FIXAÇÃO DE FÓSFORO POR UM LATOSSOLO E DETERMINAÇÃO DO VALOR «X»

AIRTON MANZANO **
HELVÉCIO DE POLLI **
JEZIEL C. FREIRE **
LAFAYETTE F. SOBRAL **
MAURÍCIO DE SOUZA **
NELSON VENTORIN **
FRANCISCO DE A. F. DE MELLO ***

RESUMO

Este trabalho se refere a um ensaio conduzido em laboratório para avaliar a capacidade de fixação de fosfato dos horizontes A_1 (0-22cm), A_3 (22-56cm) e B_{22} (155-200cm) de Lotossolo Roxo Distrófico. Foi, também, determinado o valor "X" de WAUGH & FITTS (1966) dos três horizontes.

Os principais resultados são apresentados a seguir:

- 1 O horizonte B_{22} foi o que apresentou maior capacidade de fixação de fósforo, seguido pelo A_3 e, finalmente, pelo A_1 .
- 2 Os valores "X" encontrados foram: 350 ppm, 225 ppm e 175 ppm para os horizontes B_{22} , A_3 e A_1 , respectivamente.
- 3 Houve uma relação muito estreita entre as quantidades de P adicionadas e as fixadas pelos três horizontes.

INTRODUÇÃO

De acordo com HEMWALL (1957) o fenômeno da fixação do fósforo pelo solo foi observado, pela primeira vez, na Europa em 1850. Dessa data até o presente muitos trabalhos já foram efetuados a respeito, estabelecendo-se conceitos e interpretações de várias naturezas que ainda não esclareceram devidamente o problema.

^{*} Entregue para publicação em 30.12.1976.

^{**} Alunos do Curso de Pós-Graduação da Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, 1975.

^{***} Professor de Fertilidade do Solo, da Escola Superior de Agricultura "Luiz de Queiroz".

Quando fosfatos são adicionados ao solo grande parte é fortemente insolubilizado tornando-se não disponível às plantas por um lapso de tempo variável e desconhecido. Desse modo, o fenômeno se torna um problema importante da química e da físico-química do solo com enorme influência sobre a fertilidade do mesmo.

Neste trabalho são apresentados os resultados obtidos em um estudo de laboratório sobre a fixação de fosfato por três horizontes de um Latossolo Roxo Distrófico, bem como os valres "X" de WAUGH & FITTS (1966).

REVISÃO BIBLIOGRÁFICA

Segundo KARDOS (1964) os tipos de reação através dos quais o fósforo é fixado podem ser colocados em três grupos: adsorção, precipitação e substituição isomorfa.

De acordo com HSU (1965), em solos ácidos, a precipitação ocorre quando o fosfato remove o Al³+ ou o Fe³+ da rede cristalina precipitando-se em uma nova fase. A adsorção é um caso especial no qual o Al³+ e o Fe³+ permanecem como constituintes da fase original e reagem com os ions fasfato através de forças residuais existentes nas superfícies das partículas. A penetração do fósforo na rede cristalina, substituindo o SiO₂ ou deslocando hidroxilas, foi verificado por STOUT (1939), na haloisita, e confirmado depois por COLE & JACKSON (1950).

HEMWALL (1957) diz que os componentes dos solos ácidos responsáveis pela fixação do fósforo são os compostos de ferro e de alumínio e os argilo-minerais. Os compostos fosfatados de ferro e de alumínio compreendem não só os fosfatos insolúveis desses metais mas também os íons fosfato adsorvidos aos óxidos hidratados dos mesmos.

Os dados existentes na literatura sobre a influência da matéria orgânica obre a fixação do fósforo são contraditórios (ver DALTON et al, 1952; BUCKMAN & BRADY, 1968; LEAL & VELLOSO, 1973; LOURENÇO, 1973).

No Brasil já existe um número elevado de trabalhos relativos à fixação do fósforo, efetuados por diferentes processos. O método de WAUGH & FITTS (1966) também já tem sido empregado (MAGA-LHÃES, 1974; REZENDE, 1974; SOBRAL, 1975).

MATERIAIS E MÉTODOS

Foram utilizadas amostras de três horizontes — A_1 (0-22cm), A_3 (22-56cm) e B_{22} (155-200cm) — de um Latossolo Roxo Distrófico,

do Município de Laras, Estado de Minas Gerais, cujas características químicas e físicas estão contidas nas Tabelas 1 e 2.

Horizonte	e.mg/100ml T.F.S.A.						
	$Ca^{2+} + Mg^{2+}$	K+	Na+	A1 ³⁺	H+	C %	РН
A_1	0,30	0,05	0,04	1,50	12,50	3,39	4,6
$\mathbf{A_3}$	0,30	0,01	0,02	0,40	5,20	1,88	4,8
$\mathbf{B_{22}}$	0,20	0,01	0,02	0,10	3,10	0,85	5,0

Tabela 1 — Características químicas dos horizontes $\mathbf{A_1}$, $\mathbf{A_3}$ e $\mathbf{B_{22}}$ do solo utilizado.

