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Abstract

Background: A complete approach for genome-wide selection (GWS) involves reliable statistical genetics models and

methods. Reports on this topic are common for additive genetic models but not for additive-dominance models. The

objective of this paper was (i) to compare the performance of 10 additive-dominance predictive models (including

current models and proposed modifications), fitted using Bayesian, Lasso and Ridge regression approaches; and (ii) to

decompose genomic heritability and accuracy in terms of three quantitative genetic information sources, namely,

linkage disequilibrium (LD), co-segregation (CS) and pedigree relationships or family structure (PR). The simulation study

considered two broad sense heritability levels (0.30 and 0.50, associated with narrow sense heritabilities of 0.20 and

0.35, respectively) and two genetic architectures for traits (the first consisting of small gene effects and the second

consisting of a mixed inheritance model with five major genes).

Results: G-REML/G-BLUP and a modified Bayesian/Lasso (called BayesA*B* or t-BLASSO) method performed best in the

prediction of genomic breeding as well as the total genotypic values of individuals in all four scenarios

(two heritabilities x two genetic architectures). The BayesA*B*-type method showed a better ability to recover the

dominance variance/additive variance ratio. Decomposition of genomic heritability and accuracy revealed the following

descending importance order of information: LD, CS and PR not captured by markers, the last two being very close.

Conclusions: Amongst the 10 models/methods evaluated, the G-BLUP, BAYESA*B* (−2,8) and BAYESA*B* (4,6)

methods presented the best results and were found to be adequate for accurately predicting genomic breeding and

total genotypic values as well as for estimating additive and dominance in additive-dominance genomic models.
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Background

The goal of genome-wide selection (GWS) is early pheno-

type prediction; it relies on simultaneously predicting the

effects (on phenotype) of a large number of molecular

markers. Thus, it represents a new paradigm in quantita-

tive genetics [1, 2] and plant and animal breeding [3–7].

The simultaneous prediction of marker effects is now

common in genome-wide association studies (GWAS)

[8–10] also. As a result, GWS methods are also being used

in human genetics, gene discovery and association genetics.

Recent methodologies for GWS and GWAS have been

evaluated with simulation studies [11, 12]. Simulation and

practical results with additive models in GWS with several

organisms are common [13–17]. However, additive-

dominance models are much less common [17–20].

Hill et al. [21], Bennewitz and Meuwissen [22] and

Wellmann and Bennewitz [23] discussed the relevance

of dominance models for Quantitative Genomics and

Genetics. Wellmann and Bennewitz [23] presented the-

oretical genetic models for Bayesian genomic selection

with dominance and concluded that dominance en-

hances the analysis and has several advantages. Wang

and Da [24] established the correct definitions of gen-

omic relationships and inbreeding, which came to unify

the prediction models for additive-dominance genomic
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selection. Da et al. [25] and Wang et al. [26] presented a

software for additive-dominance models in the frame-

work of the G-BLUP method.

Dominance estimation is essential, especially for

vegetative propagated species [20] and crossed popu-

lations, where including both additive effects and

dominance in the mating allocation is an effective

way of increasing genetic gain by capitalizing on het-

erosis [23, 27]. Additive-dominance models are able

to capture both effects, allowing the effective selection

of parents, crosses and clones. This process takes full

advantage of genomic selection in perennials and asexu-

ally propagated crops, as well as in crossed animals.

Bayesian, Lasso and Ridge regression approaches have

not yet been compared for additive-dominance models.

[17–20] and [24] applied only the G-BLUP method,

which is an equivalent model [10], to ridge regression

(RR-BLUP). On the other hand, [23] applied only the

Bayesian methods of [1] with modifications (a mixture

of two t distributions, one of them having a small vari-

ance). Toro and Varona [27] evaluated the introduction

of dominant effects into the model using Bayes A. Lasso

methods seems to be unused in dominance models for

variance components in genomic selection. The parti-

tioning of accuracy and heritability due to the three

forms of quantitative genetics information, including

linkage disequilibrium (LD), co-segregation (CS) and

pedigree relationships (PR), is an important subject and

has only been explored by [28].

Given the scarcity of papers on dominance gen-

omic models in the literature and for the purpose of

increasing knowledge and enriching discussion of

such an essential topic in this field, the objective of

this paper is two-fold: (i) to evaluate 10 estimation

methods (including the Bayesian, Lasso and Ridge re-

gression approaches) for fitting additive-dominance

genomic models for GWS; and (ii) to decompose

genomic heritability and accuracy in terms of the

three quantitative genetic information compounds

LD, CS and PR.

Methods

Simulated datasets

Two random mating populations in linkage equilibrium

were crossed generating a population (of size 5,000,

coming from 100 families) with LD, which was subjected

to five generations of random mating without mutation,

selection or migration. The resultant population is an

advanced generation composite, which presents Hardy-

Weinberg equilibrium and LD. According to [29], the LD

value in a composite population is Δab ¼ 1 − 2θab
4

� �

p1a − p2a
� �

p1b − p2b
� �

, where a and b are two SNPs, two

QTLs, or one SNP and one QTL, θ is the frequency of

recombinant gametes, and p1 and p2 are the allele frequen-

cies in the parental populations (1 and 2). Notice also that

the LD value depends on the allele frequencies in the par-

ental populations. Thus, regardless of the distance be-

tween the SNPs and/or QTLs, if the allele frequencies

are equal in the parental population, Δ = 0. The LD is

maximized (|Δ| = 0.25) when θ = 0 and |p1 - p2| = 1.

In this case, the LD value is positive with coupling

and negative with repulsion [30].

From the advanced generation of the composite, 1,000

individuals were generated with diploid genomes having a

length of 200 centimorgans (cM) (L = 2 Morgans) and as-

suming ten equally sized chromosomes, each one with

two haplotypes. We simulated a marker density by assign-

ing 2,000 equidistant SNP markers that were separated by

0.1 cM across the ten chromosomes. One hundred of the

2,000 markers were actually genes (QTL). A total of 1,000

individuals that came from the same generation and from

20 full-sib families (each one with 50 individuals) were ge-

notyped and phenotyped. This simulation provides a typ-

ical small effective population size (Ne = 39.22) and a large

LD in the breeding populations. Ne of approximately 40

and the use of 50 individuals per family are typical values

in elite breeding populations of plant species.

