

- 059 EXTRAÇÃO DE MINERAIS POR COLMOS DE CINCO VARIEDADES DE CANA-PLANTA EM TRÊS SOLOS.
 - O. Primavesi*, G.H. Korndörfer**, R. Deuber.

 * EMBRAPA/UEPAE de São Carlos, SP C.P. 339
 - ** Universidade Federal de Uberlândia Depto. Agronomia Uberlândia, MG C.P. 583

Realizaram-se três experimentos, tendo como um dos objetivos a determinação da extração de minerais por tonelada de colmos frescos despalhados de cana-planta de ano e meio em três condições edáficas: 1. Latossolo Vermelho - Amarelo distrófico (LVA), textura areia franca, região de Lençois Paulista, SP, 22°35' latitude sul, 48°55' longitude oeste, altitude de 690 m, precipitação anual média de 1500 mm e deficiência hídrica de 410 mm; 2. Latossolo Roxo (LR), textura argila pesada, região de Sertãozinho, SP, 21°05' latitude sul, 47°55' longitude oeste, altitude de 550 m, precipitação anual média de 1560 mm e deficiência hídrica de 470 mm e; 3. Latossolo Vermelho-Escuro (LE), textura argilosa, região de Araras, SP, 22°77' latitude sul, 47°27' longitude oeste, altitude de 680 m, com precipitação anual média de 1300 mm e deficiência hídrica de 415 mm. A CTC/saturação de Al/((Ca+Mg)/K) foi de respectivamente 1,2/43,7/15,8 - 6,6/6,2/4,5 e 10,4/19,3/6,0.

Foram utilizadas as variedades 1. NA56-79 (precoce, medianamente florifera, média exigência), 2. RB72-5828 (média-tardia, não florifera, exigente), 3. SP70-1143 (tardia, florifera, pouco exigente), 4. SP71-6163 (média-tardia, não florifera, media exigência) e 5. SP71-799 (precoce, florifera, muito exigente), colhidas com 18,7 meses (plantio de fevereiro a abril de 1985 e colheita de setembro a outubro de 1986). Conduzidas em parcelas de 5 linhas (espaçadas de 1,40 m), de 5 m, em quatro blocos ao acaso, procurando manter 15 gemas por metro linear no plantio.

Verifica-se, pelo Quadro 1, que para a produção de colmos o LE foi mais e o LVA menos favorável para as 5 variedades. A extração de N e Al foi mais intensa no LVA e menos intensa no LR, provavelmente devido ao menor desenvolvimento e ao efeito de concentração. Para a extração de K destaca-se o LR, para Ca, S e Zn o LE e para algumas variedades o LR, sendo o LVA o pior local. Para Cu, Fe e P praticamente não ocorre diferença entre variedades e locais, com exceção do P no LVA e LE para a NA, sendo pior no LR, ocorrendo o inverso para o Fe, havendo talvez interação P x Fe.

Destaca-se a NA, que apresentou a maior extração de K, Ca, Mg e S (exceto no LE) nos 3 solos, ocorrendo a menor extração nos 3 solos de K pela RB, de Ca pela 6163 e de Mg pela 799. A 799 apresentou a maior extração de K no LVA e LE, e a 6163 de Mn no LVA e LR, sendo que a 1143 extraiu menos Ca, a 6163 menos Mg e a 799 menos Mn no LVA e LR.

Pode ser concluido que: 1. em média, a extração segue a seguinte ordem decrescente: K, N, Mg, Ca, S, P, Fe, Al, Mn, Zn, Cu; 2. em solos menos favoráveis ao desenvolvimento vegetal pode haver maior extração de N pelos colmos; 3. ocorre interação solo x variedade para K e N; 4. as variedades comerciais, a exceção da NA, e com menor intensidade a 1143 no LR, apresentam semelhança na capacidade de extração de minerais.

PROCI-1992.00041 PRI 1992 SP-1992.00041 L 7 . T

Quadro 1 - Produção de colmos frescos despalhados por ha (TCH) e extração de macro e micronutrientes e Al por tonelada de cana-planta (g/t), aos 18,7 meses de idade.

Var.	Loc.	TCH	N	P	K	Ca	Mg	S	Zn	Cu	Fe	Mn	Al
1.	1 2 3	69 90 98	1061 606 887	55 27 51	1157 2996 2277	89 177 213	170 218 228	177 333 359	1,6 0,9 1,7	0,5 0,6 0,5	27 36 20	16 10 13	35 14 15
2.	1 2 3	83 91 99	1068 756 822	50 37 44	753 1965 1522	57 154 142	128 191 179	142 287 319	1,6 1,3 1,5	0,6 0,7 0,6	28 32 28	13 10 10	26 11 15
3.	1 2 3	72 85 106	1103 819 775	53 53 62	906 2920 2176	61 159 170	145 220 200	152 304 340	1,5 1,4 1,7	0,6 0,8 0,7	25 24 22	16 10 13	21 8 13
4.	1 2 3	72 94 101	1090 797 768	58 66 57	820 2168 2037	58 126 146	100 163 160	158 237 334	1,7 1,3 2,1	0,6 0,8 0,5	26 25 23	21 11 13	20 9 11
5.	1 2 3	80 84 109	1040 739 854	52 49 56	1151 2593 2766	52 139 161	109 153 167	116 293 313	1,5 1,1 1,9	0,5 0,6 0,6	27 29 19	13 8 10	26 11 17
Varied	lade												
1 CV% dms		13 21	10 162	19 16	15 633	15 46	16 65	15 83	19 0,5	20	28 15	25 6	38 16
2 CV% dms		10 17	9 159	33 29	18 482	18 42	. 18 58	14 68	13 0,4	22 0,3	33 17	17	25
3 CV		9 15	16 281	21 24	14 548	17 44	11 40	13 <u>66</u>	15 0,5	24 0,3	27 12	17	33 9
4 CV		10	6 109	23 28	1 <i>2</i> 396	17 37	12 34	15 72	20 0,7	35 0,4	29 14	1.7	3'
5 CV		12 21	10 164	16 16	8 325	8 18	14 38	9 41	18 0,5	24 0,3	31 10	20 <u>4</u>	41
Local													
1 CV		13 21	9 196	18 21	16 331	8 12	15 44	13 42	1°, 0,5	4,0,4	38 1 ²³	16	.?£ 1€
2 CV		7 14	4 65	26 27	9 456	11 36	10 41	13 84	17 0,4	21 (),4	17 10	10 2	30
3 CV% dms		11 25	16 285	29 25	16 749	18 <u>64</u>	18 71	13 89	19 0,7	33 0,4	33 15	28 7	10

OBS.: Var. = Variedade, 1 = NA56-79, 2 = RB72-5828, 3 = SP70-1143, 4 = SP71-6163, 5 = SP71-799.

Loc. = Local, 1 = LVAd, 2 = LR, 3 = LE diferenças entre médias teste Tukey, sendo dms sublinhado para a ocorrência de diferenças significativas ao nivel de

5%.