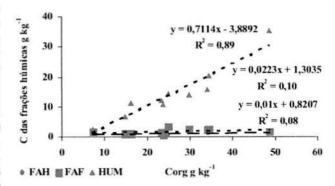
V Encontro Brasileiro de Substâncias Húmicas, Curitiba-PR, 2003 (19 - 20) Grupo Brasileiro da IHSS

Frações húmicas e propriedades guímicas e físicas de latossolos

Adierson G. Ebeling¹ (IC)*, Érika Flávia M. Pinheiro² (PG), Marcos G. Pereira³ (PQ), Gustavo Souza Valladares⁴ (PQ).

1-Estudante de Agronomia CNPq/PIBIC; 2-Estudante de doutorado em Ciência do Solo - Bolsista CNPq; 3-Professor Adjunto - Departamento de Solos, UFRRJ, 23890-000, Seropédica-RJ; 4- Embrapa Monitoramento por Satélite. Av Júlio Soares de Arruda, 803. CEP 13088-300, Campinas, SP.

Palavra chave: frações húmicas, carbono orgânico, fração ácido fúlvico.


Introdução

De maneira simplificada, o húmus do solo pode ser dividido em três constituintes: ácidos fúlvicos, ácidos húmicos e humina (CAMARGO et al., 1999). A fração humificada é a mais reativa, porém, com menor estabilidade, favorecendo a formação de complexos mais solúveis e de menor peso molecular, interferindo de forma mais intensiva no meio podendo facilitar o fenômeno de lixiviação de cátions e iluviação de argila (Canellas, 1999). Para fins de classificação de solos, em geral, tem sido determinado somente o teor de carbono orgânico, entretanto. pedoambientes distintos possuem diferenças significativas na constituição da matéria orgânica e na distribuição das frações húmicas (Benites et al., 1998). Este trabalho teve como objetivo estabelecer correlações entre as frações orgânicas e algumas propriedades físicas e químicas de horizontes A e B de perfis de Latossolos. Foram utilizadas amostras provenientes de dez perfis de Latossolos de diferentes regiões do Brasil, que foram objeto de estudos de Reuniões de Correlação e Levantamentos de Solos realizados pela EMBRAPA (Tabela 1). Os perfis foram selecionados em função da diversidade do material de origem. As amostras foram caracterizadas segundo os métodos da Embrapa. O fracionamento das substâncias húmicas foi feito em triplicatas, segundo a técnica de solubilidade diferencial, utilizando-se os conceitos de frações húmicas estabelecidos pela Sociedade Internacional de Substâncias Húmicas, adaptado por Benites et al. (2003).

Tabela 1. Unidade de solo, material de origem e localização dos perfis estudados.

Perfil Unidade de Solo		Material de Origem	Localização Juiz de Fora, MG	
		Charnokitos, Migmatitos e Gnaisses		
P2	LAd	Migmatito	Campina Grande do Sul, PR	
P3	LVd	Migmatito	Pouso Alegre, MG	
P4	Lad	Gnaisses e Migmatitos	Juiz de Fora, MG	
P5	LBd	Basalto	Pitanga, PR	
P6	LBd	Basalto	Guarapuava, PR	
P7	LVef	Basalto	Londrina, PR	
P8	LBd	Saprólito de rochas Básicas	Campos Novos, SC	
P9	LVd	Argilitos	Artur Nogueira, SP	
P10	LVd	Arenito com Cimento Argiloso	Assis, SP	

A fração humina foi a predominante em todos os perfis estudados representando 63%, em média, dos valores do carbono orgânico humificado. Os solos de textura mais argilosa foram os que apresentaram os mais elevados conteúdos de carbono, especialmente na forma da fração ácido fúlvico (FAF). A presença de argilo-minerais no solo parece estar favorecendo a fixação dos compostos orgânicos solúveis e contribuindo para o aumento da FAF. Na tabela 2 observa-se correlação positiva, 5% de significância, entre a fração areia grossa (AG) e a (FAF), fração ácido húmico (FAH), fração humina (FHUM) e a relação estrato alcalino/humina (EA:H), mostrando que a textura mais arenosa do horizonte A favoreceu a formação destas frações. Este comportamento não foi verificado para o horizonte B. Dentre as frações orgânicas a que apresentou melhor correlação com o conteúdo de carbono orgânico foi a fração humina (r=0,89**) para o horizonte A (Figura 1) e (r=0,73**) no horizonte B (Figura 2).

Figura 1. Relação entre as frações húmicas e o carbono orgânico no horizonte A.

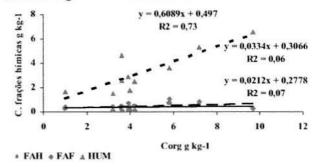


Figura 2. Relação entre as frações húmicas e carbono orgânico para o horizonte B.

Tabela 2 – Correlação entre as propriedades do horizonte A e as frações húmicas dos solos estudados.

	Corg	FAF	FAH	FHUM	AH:AF	EA:H
AG	ns	0,75**	0,60*	0,57*	ns	0,73**
AF	ns	0,55*	0,55*	ns	ns	ns
SIL	ns	ns	0,55*	ns	ns	-0,55*
ARG	ns	-0,69*	ns	ns	ns	-0,62*
pН	ns	ns	ns	ns	0,78**	ns
Ca	ns	ns	ns	ns	0,70*	ns
Al	ns	ns	ns	ns	-0,57*	ns
Н	0,58*	-0,64*	ns	ns	ns	ns

ns- não significativo; *-significativo a 5%; **-significativo a 1%.

Quanto às propriedades químicas, tanto para o horizonte A quanto para o horizonte B, Tabelas 2 e 3, foram verificadas correlações positivas (r=0,58*), horizonte A e (r=0,83**) para o horizonte B entre hidrogênio e o conteúdo de carbono orgânico. A FAH apresentou correlação negativa a 5% (r=-0,64*) com o hidrogênio para o horizonte A, demonstrando que a maior acidez dos solos influencia diretamente na formação dessa fração orgânica, este comportamento não foi verificado no horizonte B. Para o horizonte A, observa-se que a relação AH:AF apresentou correlação positiva e significativa a 1% com o pH e a 5% com os teores Ca e Al demonstrando que o aumento desta relação é dependente das variações de pH e dos teores de Ca no solo.

Tabela 3 - Correlação das propriedades do horizonte B com as frações húmicas dos solos.

	Corg	FAF	FAH	EA:H
AG	ns	0,65*	0,64*	ns
SIL	ns	ns	-0,68*	ns
ARG	ns	-0,56*	ns	ns
Н	0,83**	ns	-0,67*	ns

ns- não significativo; *-significativo a 5%; **-significativo a 1%.

Conclusões

Para todos os perfis observou-se o predomínio da fração humina sobre as demais. As melhores correlações foram verificadas entre o H⁺ e o Corg demonstrando a estreita relação entre a acidez do solo e a formação das frações orgânicas.

Agradecimentos

Os autores agradecem ao CPGA-CS EMBRAPA Solos e ao CNPq/PIBIC.

Benites, V. M; Viçosa, Universidade Federal de Viçosa, 1998. 125p. (Tese de Mestrado).

Benites, V.M., Madari, B. e Machado, P.L.O. Comunicado Técnico, Embrapa Solos, 2003, 8, 14p.

Camargo, FA.O; Santos, G.A & Guerra, J. G. M. Macromoléculas e substâncias húmicas. In: Santos, g.a & Camargo, F.A.O. (Eds). Porto Alegre, Ed. Gênesis.1999, 491p