The QTLs were distributed in the regions covered by

the SNPs. For each trait, we informed the degree of

dominance (d/a) and the direction of dominance (posi-

tive and/or negative). The obtained genotypic values for

homozygotes were within the limits of Gmax = 100(m + a)

and Gmin = 100(m - a), which are the maximum and

minimum values, respectively.

Goddard et al. [31] presented the realized proportion

(rmq
2 ) of genetic variation explained by the markers as

r2mq ¼
n

nþn
QTL

, where nQTL is the number of QTL. With

n = 2,000 markers and nQTL = 100, we have rmq
2 = 0.95.

An alternative [14] takes nQTL = 2NeL = 2 39.22 2 =

156.88, producing rmq
2 = 0.93. Another approach [32]

provides rmq
2 as r2mq ¼

1
1þ4NeS

¼ 1
1þ4 39:22 0:001 ¼ 0:86: L

is the total length of the genome, and S is the spacing

between markers (both in Morgans). These values

reveal that the genome was sufficiently saturated by

markers.

Traits with two genetic architectures were simulated,

one following the infinitesimal model and the other with

five major effects genes accounting for 50 % of the gen-

etic variability. For the former, to each of 100 QTL one

additive effect of small magnitude on the phenotype was

assigned (under the Normal Distribution setting). For

the latter, small additive effects were assigned to the

remaining 95 loci. The effects were normally distributed

with zero mean and variance, allowing the desired herit-

ability level. The phenotypic value was obtained by add-

ing to the genotypic value a random deviate from a
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normal distribution N (0, σe
2), where the variance σe

2 was

defined according to two levels of broad-sense heritabil-

ity, 0.30 and 0.50, associated with narrow-sense herita-

bilities of approximately 0.20 and 0.35, respectively.

Heritability levels were chosen to represent one trait

with low heritability and another with moderate herit-

ability, which addressed the cases where genomic selec-

tion is expected to be superior to phenotypic selection.

The magnitudes of the narrow-sense and broad-sense

heritabilities are associated with an average degree of

dominance level (d/a) of approximately 1 (complete

dominance) in a population with intermediate allele fre-

quencies. Simulations assumed independence of additive

and dominance effects, with dominance effects having

the same distribution as the additive effects (both were

normally distributed with zero mean). In the simulation,

it was also observed that marker alleles had MAF (minor

allele frequency) greater than 5 %.

Scenarios

For the populations of full-sib families, four scenarios were

studied: two broad-sense heritability levels (approximately

0.30 and 0.50) × two genetic architectures. The scenarios

were analyzed using 10 statistical methods (Table 1).

Additive-dominance model for the REML/G-BLUP method

A mixed linear model for individual additive breed-

ing values (ua) and dominance deviations (ud) is as

follows: y = Xb + Zua + Zud + e, with the variance

structure given by uaeN 0;Gaσ
2
ua

� �
; udeN 0;Gdσ

2
ud

� �
;

e ~ N(0, Iσe
2). An equivalent model [33] at the marker

level is given by y = Xb + ZWma + ZSmd + e, where:

ua ¼ Wma;

Var Wmað Þ ¼ WIσ2ma
W 0 ¼ WW 0σ2ma

;

ud ¼ Smd;

Var Smdð Þ ¼ SIσ2md
S0 ¼ SS0σ2md

:

W and S are the incidence matrices for the vectors of

additive (ma) and dominance (md) marker genetic ef-

fects. The variance components associated to these ef-

fects are σ2ma
and σ2md

, respectively. Ga and Gd are the

genomic relationship matrices for the additive and dom-

inance effects. The quantity ma in one locus is the allele

substitution effect and is given by mai = αi = ai + (qi − pi)di,

where pi and qi are allelic frequencies and ai and di are

the genotypic values for one homozygote and heterozy-

gote, respectively, at locus i. In turn, the quantity md can

be directly defined as mdi = di.

The matrices W and S, which will be defined later, are

based on the values 0, 1 and 2 for the number of one of

the alleles at the i marker locus (putative QTL) in a dip-

loid individual. Several parameterizations are available,

and the one that matches well with classical quantitative

genetics theory [34] is as follows [5, 24, 25, 35].

The correct parameterization of W and S is as follows,

according to the marker genotypes at a locus m.

W ¼
If MM; then 2−2p →2q
If Mm; then 1 −2p →q−p
If mm; then 0−2p →−2p

8
<
: ð1Þ

S ¼
If MM; then 0 →−2q2

If Mm; then 1→2pq
If mm; then 0 →−2p2

8
<
: ð2Þ

The covariance matrix for the additive effects is

given by Gaσa
2 = Var(Wma) =WW ' σma

2 , which leads to

Table 1 Softwares

Method Full name of the method Class of methods DF1 DF2 Software

BRR (−2,-2) Bayesian Ridge Regression Bayesian −2 −2 GS3

IBLASSO (4,-2) Improved Bayesian Lasso Bayesian Lasso 4 −2 GS3

IBLASSO (4,2) Improved Bayesian Lasso Bayesian Lasso 4 2 GS3

BAYESA*B* (−2,6) IBLASSO with t distribution Bayesian Lasso −2 6 GS3

BAYESA*B* (4,6) IBLASSO with t distribution Bayesian Lasso 4 6 GS3

BAYESA*B* (−2,8) IBLASSO with t distribution Bayesian Lasso −2 8 GS3

RR-HET (-2,–2) RR-BLUP with heterogeneous variance Ridge Regression -2 −2 GS3

BLASSO (4,2) Bayesian Lasso Bayesian Lasso 4 2 BLR-R

G-BLUP Genomic BLUP Random Regression - - GVC

Pedigree-BLUP Pedigree-BLUP Random Regression - - Pedigreem-R

Description of the fitted models and softwares used

DF1: Degrees of Freedom of the chi-square prior distribution for the residual variance;

DF2: Degrees of Freedom of the chi-square prior distribution for genetic variance or shrinkage parameter
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Ga ¼ WW 0= σ2ma=σ
2
a

� �
¼ WW 0=

Xn

i¼1

2pi 1−pið Þ½ � , as σ2a

¼
Xn

i¼1

2pi 1−pið Þ½ �σ2ma . The covariance matrix for the

dominance effects is given by Gdσd
2 = Var(Smd) = SS '

σmd
2 . Thus, Gd ¼ SS0= σ2md=σ

2
d

� �
¼ SS0=

Xn

i¼1

2pi 1−pið Þ½ �2 ,

as σ2
d ¼

Xn

i¼1

2pi 1−pið Þ½ �2σ2md .

