

Proceedings of the 29th Annual Meeting of the Brazilian Embryo Technology Society (SBTE); Gramado, RS, Brazil, August 20th to 23rd, 2015, and 31st Meeting of the European Embryo Transfer Association (AETE); Ghent, Belgium, September 11th and 12th, 2015. Abstracts.

A046 Folliculogenesis, Oogenesis and Ovulation

Effect of IGF-1 SnaBI polymorphism on reproductive parameters and metabolic parameters in dairy cows

P.A.S. Silveira¹, L.M.C. Pegoraro², W.R. Butler³, M.N. Correa¹, A. Schneider¹

¹UFPEL; ²EMBRAPA Clima Temperado; ³Cornell University.

Keywords: fertility, IGF, Snp.

Insulin-like growth factor 1 (IGF-1) is associated with increased follicular estradiol production, stimulating the return of postpartum ciclicity (Butler et al., 2004). Therefore, it is possible that genetic variants of the IGF-1 gene can improve reproductive efficiency of postpartum cows. The aim of this study was to evaluate the effect of polymorphisms in the IGF-1 gene on reproductive parameters, and milk production of Holstein dairy cows. Genotyping was performed by electrophoresis of the PCR product after digestion with the enzyme SnaBI. Holstein cows (n=75) from 21 days prepartum up to 210 days in milk (DIM) were used in the study. These cows were submitted to an OvSynch-TAI protocol at 55 DIM, and the protocol was repeated in cows diagnosed as nonpregnant at 30 and 60 days after AI. Milk samples were collected twice per week for determining ovulation. Progesterone levels above 1 ng/mL in two consecutive samples indicated ovulation. Days from calving to first ovulation (CFO) and the calving to conception interval (CCI) were evaluated. Serum concentrations of IGF-1 and βhydroxybutyrate (BHBA) were measured in samples collected at -21, 0, 7, 21 and 60 DIM. Data were analyzed using the GLM procedure of SAS. Genotype distribution was 14.7% for the TT genotype, 48% for CT and 37.3% for CC. Circulating IGF-1 levels were 79.2 ± 9.9 , 66.5 ± 5.2 and 56.6 ± 5.9 ng/ml for TT, TC and CC genotypes, respectively (P=0.05). The CFO interval for TT, TC and CC cows was 19.9 ± 4.2 , 30.6 ± 2.3 and 30.4 ± 2.5 days, respectively, indicating a shorter interval (P<0.05) for TT cows, which had the highest levels of IGF-I. A linear effect (P<0.05) was observed among genotypes for the CCI, which was 76.9 ± 12.6 , 96.9 ± 6.8 and 111.7 ± 7.8 for TT, CT and CC, respectively. Cows from the TT genotype had a shorter CCI that may be associated with earlier return to postpartum cyclicity and higher serum IGF-I levels. The TT cows had lower serum BHBA values than cows with TC and CC genotypes, 5.0 ± 1.4 , 8.2 ± 0.7 and 8.1 ± 0.8 mg/dL (P<0.05), respectively. Milk production was not different between groups (P>0.05). In conclusion, the IGF-1 SnaBI polymorphism (TT) was associated with reduced CFO and CCI in dairy cows.