Programa Cooperativo entre o ICARDA/Embrapa: o caso da cevada irrigada para o Cerrado do Brasil Central

Flávio Capettini1, Renato Fernando Amabile², Euclydes Minella³ & Walter Quadros Ribeiro Júnior³

(¹ ICARDA - International Center for Agricultural Research in the Dry Areas. email: f.Capettini@cgiar.org ²Embrapa Cerrados, BR 020, Km 18, Caixa Postal 08233, CEP 73301-970 Planaltina, DF. e-mail: amabile@cpac.embrapa.br ²Embrapa Trigo, Caixa Postal 451, CEP 99001-970 Passo Fundo, RS)

Introdução

A cevada, através de resultados de pesquisa da Embrapa, tem demonstrado potencial como uma opção importante para a diversificação do sistema de produção irrigado nos Cerrados do Brasil Central.

O programa de melhoramento cevada do ICARDA tem como objetivo oferecer apoio aos programas nacionais de pesquisa da América Latina. Em função de ter uma área de atuação a nível internacional e uma ampla base de germoplasma, possui experiência de trabalho em diversos ambientes muitas vezes similares ao do Cerrado. A mais recente incorporação de melhoramento de cevada para malte no ICARDA, aos objetivos anteriores de forragem e alimentação humana, aumentam as possibilidades de incrementar projetos de colaboração com objetivos comuns. sentido. centraliza Neste ICARDA informações necessárias à continuidade dos estudos dirigidos pela pesquisa tanto para o Cerrado como para a região Sul

do Brasil, possuindo, desta forma, o suporte tecnológico disponível para os trabalhos desenvolvidos para estas regiões.

A introdução e seleção de tipos exóticos, através de materiais genéticos proveniente do ICARDA favorecem esta seleção per si, desde que atendam as exigências agronômicas e industriais visando o aumento da produtividade, competitividade e sustentabilidade do sistema agrícola irrigado do Cerrado.

Material & Métodos

O experimento foi realizado no campo experimental da Embrapa Cerrados, em 2008, Planaltina-DF, situada a 15°35'30" latitude S, 47°42'30" longitude O e altitude de 1.007 m. O solo do ensaio foi classificado como LATOSSOLO VERMELHO Distrófico típico, argiloso. Segundo a classificação de Köoppen, á área está inserida no domínio morfoclimático do Cerrado, com clima tropical estacional (Aw). Utilizou-se um delineamento experimental de blocos ao acaso com três repetições, .

As irrigações foram feitas por sistema de irrigação convencional, baseadas na tensão de água presente no solo, sempre que as leituras dos blocos de gesso, instalados a 15 cm de profundidade, indicavam valores médios em torno de 100 kPa. Foram aplicados 400 mm de água durante o ciclo da cultura. Realizou-se uma adubação de plantio de 400 kg/ha da fórmula 4-30-16 + Zn e 40 kg/ha de nitrogênio, na forma de uréia, como adubação de cobertura.

Testaram-se 24 linhagens selecionadas e provenientes do Projeto cooperativo entre a Embrapa e o Icarda, além das testemunhas BRS 180, BRS 195 e o trigo BR 22. Os genótipos CEV 05, CEV 06, CEV 07, CEV 292, CEV 317, CEV 397, CEV 398, CEV 399, CEV 403 e CEV 417 apresentaram um rendimento estatisticamente similar a

testemunha BRS 180., porém superior a BRS 195, com exceção da CEV 292 e CEV 317 (Tabela 1).

Com relação a classificação de primeira, a linhagem CEV 697 obteve uma classificação de 97%, sendo que os materiais genéticos CEV 292, CEV 317 e CEV 319 apresetaram uma classificação, respectivamente de 66,3%, 70% e 65%, abaixo da BRS 195.

O teor protéico de grãos variou de 15,6% para a CEV 937 a 10,7% para a CEV 397, entre os materiais do ICARDA, enaquanto as testemunhas obtiveram de 10,5% e 12,05%, para a BRS 180 e BRs 195, respectivamente.