The additive-dominance G-BLUP method was fitted

using GVC-BLUP software [26] via REML through

mixed model equations.

Bayesian Ridge Regression (BRR) method

A Bayesian additive-dominance G-BLUP or Bayesian

Ridge Regression (BRR) method was fitted using GS3

software [36] via MCMC-REML/BLUP assigning flat

(i.e., with degrees of freedom equal to −2, which turns

the inverted chi-square into a uniform distribution) prior

distributions for variance components. (The a priori flat

is a the noninformative one).

BayesA and BayesB methods

The BayesA and BayesB methods, described by [1], are

advantageous because they can potentially provide infor-

mation on the genetic architecture of the quantitative

trait.

In these methods, specific variances are allowed at

each locus. Additionally, BayesB performs variable selec-

tion because the majority of the markers are not in LD

with the genes. Thus, a set of markers associated with a

trait must be identified. The BayesB method subjectively

determines π, the proportion of markers having effects.

Using the indicator variable I, in the BayesA and BayesB

models, the additive genetic effect of an individual j is

defined as aj ¼
Xn

i¼1

maiwijIai , where Iai = (0, 1). The dis-

tribution of Ia = (Ia1… Ian) is binomial with a probability

π, which is 1 for BayesA and is subjectively determined

for BayesB. The quantities of wij are elements of the

marker genotype matrix W. Dominance effects are

coded in a similar way: dj ¼
Xn

i¼1

mdisijIdi.

These Bayesian methods assume that the conditional

distribution of each marker effect (given its variance) fol-

lows a normal distribution, i.e., mai|σmai
2 ~N(0, σmai

2 ).

The variances of the marker effects are assumed to be a

scaled inverse chi-square distribution with v degrees of

freedom and scale parameter S2ma
, i.e., σmai

2 ~ χ− 2(νma,

Sma
2 ). This assumption implies that a larger number of

markers has small effects and a small number of

markers has large effects, which leads to a univariate t-

distribution of the marker effects with mean zero [37].

Gianola et al. [2] proved that fitting a variance by locus

in this way is equivalent to postulating a t distribution

for all loci. Thus, the identification of relevant marker

effects is more likely in the t-BayesA model than in the

normal-RR-BLUP model.

For the Bayes methods, the marginal prior distribution

for additive marker effects is maijνma
; S2ma

et 0; νma
; S2ma

� �
.

The combination of normal (for marker effects) and

inverse chi-square distributions (for variances) leads to

a t distribution for mai, and thus a longer tail than that

for normal distribution. In this paper, the values 6 and

8 were assigned for v to provide sufficiently thick tails

associated to t distributions [38], and S2ma
was calcu-

lated from the additive variance according to the

method of [39].

For dominance effects at the intra-population level,

the distributions are similar to what was described for

additive effects. Thus, mdi|σmdi
2 ~N(0, σmdi

2 ) for the

marker dominance effects; σmdi
2 ~χ− 2(νmd, Smd

2 ) for the

marker dominance variance, with the marginal of the

prior distribution for marker dominance effects given

by mdijνmd
; S2mdet 0; νmd

; S2md

� �
.

Additive and dominance variances are given by σ2
a

¼
Xn

i¼1

2pi 1−pið Þm2
ai and σ2

d ¼
Xn

i¼1

2pi 1−pið Þ½ �2m2
di ,

respectively, according to the parameterizations in W

and S. The full conditional distributions for the parame-

ters of the BayesA and BayesB models were presented

in detail by [18].

BayesA*B* or IBLASSOt method

According to [40], a strong influence of prior parame-

ters on predictive ability was observed in the BayesA

and BayesB models. Variation in the scale parameters

Sma
2 and Smd

2 in these methods had a strong impact

on prediction. An overlarge scale (Sma
2 or Smd

2 ) for the

prior distribution of variance led to overfitting of the

data, while a scale parameter that was too small led

to underfitting due to excessive shrinkage of the ef-

fects. In both cases, the predictive ability is consider-

ably reduced. Consequently, to obtain good predictive

abilities, an appropriate choice of hyperparameters is

necessary to prevent both over- and underfitting.

The differences between the explicit regression GWS

methods are mainly due to the type and extent of the

shrinkage imposed by the method, the ability to learn

from the data, and the influence of prior distributions.

In the case of N < <<n (n is the number of markers and
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N is the number of individual observations), learning

from the data is difficult to verify because the data (like-

lihood) do not dominate the posterior distribution. Thus

given the same sampling model postulated by the

methods, likelihood shrinkage properties are not very

different. Thus, any differences in posterior inferences

between these methods must be because priors are influ-

ential and very different [38]. Based on this analysis, it

can be asserted that different methods can be fitted with

the same machinery only by somehow drastically alter-

ing the prior distribution.

The Bayesian Lasso method provides better learning

from the data than BayesA and BayesB [2, 38]. The dif-

ference between the Bayesian LASSO and the Bayesian

approaches (BayesA and BayesB) developed by [1] is de-

rived from the different specifications of the prior vari-

ance of the marker-specific regression coefficient as well

as the type and extent of shrinkage effected.

For this reason, we chose to implement BayesA using

the BLASSO framework by specifying the prior distribu-

tion through appropriate degrees of freedom (6 and 8)

for the scaled inverse chi-square distribution associated

with marker genetic variance (and then with the penal-

ization parameter λ). This produces a t-like distribution,

which is an intermediate between the normal (of the

RR-BLUP) and double exponential (of the Lasso) distri-

butions and provides desirable shrinkage estimates for

the QTL effects, as does BayesA.

By fitting in this way (via BLASSO), BayesA has better

learning properties. This improved BayesA can be called

BayesA* and can turn out to be Bayes B* if the BLASSO

machinery effectively leads a large number of markers to

zero effects. In this case, the method will be called Bayes

A*-B* (or t-Bayesian Lasso) because it conjugates the

priors of BayesA and the type and extent of shrinkage

(covariable selection) of the Blasso method. In their fast

BayesB method, [41] changed the prior distribution of

marker effects from a Student-t distribution to a double ex-

ponential of Laplace, which improved the model and per-

haps made it closer to the BLASSO method. Kärkkäinen

and Sillanpää [42] discussed the interchange of Student-t

and Laplace (DE) as prior distributions of marker effects.