Horizonte	Areia %	Silte %	Argila %	St, m²/g
A_1	15,25	2,10	82,65	53,00
$A_3^{}$	10,60	2,25	87,15	76,00
$\mathbf{B_{22}}$	10,40	3,55	86,05	63,00

Tabela 2 — Características físicas dos horizontes A_1 , A_3 e B_{22} do solo utilizado

Os métodos utilizados para a determinação dos componentes das Tabelas 1 e 2 serão descritos sucintamente, a seguir.

Ca²⁺ + Mg²⁺ — extração com solução de KC1 1N e complexação com EDTA 0,025N usando o negro de eriochromo como indicador (VETTORI, 1969).

Al⁺³ trocável — extração com solução de KC1 1N e titulação com solução de NaOH 0,025N (VETTORI, 1965).

 K^+ e Na^+ trocáveis — extração com solução 0.025N em H_2SO_4 e 0.05N em HC1, sendo as leituras feitas em fotômetro de chama (VETTORI, 1969).

H⁺ trocável — extração com solução 1N em acetato de cálcio, titulação com solução de NaOH 0,1N e subtração do Al³⁺ trocável (VETTORI, 1969).

C % — combustão úmida com ácido cromico 0,4N (VETTORI, 1969).

pH — relação solo água 1:2,5 e leitura em potenciômetro (VET-TORI, 1969).

Areia, silte e argila — método da pipeta (GROHMANN & VAN RAIJ, 1974); o tempo de agitação para argila e limo foi calculado pela lei de Stokes (BAVER, 1956).

Superfície específica total — método proposto por HEILMAN et al (1965), que utiliza como fase adsorvida o éter monoetílico do etileno glicol (2-etoxietanol) — EMEG. O cálculo foi efetuado pela fórmula empregada por GROHMANN (1972):

St,
$$m^2/g = \frac{mg \ EMEG/g \ de \ terra}{2,86 \ . \ 10^{-4} \ g/m^2}$$

O método utilizado para a terminação da capacidade de fixação de P foi o descrito por WAUGH & FITTS (1966). A metodologia empregada será descrita a seguir, em resumo.

Porções de T.F.S.A. equivalentes a 10g de T.F.S.E. foram passadas para frascos de Erlenmeyer de 125 ml recebendo, como tratamento, 4 ml de soluções contendo $Ca(H_2PO_4)_2.H_2O$ com doses de P variando de 0 (zero) a 600 ppm. No caso da dose 0 (zero), foram juntados 4 ml de água destilada. Os erlenmeyers foram cobertos ficando o conjunto em repouso durante 4 dias, após o que procedeu-se à extração do P com solução 0,05N em H_2SO_4 . As dosagens foram feitas colorimetricamente segundo CATANI & JACINTHO (1974), com algumas modificações.

O P fixado foi calculado pela fórmula:

$$Pf = (Pa + P_s) - P_e$$

Pf = P fixado

Pa = P adicionado

P_s = P existente no solo e extraível com solução 0,05N em H_sSO₄

 $P_e = P extraído.$

RESULTADOS E DISCUSSÃO

Os resultados obtidos se acham na Tabela 3.

P adicionado ppm	P retirado da solução (fixado)*						
	A_1		A_3		B_{22}		
	P, ppm	P%	P, ppm	P%	P, ppm	P%	
0							
50	44,47	88,94	46,89	93,78	48,25	96,50	
100	87,83	87,83	91,49	91,49	76,76	76,76	
150	130,65	87,09	134,09	89,39	144,12	96,08	
200	169,89	84,94	175,42	87,11	191,66	95,83	
250	210,88	84,35	215,89	86,36	236,43	94,57	
300	248,47	82,82	257,40	85,80	280,52	93,50	
400	318,34	79,57	329,77	82,44	368,44	92,11	
500	390,41	78,54	393,62	78,72	452,73	90,54	
600	452,38	75,39	463,01	77,17	532,32	88,72	

CV % = 1.18

Tabela 3 — Fósforo fixado, em ppm de P e em porcentagem do P aplicado.

Observa-se (Tabela 3) que com o aumento da dose de P empregada, a fixação aumentou em quantidades absolutas (ppm de P fixado) mas diminuiu em quantidades relativas (% de P fixado), como já haviam constatado REZENDE (1974), MAGALHÃES (1974) e SOBRAL (1975).

A análise da variância mostrou efeitos altamente significativos para doses de P ($F=24074,90^{**}$) e horizontes ($F=1038,53^{**}$); a interação doses de P x horizontes também foi significativa ($F=77,27^{**}$).

