraying (Table 5) only in the treatment
with AgMNPV at 1.4×1011 polyhedral inclusion bodies (PIB).
However, since this value (91.8%) was still higher than 90%, it
can be considered satisfactory (Navarro 1998). Progeny via-
bility and parasitism did not differ between the other evalu-
ated entomopathogens and their controls (Table 5).
Considering that the entomopathogens did not affect the
parasitoid’s choice of host eggs, they were all classified as
harmless (class 1, Hassan 1985) (Table 3). Similar to the results
of bioassays 1 and 2, when host eggs were treated with
chlorpyrifos (positive control), the levels of parasitism and
progeny viability were significantly lower than in the controls
(Table 5) due to the high mortality of both adults and larvae
caused by the insecticide. They were thus classified as mod-
erately harmful (class 3, Hassan 1985) (Table 3).

Bioassay 4: impact of host egg exposure
to entomopathogens on parasitism by T. pretiosum
(no-choice test)

Parasitism by T. pretiosum was also evaluated in no-choice
tests in which cards sprayed with each treatment (Table 1)
were placed in separate cages. Progeny viability and parasit-
i sm d i d no t d i f f e r s i gn i f i c an t l y be tween the
entomopathogens and control in the no-choice test on the
first and fifth days after spraying (Table 6). According to
these results, tested entomopathogens were classified as
harmless (class 1), as in the free-choice test (Hassan 1985)
(Table 3). Only chlorpyrifos (positive control) reduced
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parasitism to 0% and was therefore classified as harmful
(class 4, Hassan 1985) (Table 3).

Discussion

Emergence of T. pretiosum adults was not affected by
exposure of parasitized hosts with the parasitoid at the
pupal stage to the different entomopathogens tested
(Table 1, bioassay 1), different to what has been report-
ed by others for entomopathogens such as B. bassiana
and M. anisopliae (Samuels et al 2002, Rampelotti et al
2007). The absence of an effect of entomopathogens on
T. pretiosum pupae in our study may have resulted from
the short time period (~24 h) between exposure to
entomopathogens and parasitoid adult emergence, since
the time required for fungi germination is at least 12 h
for deuteromycetes, 18 h for B. bassiana, and 16 h for
M. anisopl iae (A lves 1998, Lomer et al 2001) .
Colonization requires additional time for appressorium
formation and their penetration into the eggs (Alves
1998), which together with germination time might be
surpassing the time period of 24 h between parasitoid
pupal exposure and T. pretiosum adult emergence. This
short time tested was important to evaluate any possi-
ble negative impact of entomopathogens on pupae,
which is usually massive released close to the last
24 h before adult emergence. However, a negative

effect of these entomopathogens on parasitism by T.
pretiosum might be observed when entomopathogens
are applied to parasitized host eggs at earlier stages of
parasitoid development (natural occurrence), allowing
enough time for infection and fungal appressorium for-
mation and penetration into the infected egg, possibly
killing any parasitoid developing inside that egg.
Therefore, pupae (less than 24 h of adult emergence)
and entomopathogens can be simultaneously used as
applied biological control in IPM.

The parasitization capacity of females emerged from ex-
posure of host eggs at their pupal stage may be reduced
directly by pupae mortality or indirectly by adult-induced
physiological and behavioral responses (Carmo et al 2010).
However, the products did not cause a sufficient reduction of
the T. pretiosum population required to trigger a reduction in
parasitism, probably because there was not enough time for
fungi to infect host eggs. Each Trichogramma sp. female may
parasitize 20 to 120 eggs, depending on the host (Pinto 1997),
which helps to explain the high parasitism observed in the F1
generation.

Unlike fungi, viruses and bacteria must be ingested to
have any effect on insects (Castro et al 1999, Copping &
Menn 2000). Trichogramma pretiosum adults may ingest
viruses or bacteria sprayed onto the host egg during
emergence as the adult chews the host egg chorion on
its way out. However, the failure to observe any lethal
effects of the applied viruses and bacteria on the

Table 2 Effects of exposure of parasitized host eggs at the pupal stage (bioassay 1) to entomopathogens on Trichogramma pretiosum emergence
(%) and on the parasitism (%) and progeny survival (%) of adults emerged from exposed eggs at 1 and 5 days after emergence (DAE).