Another possible name for Bayes A*-B* is t-BLASSO,

meaning Bayesian Lasso [43] with a t distribution as the

prior for marker effects.

Bayes A*-B* methods were fitted using GS3 software

[36] via MCMC assigning with 6 and 8° of freedom for

the inverted chi-square distribution for genetic variance

(and then with the penalization parameter λ), which

converts the prior for marker effects into a t distribu-

tion. This approach is expected to produce results

similar to the Bayes methods of [1] but with the

learning ability of the BLASSO method. Additionally,

the BLASSO is asymptotically free of prior

information and more consistent than BayesB and

does not require tuning.

BLASSO and IBLASSO methods

In the Bayesian Lasso [44], the prior assigned to marker

effects is a Laplace (double exponential, DE) distribu-

tion. All marker effects are assumed to be independently

and identically distributed as a DE. This prior assigns

the same variance or prior uncertainty to all marker ef-

fects, but it possesses thicker tails than the normal or

Gaussian prior. Comparative discussions of the DE prior

are in [45] and [46].

With two variance components (σe
2 and σma

2 ), the model

is called an improved Bayesian Lasso (IBLASSO) [43].

The practical implementation of this model via Gibbs

sampling, including the full posterior conditional distribu-

tions, was described by [43]. For dominance effects, simi-

lar distributions hold as described for additive effects.

Concerning the IBLASSO of [43], [38] criticizes the

choice of a uniform flat prior on the regularization param-

eter λ. Because of this criticism, our paper used two alterna-

tive priors: a similar flat prior and also a prior with 4° of

freedom on the parameter λ, as in the case of the BLASSO.

Computations were performed in the GS3 Software.

Ridge Regression with heterogeneity of variances (RR-HET)

An additive-dominance Ridge Regression (RR-BLUP)

method can also be implemented that considers the het-

erogeneity of variances between markers, called RR-

HET. In our paper, the matrices with specific variances

for each marker, Da = diag(τ1a
2 , τ2a

2 ,…, τna
2 ) and Dd =

diag(τ1d
2 , τ2d

2 ,…, τnd
2 ), were obtained by the BLASSO

method (4, −2) using GS3 software.

Fitting models

Each type of population was simulated 10 times under the

same parameter settings, which preserved the same fea-

tures and provided samples that were effectively of the

same conceptual population. Nine replicates were used as

training populations, and one replicate was used as a val-

idation population. The estimations based on each of the

nine replicates were validated by obtaining estimates of

the parameters accuracy and bias. Validation and refer-

ence individuals belonged to the same population but to

different families.

In each replicate, marker effects were estimated and

used to estimate the genetic values of individuals in the

tenth population. These estimated genetic values were

correlated with the parametric genetic values of individ-

uals of the tenth population, providing the accuracy

values. The results from the nine analyses were averaged

across replicates to obtain final accuracies and heritabil-

ities for each scenario.
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Methods for computing parametric accuracies under

the additive-dominance models were derived following

the method of [6]. The following formulas were

obtained:

Additive accuracy: raâ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2mq Nr2mqh

2
a=nQTLð Þ

1þNr2mqh
2
g=nQTL

r

Dominance accuracy:rdd̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2mq Nr2mqh

2
d=nQTLð Þ

1þNr2mqh
2
g=nQTL

r

Genotypic accuracy:rgĝ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2aâ þ r2

dd̂

q
,

where nQTL is the number of QTL, N is the number of in-

dividuals in the estimation dataset, and ha
2, hd

2 and hg
2 are

additive, dominance and total heritability, respectively.

For Bayesian methods, we used 120,000 iterations for

the MCMC algorithms of the different models, with the

first 20,000 iterations discarded as burn in. After every

set of 10 iterations (thin) were performed, a sample was

retained to calculate a posteriori statistics. Hence, 10,000

MCMC samples were used to construct the posterior

densities. The convergence of the Markov chains was

checked with a [47] diagnostic and also by visualizing the

trace plot and running repeated progressive analyses until

convergence was met. Posterior distributions were plotted

(Fig. 1) to view the Bayesian learning of the methods. A

summary of the fitted models is presented in Table 1.

Decomposing the quantitative genetic information

The three types of quantitative-genetic information can

be defined as in [28]:

Linkage disequilibrium: refers to founder alleles from

different loci in the same gamete, and the loci are in

LD (not sampled independently, i.e., in population

level disequilibrium) and describe genetic relationships

between founders.

Co-segregation: refers to non-founder alleles (not in LD

and not identical by descent from the base population)

from different loci in the same gamete, and the loci are

linked (not transmitted independently, i.e., in population

level equilibrium but in within-family level disequilibrium).

Genetic relationships: statistical dependency between

alleles from the same locus in different gametes. This

Fig. 1 Posterior distributions. Parametric and predicted additive (a) and dominance (b) individual values (h2 = 0.30; small gene effects model)
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kind of information is of three types: When associated

with markers, it refers to parentage only on the

marker loci and does not involving a linkage between

markers and QTL; when associated with the pedigree

of individuals in a model with both markers and

pedigree, it refers to residual polygenic effects; when

associated with the pedigree of individuals only, it

refers to total polygenic effects.

G-BLUP makes use of the following: (i) co-segregation

of QTL and markers due to linkage; (ii) pedigree genetic

relationships between markers not linked to QTL; and

(iii) LD between markers and genes to capture relation-

ships at QTL [28]. The genomic relationship matrix is

called the realized relationship, as it describes IBD at

SNP, assuming an ancient founder population. However,

only genetic relationships at QTL matter.

The genomic relationship matrix includes LD, co-

segregation and pedigree genetic relationships between

markers not linked to QTL (for example, in structured pop-

ulations). Habier et al. [28] derived formulas for proving

that all three sources of information are used by G-BLUP.

The data sets analyzed were as follows: overall (raw

or without any correction of the phenotypes); within-

family deviations across families (with correction of

the phenotypes for family effects and analyzing fam-

ilies altogether); and within each family with posterior

averaging (with correction of the phenotypes for fam-

ily effects and analyzing one family at a time). The

accuracy of genomic selection in the analysis using

the within-each-family with posterior averaging data-

set is due to LD and co-segregation. In the analysis

using the dataset from within-family deviations across

families, the accuracy is due only to LD, while the ac-

curacy of the analysis with the overall dataset is due

to family IBD relationships, LD and co-segregation.