Para efeito de comparação entre as médias foram calculadas as diferenças mínimas significativas pelo teste de Tukey, a 5%:

Horizontes dentro de doses — $\triangle = 5,60$ Doses dentro de horizontes — $\triangle = 7,51$

Na Fig. 1 estão representadas graficamente as relações entre $\bf P$ extraído e $\bf P$ adicionado. Pelo processo recomendado por WAUGH & FITTS (1966) os valores "X" estão aproximadamente em torno de 200 ppm para o horizonte $\bf B_{22}$ e em torno de 150 ppm para os horizontes $\bf A_1$ e $\bf A_3$.

Entretanto, o processo recomendado por WAUGH & FITTS (1966) não permite uma determinação precisa dos valores "X", sobretudo em

^{*} Média de três repetições.

relação aos horizontes A_1 e A_3 . Por isso, tentou-se também a fórmula proposta por REZENDE (1974).

De acordo com WAUGH & FITTS (1966) o valor "X" é uma aproximação da quantidade de P requerida para ultrapassar o efeito da fixação do elemento; a porção restante solúvel, além do valor "X", permanece disponível às plantas. Para a avaliação de tal valor, REZENDE (1974) usou a seguinte fórmula:

$$Valor "X" = \frac{A + B}{2}$$

sendo A o tratamento que proporcionou uma quantidade de P extraída, imediatamente maior que 30 ppm e B o tratamento que proporcionou uma quantidade de P extraída imediatamente menor que 30 ppm.

O valor 30 ppm foi tomado como nível cítrico baseado no trabalho elaborado por técnicos do PIPAEMG-MG (1972).

Utilizando dados da Tabela 3, foram então, calculados os valores "X" para os horizontes A_1 , A_3 e B_{22} , cujos resultados estão na Tabela 4.

Horizonte	A (ppm de P)	B (ppm de P)	Valor X, (ppm de P)	
A_1	200	150	175	
A_3	250	200	225	
B_{22}	400	300	350	

Tabela 4 — Valores "X" dos horizontes A_1 , A_3 e B_{22}

A Fig. 1 e os valores "X" encontrados pelo processo de REZENDE (1974) indicam que, dos três horizontes, o $B_{\scriptscriptstyle 22}$ é o que possui maior poder de retenção de fosfato, seguido pelo horizonte $A_{\scriptscriptstyle 3}$ e, finalmente, pelo $A_{\scriptscriptstyle 1}$.

As relações entre as quantidades adicionadas de P (ppm) e as fixadas (ppm) são lineares como mostram as equações de regressão (1), (2) e (3):

sendo y = ppm de P extraída da solução (fixada)

x = ppm de P nas soluções originais.

CONCLUSÃO

- 1 O horizonte $B_{\scriptscriptstyle 22}$ foi o que apresentou maior capacidade de fixação de fósforo, seguido pelo $A_{\scriptscriptstyle 3}$ e, finalmente, pelo $A_{\scriptscriptstyle 1}$.
- 2 Os valores "X" de WAUGH & FITTS (1966) encontrados pelo processo apresentado por REZENDE (1974) foram: 350 ppm, 225 ppm e 175 ppm, respectivamente para os horizontes B_{22} , A_3 e A_1 .
- 3 Houve uma relação muito estreita entre as quantidades de P adicionadas e as fixadas pelos três horizontes.

SUMMARY

PHOSPHORUS FIXATION BY A LATOSSOL AND DETERMINATION OF THE "X" VALUE OF THE SOIL

An assay was conducted with the aim to evaluate the phosphorus fixation capacity of A_1 (0-22cm), A_3 (22-56cm) and B_{22} (155-200cm horizons of a "Roxo Latossol". Also, the "X" value of WAUGH & FITTS (1966) of the three horizons was determinated.

The main results are showed below:

- 1 The phosphorus fixation capacity of the three horizons are in the following rank: $B_{22} > A_3 > A_1$.
- 2 The "X" value are: 350 ppm (B_{22} horizon), 225 ppm (A_3 horizon) and 175 ppm (A_1 horizon).
- 3 Correlations were found at the level of 1% between added P and fixed P by the studied horizons.

LITERATURA CITADA

- BAVER, L.D., 1966 The mechanical composition of soil. In: Soil Physics, 3.^a ed., John Wiley & Sons, New York, pp. 48-80.
- BUCKMAN, H.O. & N.C. BRADY, 1968 Natureza e propriedade dos solos. 2.ª ed. Rio de Janeiro, Freitas Bastos, 594 p.
- CATANI, R.A. & A.O. JACINTHO, 1974 Análise química para avaliar a fertilidade do solo. Bol. Tec. Cient., Esc. Sup. Agric. "Luiz de Queiroz", Piracicaba, n.º 37, 54 p.

