

4º Encontro Brasileiro sobre Especiação Química 9 - 12 de dezembro de 2014 Curitiba - PR

Determinação de As(III) e As total em extratos aquosos de solos por ICP OES empregando sistema de geração de hidretos

Jeniffer V. dos Santos^{1*} (PG), Vanessa C. G. dos Santos¹ (PG), Gilberto Abate¹ (PQ), Marco T. Grassi¹ (PQ), Betânia F. Pereira^{1,2} (PQ), Iara Messerschmidt¹ (PQ), Rosane Martinazzo² (PQ), *jeniffer.sfredo@gmail.com

Palavras Chave: solo, xisto, arsênio, HG-ICP OES.

O elemento arsênio é um metaloide amplamente encontrado no ambiente associado a minérios de Mn e Fe, mais comumente encontrado em regiões de mineração. Em solos não poluídos pode estar em concentrações de 0,02 a 97 mg kg⁻¹, e em solos extremamente poluídos pode chegar a 38 600 mg kg⁻¹. A deposição de As no solo pode acontecer por meio de emissões atmosféricas, quando associados a particulados. O As pode ser encontrado no solo em estados de oxidação +3 e +5, sendo o primeiro mais tóxico por sua maior solubilidade em água. Há uma séria preocupação com relação ao As por sua toxicidade à biota e humanos, principalmente por seus efeitos carcinogênicos [1,2]. Neste contexto, foram realizadas análises de extratos de solo condicionados com diferentes doses de xisto retortado (XR) em campo para determinação de As(III) e As total. As amostras de solo receberam adubação de base (NPK) e adição de XR nas doses de 750 kg ha⁻¹ (T2) e 3000 kg ha⁻¹ (T4), sendo avaliadas também as amostras testemunha sem XR (T1) e testemunha absoluta sem XR e NPK (T5). Os extratos aquosos foram obtidos por experimento em batelada utilizando-se 2 g (± 0,1 mg) de solo e 40,00 mL de água ultrapura. A mistura foi agitada por 24 horas, centrifugada, filtrada (0,45 µm) e acidificada (HNO₃ 2%) [3]. Para as determinações por ICP OES com geração de hidretos, os extratos aquosos foram fortificados com padrões de As(III) e As(V), em concentrações de 2,50 µg L⁻¹ de cada padrão, totalizando 5,00 μg L⁻¹ de As total. Para o método de geração de hidretos foram empregados os seguintes reagentes: NaBH₄ (0,90 %), ácido cítrico/NaOH (40 %) em pH 4,5, HCl (5,0 mol L-1). Utilizando-se as condições experimentais otimizadas, foram avaliados os parâmetros precisão e recuperação do método utilizado, cujos resultados podem ser observados na Tabela 1.

Tabela 1. Parâmetros avaliados para aplicação do método. As determinações foram efetuadas em triplicata.

	As(III)			AsTotal		
Amostra	Concentração	RSD (%)	R (%)	Concentração	RSD (%)	R (%)
T1	2,40	3	97	4,75	5	95
T2	2,72	2	109	5,30	8	106
T4	2,80	5	112	5,45	3	109
T5	2,70	7	108	5,05	4	101

Fortificações: 5,0 μ g L⁻¹ total [2,5 μ g L⁻¹ As(III) + 2,5 μ g L⁻¹ As(V)], R = recuperação

Foram obtidas recuperações entre 95–112 % e RSD entre 2–8 %, sendo considerado um método adequado para a determinação e especiação de As nas amostras estudadas. As fortificações das amostras visaram confirmar os resultados, visto que para nas diferentes amostras não foram constatadas a presença tanto de As(III), como de As(V), visto que as concentrações estavam abaixo do limite de quantificação do método, 0,41 µg L⁻¹ e 0,37 µg L⁻¹ para As(III) e As(V), respectivamente. Isso sugere que os diferentes tratamentos com XR não causaram a contaminação do solo por As, ou esse elemento não é lixiviado em concentrações mensuráveis.

¹Universidade Federal do Paraná, Departamento de Química (DQUI/UFPR) - Centro Politécnico, Jardim das Américas, 81531-990, Curitiba – PR;

²FAPEG/Embrapa Clima Temperado, BR 392, Km 78, CEP 96001-970, Pelotas, RS. ³CPACT - Embrapa Clima Temperado, BR 392, Km 78, CEP 96001-970, Pelotas, RS.

^[1] Frentiu, T.; Butaciu, S.; Ponta, M.; Darvasi, E.; Senila, M.; Petreus, D.; Frentiu, M., J. Anal. At. Spectrom., 2014. DOI: 10.1039/c4ja00168k

^[2] Tuzen, M.; Citak, D.; Mendil, D.; Soylak, M., Talanta, 2009, 78, 52.

^[3] Delay, M., Lager, T., Schulz, H. D., Frimmel, F. H. Waste Management, 2007, 27, 248.