Results

Comparison of methods

In the evaluation of the methods, the following quan-

tities were subjected to comparisons: heritability and

dominance/additive variation ratio (the best are the clos-

est to being parametric); accuracies (the highest values

are the best); and bias (values closest to 1 are the best).

The results concerning the trait controlled by small

gene effects with a heritability of 0.30 are presented in

Table 2. It can be observed that, of the 10 methods, the

BAYESA*B* (−2,8) method (or tBLASSO) had the seven

best (b) criteria among the 7 classification criteria,

followed by BAYESA*B* (4,6), which had six best cri-

teria. The G-BLUP method fitted through GVC-REML

was intermediate and seemed to overestimate the dom-

inance/additive variation ratio slightly. Other intermedi-

ate methods were BRR (−2,-2) and BAYESA*B* (−2,6).

The additive accuracies for alternative methods were

0.68, 0.63 and 0.53 for parametric GWS, GWS by the

best methods and pedigree, respectively. The expected

additive accuracy estimate of the parametric GWS ob-

tained using a deterministic formula is 0.68 in this case.

BayesA*B* methods and the G-BLUP method fitted

using GVC-REML software were the best and gave ac-

curacies of 0.63, which is close to the parametric case.

These results reinforce the value of GWS, which per-

formed better than the pedigree phenotypic selection

(Table 2).

Figure 1 also corroborates the power of GWS in catch-

ing up to the parametric individual genetic values (in

dark). The methods that fitted and best matched the para-

metric values were the BayesA*B*-type methods and the

Bayesian Regression (in dark blue, brown, gray, red and

green), as seen for additive effects in Fig. 1. For dominance

effects, the best methods were the BayesA*B*-type

Table 2 Scenario 1: Results for the trait controlled by small gene effects with heritability 0.30

Method h2a h2d cor_a byg_a cor_d byg_d Vd/Va Number of criteria
scored as best

Parametric 0.21 ± 0.01 0.10 ± 0.01 0.68 - 0.48 - 0.48 -

BRR (−2,-2) 0.15b ± 0.05 0.12b ± 0.05 0.63b ± 0.03 1.40 ± 0.33 0.31b ± 0.07 0.57b ± 0.23 0.77 5b

IBLASSO (4,-2) 0.12 ± 0.06 0.14 ± 0.05 0.62b ± 0.03 2.41 ± 1.82 0.28 ± 0.06 0.46 ± 0.24 1.19 1

IBLASSO (4,2) 0.14 ± 0.06 0.10b ± 0.06 0.63b ± 0.03 1.86 ± 1.14 0.29b ± 0.06 0.63b ± 0.42 0.81 4

BAYESA*B* (−2,6) 0.15b ± 0.06 0.10b ± 0.05 0.63b ± 0.03 1.51 ± 0.57 0.29b ± 0.06 0.69b ± 0.42 0.67 5b

BAYESA*B* (4,6) 0.15b ± 0.06 0.10b ± 0.05 0.63b ± 0.03 1.49b ± 0.56 0.29b ± 0.06 0.71b ± 0.43 0.65 6b

BAYESA*B* (−2,8) 0.15b ± 0.05 0.09b ± 0.05 0.63b ± 0.03 1.44b ± 0.47 0.29b ± 0.06 0.72b ± 0.42 0.61b 7b

RR-HET (-2–2) 0.11 ± 0.06 0.14 ± 0.05 0.62b ± 0.03 2.43 ± 1.74 0.28 ± 0.05 0.44 ± 0.23 1.24 1

BLASSO (4,2) 0.17b ± 0.09 0.13 ± 0.02 0.63b ± 0.03 1.44 ± 0.65 0.29b ± 0.05 3.20 ± 5.34 0.74 3

G-BLUP 0.15b ± 0.05 0.13 ± 0.06 0.63b ± 0.03 1.25b ± 0.35 0.31b ± 0.04 0.70b ± 0.30 0.83 5b

Pedigree 0.16b ± 0.03 0.07 ± 0.01 0.53 ± 0.03 0.96b ± 0.19 0.05 ± 0.02 0.20 ± 0.11 - 2

bbest = highest + − 0.02 for h2a, h2d, cor a, cor d and Vd/Va; 0.5 to 1.5 for bya and byd; highest minus 2 for best criteria in the last column
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methods (in dark blue, brown, gray). The Bayesian

Regression (in red and green) did not follow these

methods for the dominance effects.

In general, compared to the parametric values, the

methods for additive-dominance models slightly under-

estimate the narrow sense heritability. The G-BLUP fitted

via GVC software slightly overestimated the dominance

heritability. The best methods were able to sufficiently

capture the dominance heritability but were not com-

pletely able to capture the additive heritability, perhaps

due to a limited number of markers and/or imperfect LD.

Dominance heritability was overestimated by G-BLUP

and BLASSO and perfectly estimated by BayesA*-B*.

Results concerning the trait controlled by a mixed (major

and small gene effects) inheritance model with a heritability

of 0.30 are presented in Table 3. It can be seen that the best

methods were similar to the small gene size effects case

(Table 2), except that the G-BLUP method fitted through

GVC-REML software outperformed the three BayesA*B*

methods. G-BLUP was better for estimating dominance ef-

fects, and the BayesA*B* methods were better for estimat-

ing the dominance/additive variation ratio. Such methods

proved to be robust to the genetic architecture of the trait.

Results concerning the trait controlled by small gene

effects with a heritability of 0.50 are presented in Table 4.

It can be seen from Table 4 that the best methods were

the same as in Tables 2 and 3, i.e., the three BayesA*B*

methods and the G-BLUP method fitted through GVC-

REML software. The methods were good for estimating

both additive and dominance effects as well as the dom-

inance/additive variation ratio. As expected, accuracies

for h2 = 0.5 were higher than for h2 = 0.3 (Table 2). The

expected additive accuracy estimate of GWS obtained by

a deterministic formula is 0.73 in this case. BayesA*B*

methods and the G-BLUP method fitted through GVC-

REML software were the best, with an accuracy of 0.70.

The results in Table 5 are for the fourth scenario and

are similar to those in Table 3, with G-BLUP outper-

forming the three BayesA*B* methods, except in recov-

ering the dominance/additive variation ratio. G-BLUP in

particular proved to be better for estimating dominance

in a mixed inheritance model scenario.