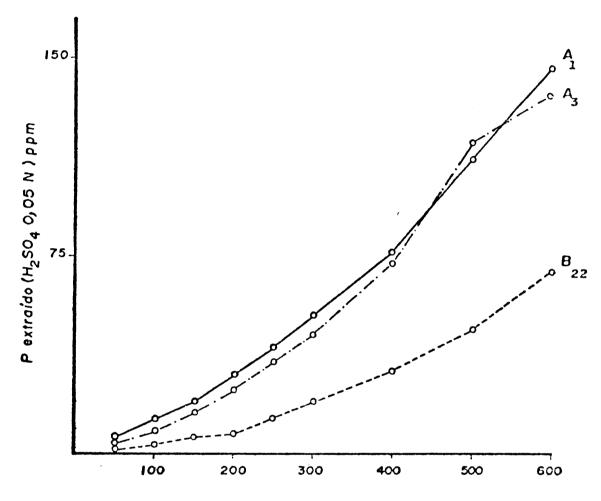


FIGURA 1 — Representação gráfica da relação entre as quantidades de fósforo extraído ($\rm H_2SO_4$ 0,05N) e adicionado aos horizontes $\rm A_1$, $\rm A_3$ e $\rm B_{22}$ do Latossolo.

- COLE, C.V. & M.L. JACKSON, 1950 Solubility equilibrium constant of dihidroxy aluminium dihidrogenphosphate relating to a mechanism of sulphate fexation in soils. Proc. Soil Sci. Soc. Am. Ann Arbor, 15:84-89.
- DALTON, J.D., C.G. RUSSEL & D.H. SIELING, 1952 Effect of organic matter on phosphate availability. Soil Sci., Baltimore, 73:173-181.
- GROHMANN, F., 1972 Superfície específica do solo de unidade de mapeamento do Estado de São Paulo. I Estudo de perfis com horizonte B textural e horizonte B latossólico. Bragantia, 31:145-165.
- GROHMANN, F. & B. VAN RAIJ, 1974 Influência dos métodos de agitação na dispersão da argila no solo. Anais do XIV Congr. Bras. de Ciência do Solo, Santa Maria, R.S., 123-132.
- HEILMAN, M.D., K.L. CARTER & C.L. GONZALEZ, 1965 The etylene glycol monethyl ether technique for determining soils surface area. Soil Sci. 100:409-413.
- HEMWALL, J.B., 1957 The fixation of phosphorus by soils. Adv. Agron. 9:95-112.
- HSU, P.H., 1965 Fixation of phosphate by aluminum and iron in acidic soils. Soil Sci., New Brunswick, 99:398-402.
- KARDOS, L.T., 1964 Soil fixation of plant nutrients. In: BEAR, F.E. Chemistry of the Soil. New York, Reinhold, p. 369-394.
- LEAL, J.R. & A.C.X. VELOSO, 1973 Adsorção de fosfato em Latossolos sob vegetação de cerrado. Pesq. Agropec. Bras. Ser. Agron., Rio de Janeiro, 8:81-88.
- LOURENÇO, S., 1973 Adsorção e desorção de fósforo em solos do Estado do Paraná. Tese de Doutoramento, ESALQ, Piracicaba, 69 p.
- MAGALHÃES, J.C.A.J., 1974 Efeitos de níveis e modos de aplicação de fósforo na produção de matéria seca e conteúdo deste nutriente no milho (*Zea mays*, L.), cultivado em solos de "cerrado" de Brasília D.F. Dissertação de mestrado, ESALQ, Piracicaba, 112 p.
- PIPAEMG, 1972 Recomendações do uso de fertilizantes para o Estado de Minas Gerais, 2.ª tentativa. Belo Horizonte, 88 p.
- REZENDE, J., 1974 Capacidade de fixação por solos dos Estados da Bahia e Sergipe influência do pH e tempo de reação. Dissertação de mestrado, ESALQ, Piracicaba, 81 p.
- SOBRAL, L.F., 1975 Fixação de fósforo e adubação do feijoeiro (*Phaseolus vulgaris*, L.) em um Cambisol do Estado de Sergipe. Dissertação de mestrado, ESALQ, Piracicaba, 45 p.
- STOUT, P.R., 1939 Alterations in the crystal structures of clay minerals as a result of phosphate fixation. Proc. Soil. Sci. Soc. Am. Ann Arbor, 4:177-182.
- VETTORI, L., 1969 Métodos de análise de solo. Bol. Tec. Equipe Pedol. Fert. Solo, Rio de Janeiro, n.º 7, 24 p.
- WAUGH, D.L. & J.W. FITTS, 1966 Estudos para interpretação de análises de solo: de laboratório e em vasos. Bol. Tec. Int. Soil. Test., Raleigh, n.º 3, 33 p.