Treatment
a.i. 100 L−1 H2O

Sprayed pupaea 1 DAEa 5 DAEa

Adult emergence (%) Parasitism (%) Progeny viability (%) Parasitism (%) Progeny viability (%)

Water 92.54±1.11 ab 87.91±2.10 a 97.64±1.70 a 84.10±2.06 a 97.56±0.86 a

AgMNPV 1.4×1011 PIB 92.87±1.10 a 89.74±1.55 a 96.48±1.34 a 85.35±2.58 a 95.80±0.94 a

B. thuringiensis var. kurstaki 9.6×109 IU 94.26±0.72 a 88.22±2.90 a 96.57±0.23 a 91.02±2.02 a 96.80±0.80 a

B. thuringiensis var. aizawai 5×109 IU 94.21±1.40 a 87.48±3.85 a 94.45±0.47 a 88.28±3.02 a 95.92±1.86 a

B. thuringiensis var. kurstaki 6.2×109 IU 92.83±0.47 a 88.67±2.90 a 96.93±1.27 a 87.03±1.35 a 97.10±0.83 a

B. bassiana 1×1013 conidia 93.13±1.60 a 92.95±2.56 a 96.67±0.58 a 80.60±4.63 a 95.80±1.43 a

M. anisopliae 1.6×1012 conidia 94.64±1.30 a 86.32±4.57 a 96.52±1.05 a 87.81±3.15 a 95.63±1.13 a

T. harzianum 5×1012 conidia 95.31±1.30 a 85.05±3.17 a 96.80±0.98 a 85.04±5.44 a 93.21±2.66 a

Chlorpyrifos 240 g 8.10±3.03 b 0.00±0.00 b – 0.00±0.00 b –

CV (%) 5.49 8.29 2.45 8.74 3.37

F 140.35 102.85 0.75 93.11 0.84

P <0.0001 <0.0001 0.6361 <0.0001 0.56

DFresidual 36 36 32 35 31

CV coefficient of variation
aMeans±standard error of means (SEM) in each column followed by the same letter did not differ from each other according to the Tukey test (5%
probability).
b The original analyses were followed by analyses performed using arcsine

ffiffiffiffiffiffiffiffiffiffiffiffiffi

X=100
p

transformed data.
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Table 4 Effects of different entomopathogens on adults (bioassay 2) of Trichogramma pretiosum 1 and 5 days after the emergence (DAE) from
treated eggs of the host Anagasta kuehniella.

Treatment
a.i. 100 L−1 H2O

1 DAEa 5 DAEa

Parasitism (%) Progeny viability (%) Parasitism (%) Progeny viability (%)

Water 89.65±2.51 a 97.70±0.73 a 94.20±5.80 a 96.81±1.90 a

AgMNPV 1.4×1011 PIB 94.67±2.20 a 94.20±1.20 a 89.64±7.20 a 96.23±1.50 a

B. thuringiensis var. kurstaki 9.6×109 IU 88.56±3.57 a 94.80±0.60 a 88.24±4.66 a 98.80±0.85 a

B. thuringiensis var. aizawai 5×109 IU 93.20±3.82 a 95.26±2.08 a 89.17±5.03 a 97.82±1.12 a

B. thuringiensis var. kurstaki 6.2×109 IU 86.54±2.36 a 96.24±1.41 a 88.31±4.30 a 96.75±2.08 a

B. bassiana 1×1013 conidia 91.36±3.12 a 94.14±1.89 a 85.91±6.16 a 97.22±0.80 a

M. anisopliae 1.6×1012 conidia 87.40±1.07 a 95.12±0.87 a 88.50±3.08 a 96.31±0.77 a

T. harzianum 5×1012 conidia 88.04±4.22 a 95.36±2.04 a 84.45±3.82 a 95.93±1.53 a

Chlorpyrifos 240 g 0.00±0.00 b – 0.00±0.00 b –

CV (%) 8.1 3.46 13.01 3.08

F 108.59 0.62 42.16 0.49

P <0.0001 0.7349 <0.0001 0.83

DFresidual 34 31 33 30

aMeans±SEM in each column followed by the same letter did not differ from each other according to the Tukey test (5% probability).

Table 3 Classification of entomopathogen selectivity to Trichogramma pretiosum according to the “International Organization for Biological
Control” (IOBC) in different bioassays and 6 days after emergence (DAE) of adults or days after spraying (DAS).