Partition of accuracy due to the three quantitative

genetics information sources

The results referring to partitioning of the quantitative

genetic information for h2 = 0.5 and a mixed inheritance

model are presented in Table 6 (method BayesA*B*

(−2,8)).

From the genomic heritability (0.26), it can be seen

that the main source of information is LD (0.16),

followed by co-segregation (0.06) and family IBD rela-

tionships not linked to QTL (0.04). In the simulation,

the proportion (r2mq) of genetic variation explained by

markers exclusively in LD was high, approximately 90 %.

In such a case, genetic variation is mainly due to LD ra-

ther than co-segregation and residual polygenic effects;

thus, the results are corroborated.

From the pedigree heritability (0.20), it can be seen that

the main source of information is individual IBD relation-

ships (0.14), which was a fraction (0.875 = 0.14/0.16) of the

IBS-LD captured by markers, followed by co-segregation

(0.06). These partitions are in accordance with results re-

ported by [28]. Not all of the 0.14 value necessarily origi-

nated from the 0.16, as the pedigree can capture some loci

that markers cannot. Accuracy estimates follow almost the

same tendency.

The additive accuracy of related individuals (rgĝr using the

raw dataset) was 0.69. It can also be given as a function of

accuracy due to pedigree (rgĝped) and the accuracy of unre-

lated individuals (rgĝu) by the following: rgĝr = rgĝped + (1 ‐

rgĝped)rgĝu = 0.45 + (1 − 0.45) 0.52 = 0.73, which is close to

Table 3 Scenario 2: Results for the trait controlled by mixed (major and small gene effects) inheritance model with heritability 0.30

Method h2a h2d cor_a byg_a cor_d byg_d Vd/Va Number of
criteria best

Parametric 0.20 ± 0.01 0.13 ± 0.01 0.65 - 0.53 - 0.64 -

BRR (−2,-2) 0.13b ± 0.03 0.12b ± 0.06 0.63b ± 0.03 1.53b ± 0.29 0.33 ± 0.04 0.65 ± 0.22 0.94 4b

IBLASSO (4,-2) 0.10 ± 0.04 0.14b ± 0.05 0.64b ± 0.03 3.49 ± 4.49 0.31 ± 0.04 0.55 ± 0.24 1.44 2

IBLASSO (4,2) 0.12b ± 0.04 0.11b ± 0.05 0.63b ± 0.03 2.26 ± 2.22 0.32 ± 0.05 0.71b ± 0.33 0.93 4b

BAYESA*B* (−2,6) 0.13b ± 0.04 0.10 ± 0.04 0.63b ± 0.03 1.53b ± 0.53 0.33 ± 0.04 0.80b ± 0.32 0.73 4b

BAYESA*B* (4,6) 0.13b ± 0.04 0.10 ± 0.04 0.63b ± 0.03 1.54b ± 0.53 0.33 ± 0.04 0.79b ± 0.32 0.74 4b

BAYESA*B* (−2,8) 0.14b ± 0.04 0.09 ± 0.04 0.63b ± 0.03 1.47b ± 0.48 0.33 ± 0.04 0.83b ± 0.33 0.68b 5b

RR-HET (-2–2) 0.10 ± 0.04 0.14b ± 0.05 0.64b ± 0.03 3.43 ± 4.38 0.31 ± 0.04 0.55 ± 0.24 1.43 2

BLASSO (4,2) 0.10 ± 0.03 0.16 ± 0.07 0.63b ± 0.04 1.91 ± 0.82 0.32 ± 0.05 0.76b ± 0.61 1.63 2

G-BLUP 0.14b ± 0.03 0.13b ± 0.03 0.64b ± 0.04 1.26b ± 0.21 0.38b ± 0.04 0.84b ± 0.20 0.92 6b

Pedigree 0.13b ± 0.02 0.09 ± 0.01 0.46 ± 0.04 0.89b ± 0.11 0.06 ± 0.03 0.22 ± 0.10 - 2

bbest = highest + − 0.02 for h2a, h2d, cor a, cor d and Vd/Va; 0.5 to 1.5 for bya and byd; highest minus 2 for best criteria in the last column
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0.69. It can be observed that the use of related individuals

increases the accuracy.

As G-BLUP cannot capture short-range LD informa-

tion well, [28] recommended Bayesian methods with t-

distributed priors that are expected to capture LD better

than G-BLUP [48]. Our results support those conclusions

by showing that BayesA*-B*, which uses t-distributed

priors, was the best for recovering the dominance vari-

ance/additive variance ratio (Tables 2, 3 and 4).

Discussion

The so called BayesA*B* methods fitted by the GS3 soft-

ware produced the best results, together with G-BLUP.

The degrees of freedom associated with prior error vari-

ance were found to have little impact in the three Baye-

sA*B* methods, and the greater impact comes from

using adequate (6 or 8 instead of −2, 2 or 4) degrees of

freedom for the marker variance associated with the

shrinkage parameter. Using 6 or 8° of freedom produced

only small differences, the BayesA*B* (−2, 8) being

slightly better. G-BLUP was as good as these BayesA*B*

methods. Figure 2 and the associated table summarize

the results and show the following final classification of

methods: (i) best: G-BLUP; BAYESA*B* (−2,8); BAYE-

SA*B* (4,6); (ii) intermediate: BRR (−2,-2); BAYESA*B*

(−2,6); IBLASSO (4,2); and (iii) worst: IBLASSO (4,-2);

RR-HET (-2–2); BLASSO (4,2); Pedigree.