Conclusões

Os resultados mostram o potencial de introdução de cevada no ambiente irrigado do Cerrado.

A linhagem CEV 397 deteve um rendimento de grãos de 7.739,7 kg ha-1, com um espigamento de 59 dias, uma classificação de 88% e uma proteína de 10,73%.

Genótipo	Rendmento	Classe		Altura		Espig		Acam		Prot	-
BRS 180	7084.3 ab	83.333		91.667	a	54.333	de	0.01491	a	10.520	1
BRS 195	4577.7 hijk	79.333	ef	63.333	f	71.000	a	0.00000	a	12.057	
BR 22	4815.7 hijk			85.000	abc	56.333	cde	0.00000	a	18.417	
CEV 02	3830.7 hijk	89.333	abcd	65.000	ef	55.667	cde	0.00000	a	14.927	
CEV 04	4511.7 hijk	89.333	abcd	71.667	cdef	56.000	cde	0.00000	a	13.970	
CEV 05	6127.0 bcdef	89.333	abcd	83.333	abcd	59.333	cde	0.01054	a	15.293	
CEV 06	6022.0 hijk	90.000	abcd	82.000	abcd	59.333	cde	0.00000	a	14.450	
CEV 07	6303.3 bcde	90.667	abc	81.667	abcd	59.333	cde	0.00000	a	13.667	
CEV 08	5678.7 cdefghi	85.000	bcde	84.000	abc	59.333	cde	0.02109	a	14.300	
CEV 233	4922.3 efghijk	93.333	ab	85.333	abc	52.000	e	0.01827	a	12.157	
CEV 292	5831.0 bcdefgh	85.333	bcde	80.000	abcde	59.667	cde	0.02110	a	12.877	
CEV 317	5806.3 bcdefgh	66.333	g	82.333	abcd	58.667	cde	0.01491	a	12.627	
CEV 319	2519.3 1	70.000	g	71.667	cdef	57.667	cde	0.00000	a	12.503	
CEV 374	6161.0 bcdef	65.000	g	83.333	abcd	57.333	cde	0.00000	a	11.577	
CEV 397	7739.7 a	88.000	abcde	86.667	abc	59.333	cde	0.02109	a	10.730	
CEV 398	6543.0 abcd	81.333	def	88.333	ab	54.333	de	0.01054	a	11.037	
CEV 399	6505.0 abcd	84.667	bcde	83.333	abcd	61.333	cd	0.00000	a	12.603	
CEV 403	6002.7 bcdefg	79.333	ef	80.000	abcde	60.000	cd	0.02359	a	12.233	
CEV 417	6726.0 abc	73.667	f	75.000	bcdef	60.000	cd	0.00000	a	10.763	
CEV 691	5069.0 efghij	88.000	abcde	80.000	abcde	52.000	e	0.03167	a	13.240	
CEV 696	5213.3 defghij	95.333	a	90.000	ab	52.000	e	0.00000	a	12.473	
CEV 697	4039.3 jk	89.333	abcd	80.000	abcde	70.000	ab	0.02545	a	14.377	
CEV 802	4699.3 ghijk	97.000	a	75.000	bcdef	55.667	cde	0.00000	a	14.393	
CEV 803	4685.0 jk	91.667	abc	84.000	abc	61.000	cd	0.00000	a	14.260	
CEV 807	4292.3 ijk	90.667	abc	67.333	def	62.333	bc	0.00000	a	13.827	
CEV 814	4792.3 fghijk	91.333	abc	71.667	cdef	61.000	cd	0.00000	a	12.890	
CEV 937	3557.0 kl	94.667	a	77.667 6.376.	abcdef	61.333	cd	0.00000	a	15.630	
CV:	8.193.487	3.384.9		3		4.241.5		0.0001		1.297.7	