Treatment
a.i. 100 L−1 H2O

Pupae DAE/DAS

1 5 1 5

EPa Cb Ec C E C E C E C

Bioassay 1d Bioassay 2d

AgMNPV 1.4×1011 PIB 0.4 1 0 1 0 1 0 1 4.8 1

B. thuringiensis var. kurstaki 9.6×109 IU 1.8 1 0 1 0 1 1.3 1 6.3 1

B. thuringiensis var. aizawai 5×109 IU 1.8 1 0.5 1 0 1 0 1 5.3 1

B. thuringiensis var. kurstaki 6.2×109 IU 0.3 1 0 1 0 1 3.5 1 6.3 1

B. bassiana 1×1013 conidia 0.6 1 0 1 4.2 1 0 1 8.8 1

M. anisopliae 1.6×1012 conidia 2.3 1 1.8 1 0 1 2.5 1 6.1 1

T. harzianum 5×1012 conidia 3.0 1 3.2 1 0 1 1.8 1 10.3 1

Chlorpyrifos 240 g 91.3 3 100 4 100 4 100 4 100 4

– – Bioassay 3e Bioassay 4e

AgMNPV 1.4×1011 PIB – – 1.9 1 12.9 1 5 1 25 1

B. thuringiensis var. kurstaki 9.6×109 IU – – 2.4 1 6.8 1 0 1 6 1

B. thuringiensis var. aizawai 5×109 IU – – 2.4 1 1.9 1 4 1 0 1

B. thuringiensis var. kurstaki 6.2×109 IU – – 0.0 1 9.2 1 0 1 77 2

B. bassiana 1×1013 conidia – – 0.1 1 0.0 1 0 1 0 1

M. anisopliae 1.6×1012 conidia – – 4.4 1 0.9 1 0 1 0 1

T. harzianum 5×1012 conidia – – 2.7 1 3.9 1 0 1 0 1

Chlorpyrifos 240 g – – 97.8 3 – – 100 4 100 4

a EP (Percent of reduction of adult emergence)=(1−Treatment adult emergence/Control adult emergence)×100).
b Classification: class 1 = harmless (E/EP<30%), class 2 = slightly harmful (30%≤E/EP<80), class 3 = moderately harmful (80%≤E/EP<99), and class 4 =
harmful (E/EP≥99%).
c E (Percentage of reduction of parasitism)=(1−Treatment parasitism/Control parasitism)×100 (Hassan 1985).
d Bioassays 1 (sprayed pupae) and 2 (sprayed contact surface).
e Bioassays 3 (choice) and 4 (no-choice) with egg spraying.
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Table 5 Parasitism (%) of eggs of the host Anagasta kuehniella treated with entomopathogens by Trichogramma pretiosum 1 and 5 days after host
treatment and parasitoid progeny viability (%) in free-choice tests (bioassay 3).

Treatment
a.i. 100 L−1 H2O

1 DAS 5 DAS

Parasitism (%)a Progeny viability (%)a Parasitism (%)a Progeny viability (%)a

Water 90.1±0.9 a 95.0±0.6 a 81.0±4.2 a 95.0±0.7 a

AgMNPV 1.4×1011 PIB 88.4±1.3 a 91.8±1.1 b 70.5±3.3 a 95.3±1.0 a

CV 2.84 2.06 10.05 1.87

Water 87.9±2.6 a 92.4±2.1 a 80.8±4.3 a 93.2±2.3 a

B. thuringiensis var. kurstaki 9.6×109 IU 85.8±1.1 a 90.9±2.0 a 75.3±0.5 a 94.1±4.6 a

CV 5.16 4.98 8.63 6.66

Water 89.3±2.4 a 93.7±1.1 a 83.7±1.8 a 95.2±2.0 a

B. thuringiensis var. aizawai 5×109 IU 87.2±2.1 a 93.2±0.4 a 82.1±2.6 a 96.0±2.4 a

CV 5.74 1.67 5.35 4.64

Water 87.2±2.2 a 94.3±1.1 a 79.6±5.5 a 94.1±0.9 a

B. thuringiensis var. kurstaki 6.2×109 IU 88.3±2.8 a 94.0±1.4 a 72.3±7.6 a 88.4±4.2 a

CV 6.54 2.98 17.55 6.69

Water 91.9±1.0 a 94.5±0.8 a 78.5±3.8 a 95.5±1.5 a

B. bassiana 1×1013 conidia 91.9±2.0 a 93.8±0.5 a 82.1±6.3 a 90.5±2.2 a

CV 3.88 1.63 11.30 3.48

Water 87.1±2.0 a 92.8±0.8 a 82.2±2.5 a 95.0±1.1 a

M. anisopliae 1.6×1012 conidia 83.2±1.4 a 91.4±1.2 a 81.4±1.7 a 95.1±0.9 a

CV 4.66 2.20 5.90 2.30

Water 87.7±3.3 a 91.0±2.0 a 85.2±1.5 a 93.9±1.1 a

T. harzianum 5×1012 conidia 85.3±2.6 a 90.4±2.9 a 81.8±2.7 a 96.4±0.3 a

CV 7.74 6.30 5.37 1.42

Water 78.8±7.6 a 54.2±2.6 a – –

Chlorpyrifos 240 g 1.7±1.7 b 0.0±0.0 b – –

CV 26.80 6.52 – –

aMeans±SEM in each column followed by the same letter for each comparison between sprayed and nonsprayed cards did not significantly differ
from each other according to the F test (5% probability).