In general, the Bayesian Ridge Regression (BRR)

method provided good results. This finding is in accord-

ance with [40], who reported that the Bayesian Ridge

model with marker-homogeneous shrinkage was among

the models with the highest predictive ability in all data-

sets. Additionally, they found that, independent of the

number of markers and observations, marker-specific

shrinkage did not outperform marker-homogeneous

shrinkage. Considering the higher computing efforts of

Table 4 Scenario 3: Results for the trait controlled by equal gene effects with heritability 0.50

Method h2a h2d cor_a byg_a cor_d byg_d Vd/Va Number of criteria best

Parametric 0.35 ± 0.01 0.17 ± 0.01 0.73 - 0.51 - 0.48 -

BRR (−2,-2) 0.25b ± 0.04 0.20b ± 0.03 0.69b ± 0.03 1.42b ± 0.23 0.36 ± 0.04 0.54b ± 0.11 0.81 5b

IBLASSO (4,-2) 0.22 ± 0.06 0.22 ± 0.04 0.69b ± 0.03 1.74 ± 0.82 0.35 ± 0.04 0.48 ± 0.11 1.01 1

IBLASSO (4,2) 0.24 ± 0.06 0.20b ± 0.04 0.69b ± 0.03 1.60 ± 0.71 0.36 ± 0.04 0.54b ± 0.14 0.82 3

BAYESA*B* (−2,6) 0.25b ± 0.06 0.18b ± 0.04 0.70b ± 0.03 1.53b ± 0.66 0.36 ± 0.04 0.57b ± 0.15 0.73b 6b

BAYESA*B* (4,6) 0.25b ± 0.06 0.18b ± 0.04 0.70b ± 0.03 1.52b ± 0.66 0.36 ± 0.04 0.58b ± 0.15 0.72b 6b

BAYESA*B* (−2,8) 0.26b ± 0.06 0.18b ± 0.04 0.70b ± 0.03 1.51b ± 0.64 0.36 ± 0.04 0.59b ± 0.15 0.69b 6b

RR-HET (-2–2) 0.22 ± 0.06 0.22 ± 0.04 0.69b ± 0.03 1.76 ± 0.83 0.35 ± 0.04 0.48 ± 0.11 1.02 1

BLASSO (4,2) 0.18 ± 0.05 0.29 ± 0.03 0.69b ± 0.03 1.69 ± 0.45 0.35 ± 0.03 0.46 ± 0.08 1.59 1

G-BLUP 0.27b ± 0.03 0.20b ± 0.03 0.70b ± 0.02 1.17b ± 0.13 0.40b ± 0.04 0.74b ± 0.22 0.77 6b

Pedigree 0.24 ± 0.02 0.11 ± 0.01 0.53 ± 0.02 0.87b ± 0.09 0.04 ± 0.02 0.12 ± 0.06 - 1

bbest = highest + − 0.02 for h2a, h2d, cor a, cor d and Vd/Va; 0.5 to 1.5 for bya and byd; highest minus 2 for best criteria in the last column

Table 5 Scenario 4: Results for the trait controlled by mixed (major and small gene effects) inheritance model with heritability 0.50

Method h2a h2d cor_a byg_a cor_d byg_d Vd/Va Number of
criteria best

Parametric 0.33 ± 0.01 0.21 ± 0.01 0.69 - 0.55 - 0.64 -

BRR (−2,-2) 0.25b ± 0.06 0.17 ± 0.04 0.69b ± 0.02 1.36b ± 0.24 0.42 ± 0.03 0.83b ± 0.18 0.67b 5

IBLASSO (4,-2) 0.24b ± 0.07 0.18 ± 0.04 0.69b ± 0.02 1.44b ± 0.30 0.41 ± 0.04 0.79b ± 0.20 0.74 4

IBLASSO (4,2) 0.25b ± 0.07 0.15 ± 0.04 0.69b ± 0.03 1.35b ± 0.27 0.42 ± 0.04 0.90b ± 0.26 0.61b 5

BAYESA*B* (−2,6) 0.26b ± 0.07 0.14 ± 0.03 0.69b ± 0.03 1.31b ± 0.26 0.42 ± 0.04 0.97b ± 0.03 0.55 4

BAYESA*B* (4,6) 0.26b ± 0.07 0.14 ± 0.04 0.69b ± 0.03 1.31b ± 0.26 0.42 ± 0.04 0.96b ± 0.28 0.55 4

BAYESA*B* (−2,8) 0.26b ± 0.07 0.14 ± 0.04 0.69b ± 0.03 1.29b ± 0.25 0.42 ± 0.04 0.99b ± 0.30 0.53 4

RR-HET (-2,–2) 0.23 ± 0.07 0.17 ± 0.04 0.69b ± 0.02 1.44b ± 0.30 0.41 ± 0.04 0.80b ± 0.20 0.74 3

BLASSO (4,2) 0.23 ± 0.08 0.21 ± 0.06 0.68b ± 0.03 1.37b ± 0.35 0.41 ± 0.03 0.86b ± 0.26 0.88 4

G-BLUP 0.25b ± 0.06 0.19 ± 0.04 0.70b ± 0.02 1.25b ± 0.03 0.46b ± 0.02 0.94b ± 0.20 0.76 6

Pedigree 0.20 ± 0.02 0.13 ± 0.01 0.45 ± 0.03 0.84b ± 0.11 0.08 ± 0.03 0.24 ± 0.10 - 1

bbest = highest + − 0.02 for h2a, h2d, cor a, cor d and Vd/Va; 0.5 to 1.5 for bya and byd; highest minus 2 for best criteria in the last column
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models with marker-specific shrinkage, they recom-

mended the Bayesian Ridge method as a robust model

for genome-based prediction. In line with this recom-

mendation, most studies report that Bayesian shrinkage

models perform as well as or slightly better than the G-

BLUP model (equivalent to the ridge regression model).

In BayesA and BayesB, the degrees of freedom of

the fully conditional posterior distribution of σmai
2 are

df + 1 (where df is the prior degrees of freedom).

Thus, it is only one degree of freedom higher than

the prior degrees of freedom, independent of the

number of observations (N) or markers (n) in the

model [2] and [40]. However, in the Bayesian Ridge

Regression, the degrees of freedom increase with the

number of markers in the model. In genomic data-

sets, learning in the Bayesian methods is limited due

to the n> > N situation. With next generation sequen-

cing data, n will be even larger and is expected to

Table 6 Partition of accuracy due to the three quantitative genetics information for a trait controlled by mixed (major and small

gene effects) inheritance model with heritability 0.50 (method BayesA*B* (−2,8))

Information Additive h2 Composition of information Additive accuracy Composition of accuracy

1: Raw 0.26 COSEG+ IBD-LD + F-IBD-R 0.69 Calculated from data

2: AWF 0.22 COSEG + LD 0.53 Calculated from data

3: DMS 0.16 LD 0.52 Calculated from data

4: (2) minus (3) 0.06 COSEG 0.10 Sqr(0.532–0.522)

5: (1) minus (2) 0.04 F-IBD-R - -

6: Pedigree-Raw 0.20 COSEG + I-IBD-R 0.45 Calculated from data

7: (6) minus (4) 0.14 I-IBD-R 0.43 Sqr(0.452–0.102)

9: Parametric 0.33 ALL - -

I-IBD-R individual IBD relationships, F-IBD-R family IBD relationships, Sqr square root

Fig. 2 Comparison of methods in terms of the number of favorable items in the four scenarios
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increase to much more than N. Thus, models with a

strong Bayesian learning ability such as the Bayesian

Ridge and Bayesian Lasso will be useful [40].

The accuracies were very close across the methods

for all effects (additive and dominance, although

dominance effects were poorly estimated). This result

is in accordance with the results in the literature [38,

45], which indicate the similarity of several methods

in terms of accuracy for predictive purposes. Thus,

the main criteria contributing to the differences

among the methods are bias (related to architecture

learning), heritability estimation and dominance/addi-

tive variation capture.

The IBLASSO (4,-2) method, criticized by [38] in

terms of the chi-square number (−2) of degrees of free-

dom for marker variance, also performed poorly in the

present work, as did the RR-BLUP-HET method that

used variance component results from the same

IBLASSO (4,-2) method. In an attempt to improve the

results, in the case of the BLASSO used by [49], the de-

grees of freedom of the chi-square prior distributions

for genetic variances were changed from −2 to 2, produ-

cing the IBLASSO (4,2) method. This method was bet-

ter than IBLASSO (4,-2) but worse than BLASSO (4,2)

fitted in the BLR software.

For the estimation methods, 7 evaluation criteria were

used. The accuracy did not differ much, even with con-

trasting methods, corroborating the majority of the re-

ports in the literature [13, 14, 38, 45]. Unbiasedness and

learning of the genetic architecture favored the methods

fitted through Bayesian Lasso.

Across the 7 criteria, the additive-dominance BayesA*-

B*-type or t-BLASSO methods (with 6 or 8° of freedom

on a chi-square distribution for genetic variance and

then for the penalization parameter) and G-BLUP per-

formed best in over 5 criteria.

With increasing degrees of freedom in the chi-square

distribution for variance components, the DE distribu-

tion for marker effects goes to a normal distribution,

with the t distribution between them. Because the

Student t-distribution approximates the normal distribu-

tion when the degree of freedom v increases, G-BLUP

can be considered a limiting case of BayesA. The fitting

of the BLASSO with new double exponential and t dis-

tributions has been considered recently [46]. They pro-

posed three new methods (improved double-exponential

prior, improved Student’s t prior and extended Bayesian

LASSO) that outperformed the traditional Bayesian

LASSO. The Bayes/Blasso models that we fitted differed

in the prior specification for the marker effects, with

hyperparameters controlling the amount of shrinkage of

the effects. Because the degree of freedom v controls the

thickness of the tails of a t-distribution, the choice of v

had a large effect on the results.

Fang et al. [46] reported that Bayesian LASSO usually

cannot effectively shrink the zero-effects QTL very close

to zero. They concluded that the improved Student’s t

prior for the LASSO is able to effectively shrink the zero-

effects QTL toward zero, and the signals of the QTL were

very clear. The results reported by [46] corroborate our

choice to change the DE to a t distribution in Blasso.

In our paper, the additive-dominance BayesA*-B*-type

methods that used t-distributed priors were the best for re-

covering the dominance variance/additive variance ratio

(Tables 2, 3 and 4). This property is of great relevance for

keeping the true proportionality between dominance and

additive effects in the estimates. BLASSO is a better learner

than BayesA and B, and it is perhaps because of this learn-

ing ability that the BayesA*B* of the present paper fitted

very well, adequately recovering the parametric values.

The BRR method was the best in this criterion in one

situation (Table 5). The ability to recover the heritabil-

ities can be more sensitive to discriminate methods. This

improved sensibility is because heritabilities are more

complex parameters than the simple correlation coeffi-

cients (accuracies) [49]. According to [50], heritability

can be regarded as a measure of the goodness of fit in

the current dataset (projected to the base population),

and predictive accuracy refers to prediction in future

samples. Both are interdependent, and the predictive ac-

curacy (estimated by using a validation population) is

able to capture over-fitting. The heritability estimates

the proportion of phenotypic variance accounted for by

true genetic values in the base population comprised of

unrelated individuals. On the other hand, the squared

predictive accuracy estimates the proportion of pheno-

typic variance accounted for by predicted genetic values

in the sample, not in the base population. Thus, it ig-

nores inbreeding, relationships between individuals and

estimation errors, and does not produce consistent in-

formation about the magnitude of the heritability [50].

The most probable true symmetrical distributions of

genetic effects (genetic architecture) are normal (Gaussian),

t (Studentian) and double exponential (Laplacean). Thus, it

is imperative to test these three distributions by assuming

them as priors in the methods of analyses. This approach

will reveal which assumed prior distribution is more ad-

equate and/or robust. Lehermeier et al. [40] reported that

little is known about the sensitivity of the Bayesian models

with respect to prior and hyperparameter specification, as

comparisons of predictive performance are mainly based

on a single set of hyperparameters. Our paper has varied

these hyperparameters and showed that measurable differ-

ences are the result of different specifications. This finding

is in accordance with the literature. BayesA and BayesB

hyperparameter settings had a stronger effect on predict-

ive performance than was observed with the Blasso and

Bayesian regression [40].
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Wang et al. [24] presented the traditional quantitative

genetics model as the unifying model for definitions of the

genomic relationship and inbreeding coefficients. Under

the correct definitions of these coefficients, the G-BLUP

procedure seems to suffice. According to them, theoretical

differences between the existing and new definitions of

genomic additive and dominance relationships were in the

assumptions of equal SNP effects (equivalent to across-

SNP standardization), equal SNP variances (equivalent to

within-SNP standardization), and expected or sample SNP

additive and dominance variances. These conclusions

came to facilitate the understanding and comparison of al-

ternative prediction and estimation methods.

As advocated by [24], after their results, the need for

methods comparisons is less evident. Our results show-

ing the equivalence between several predictive methods

corroborate their findings.

Conclusions

Amongst the 10 models/methods evaluated, the G-

BLUP, BAYESA*B* (−2,8) and BAYESA*B* (4,6) methods

exhibited the best results and were found to be adequate

for accurately predicting genomic breeding and total

genotypic values, as well as for estimating additive and

dominance in additive-dominance genomic models.
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