Table 6 Parasitism (%) of eggs of the host Anagasta kuehniella treated with entomopathogens by Trichogramma pretiosum 1 and 5 days after host
treatment and parasitoid progeny viability (%) in no-choice tests (bioassay 4).

Treatment
a.i. 100 L−1 H2O

1 DAS 5 DAS

Parasitism (%)a Progeny viability (%)a Parasitism (%)a Progeny viability (%)a

Water 85.5±1.1 a 95.0±1.0 a 80.7±2.8 a 95.4±0.3 a

AgMNPV 1.4×1011 PIB 87.2±0.8 a 97.6±0.8 a 81.2±5.1 a 97.6±0.6 a

B. thuringiensis var. kurstaki 9.6×109 IU 84.5±2.4 a 95.1±1.0 a 87.0±3.0 a 96.5±1.7 a

B. thuringiensis var. aizawai 5×109 IU 86.8±1.0 a 95.0±1.7 a 79.9±3.6 a 96.5±1.0 a

B. thuringiensis var. kurstaki 6.2×109 IU 85.8±2.0 a 95.0±0.8 a 85.9±2.1 a 96.0±0.8 a

B. bassiana 1×1013 conidia 86.1±1.8 a 93.6±0.9 a 81.0±3.5 a 94.8±2.0 a

M. anisopliae 1.6×1012 conidia 84.5±2.3 a 93.4±1.4 a 83.7±2.3 a 94.9±1.7 a

T. harzianum 5×1012 conidia 89.5±1.6 a 94.5±0.6 a 77.0±5.3 a 96.5±1.6 a

Chlorpyrifos 240 g 0.0±0.0 b – 0.0±0.0 b –

CV 4.82 2.60 10.18 2.74

F 302.75 1.41 69.44 0.60

P <0.0001 0.24 <0.0001 0.75

DFresidual 36 31 32 28

aMeans±SEM in each column followed by the same letter did not differ from each other according to the Tukey test (5% probability).
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parasitism obtained by F1 descendants of treated pupae
indicates that ingestion may not have occurred or that it
occurred at a nonlethal dose. Furthermore, viruses in gen-
eral are very specific (Moscardi 1998), explaining the not-
ed selectivity.

Parasitism and progeny viability (= emergence of adults)
were unaffected by entomopathogens when parasitoids en-
tered in direct contact by exposure to treated surfaces (bio-
assay 2). The observed bacterial and viral selectivity may be
explained because the tested entomopathogens are only
harmful to insects when ingested (Copping & Menn 2000,
Castro et al 1999). Ingestion of viruses or bacteria was un-
likely because T. pretiosum adults walked on dry residues of
the sprayed products. From all of the evaluated
entomopathogens, only fungi can contaminate and infect
insects by contact via conidia penetration through the insect
cuticle (Alves 1998). Potrich et al (2009) observed mortality
of T. pretiosum caused by B. bassiana and M. anisopliae by
contact, although not at a significant rate, thus indicating
that contamination and/or infection did not occur in our
study or was insufficient to cause mortality of T. pretiosum
adults.

Bioinsecticides may also influence the parasitoid host
choice by modifying color, shape, odor, or behavior of
the infected host, in addition to directly impact the in-
sects (Magalhães et al 1998). In our study, parasitism and
parasitoid progeny viability were not affected by the
entomopathogens tested when evaluated in free- or
no-choice tests. Only eggs sprayed with 1.4×1011 PIB
AgMNPV in free-choice tests showed a reduced emer-
gence of parasitoids than the control, although still
higher than 90%, which is above the minimum quality
standard (85%) of progeny viability (Navarro 1998).
Therefore, this entomopathogen may still be considered
selective to the parasitoid. These results indicate that
host egg infection did not occur, even with a longer time
period between spraying with an entomopathogen and
parasitoid emergence, and therefore, no negative effect
on T. pretiosum was found, similar to earlier reports
(Potrich et al 2009).

The bioinsecticides B. anticarsia (Baculovirus AEE®),
B. thuringiensis var. kurstaki (Thruricide®), B. thuringiensis
var. aizawai (Agree®), B. thuringiensis var. kurstaki (Dipel®),
B. bassiana (Boveril®), M. anisopliae (Metarril®), and T.
harzianum (Trichodermil®) can be classified as selective to
T. pretiosum pupae and adults, which is an indication that
they may be used in conjunction with egg parasitoids with-
out major negative effects on the studied parasitoid. In con-
trast, the insecticide chlorpyrifos is harmful, as it causes high
mortality and it negatively affects the behavior of T.
pretiosum in free-choice tests. Therefore, its use in IPM
should be avoided and should be replaced by a more selec-
tive product to natural enemies whenever possible.
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