

# ESTUDO COMPARATIVO DA TERMOESTABILIDADE DE ENZIMAS PRODUZIDAS POR FUNGOS FILAMENTOSOS EM CULTIVO SUBMERSO E COMBINADO

V. M. VASCONCELLOS  $^{1,3}$ , C.FLORENCIO $^{2,3}$ , A. C. BADINO  $^{1,2}$ , R. L. C. GIORDANO  $^1$ , P. W. TARDIOLI  $^1$  e C. S. FARINAS  $^{1,2,3}$ 

<sup>1</sup> Universidade Federal de São Carlos, Departamento de Engenharia Química
<sup>2</sup> Universidade Federal de São Carlos, Programa de Pós-Graduação em Biotecnologia
<sup>3</sup>Embrapa Instrumentação, Laboratório de Agroenergia, São Carlos
E-mail para contato: vanessamolina\_10@yahoo.com.br

RESUMO – A termoestabilidade é uma das características que influenciam a eficiência dos complexos enzimáticos, sendo o parâmetro tempo de meia vida utilizado para avaliar tal propriedade. Celulases e xilanases termoestáveis apresentam vantagens na aplicação industrial.Neste trabalho comparou-se a termoestabilidade de extratos enzimáticos produzidos por dois métodos de cultivos (submerso e combinado) e três linhagens fúngicas (*Aspergillus niger*, *Trichoderma harzianum* e *Trichoderma* sp INPA 666), possibilitando a determinação do tempo de meia vida para as enzimas endoglucanases e xilanases a 50°C. Os tempos de meia vida obtidos diferiram entre si quanto ao método de cultivo e fungo. Para endoglucanases, os extratos do cultivo submerso se mostraram mais termoestáveis, destacando-se o extrato do *A. niger* com o tempo de meia vida de 156 min. Para xilanases, o cultivo combinado do *T. harzianum* resultou em uma maior termoestabilidade, com tempo de meia vida de 383 min.

## 1. INTRODUÇÃO

O etanol de segunda geração, ou etanol 2G, produzido a partir da biomassa lignocelulósica tem ganhado reconhecimento como uma alternativa promissorade energia renovável e sustentável. Contudo, o desenvolvimento da produção do etanol 2G enfrenta algumas dificuldades técnicas a serem superadas como a recalcitrância da biomassa para hidrólise e o alto custo das celulases, enzimas necessárias para a conversão da biomassa(Farinas *et al.*, 2010).

A biomassa lignocelulósica é constituída por polímeros de celulose e hemicelulose entrelaçados e ligados covalentemente a lignina que podem ser hidrolisados em monômeros de glicose, utilizada como substrato para a fermentação alcóolica (Pereira Jr., 2006). Para isso, a matéria-prima é hidrolisada por um complexo enzimático constituído por três classes principais de enzimas:as endoglucanases, as exoglucanases e as β-glicosidases, que atuamsinergicamente(Zhang*et al.*, 2006). As xilanases atuam como enzimas acessórias, desestruturando o entrelaçamento da hemicelulose presente na parede vegetal, facilitando o

#### 19 a 22 de outubro de 2014 Florianópolis/SC



acesso à celulose(Dodd e Cann, 2009). A aplicação de xilanases em conjunto com enzimas celulolíticas tem sido amplamente considerado para a bioconversão de materiais lignocelulósicos(Pirota *et al.*, 2013).

Fungos filamentosos são capazes de produzir diferentes coquetéis enzimáticos. As espécies de *Aspergillus*, quando em contato com biomassas lignocelulósicas, produzem uma grande variedade de enzimas para a degradação do material (Kang *et al.*, 2004). A espécie *A. niger* destaca-se com a produção de um complexo enzimático contendo celulases, xilanases e outras enzimas acessórias e seucomplexo enzimático é considerado termoestável (Farinas *et al.*, 2010). O *T. reesei* é o fungo celulolítico melhor caracterizado e o mais utilizado industrialmente para a produção de celulases e hemicelulases (King *et al.*, 2009) e é considerado como um produtor em potencial de celulases. A pesquisa com fungos do gênero *Trichoderma* é hoje em dia focada no aumento da eficiência da produção do coquetel enzimático, com a finalidade de reduzir os custos totais na produção de bioetanol a partir de materiais celulósicos (Kumar *et al.*, 2008).

O complexo enzimático celulolítico pode ser produzido por diferentes bioprocessos. A fermentação em estado sólido (FES) é caracterizada pelo cultivo em substrato sólido e é conduzida com umidade controlada, enquanto a fermentação submersa (FSm) ocorre em meio líquido, sendo os dois processos ditos convencionais. Um terceiro processo é a fermentação combinada (FC) desenvolvida por Cunha *et al.* (2012) e caracteriza-se pela elaboração de um précultivo com etapa inicial no estadosólido e posterior transição para cultivo submerso.

As condições de produção e aplicação das celulases possuem condições operacionais distintas, podendo ser simultâneos ou não, dessa forma as enzimas necessitam cumprir requisitos especiaisem termos de pH e temperatura ótimos, alémda estabilidade térmica (Farinas *et al.*, 2010). Em processos de hidrólise, as enzimas termoestáveis apresentam várias vantagens, como atividade específica mais elevada, oque ocasiona a diminuiçãona quantidade da carga enzimática no processo, maior estabilidade alongando o tempo de hidrólise e permitindo oaumentoda flexibilidade de variações no processo (Viikari*et al.*, 2007).

A escolha do microrganismo e das condições de cultivo (inóculo, meio de cultura, condições operacionais, indutores) podem impactar na morfologia de crescimento do microrganismo, e consequentemente, em diferentes padrões de expressão gênica e secreção de proteínas (Holker *et al.*, 2004). Dessa forma, os extratos enzimáticos podem variar quantitativa e qualitativamente.

Neste contexto, o presente trabalho avaliou a influência do uso de diferentes fungos filamentosos (*A. niger*, *T. harzianum* e *T.* sp INPA 666)e de diferentes formas de cultivo (cultivo submerso e combinado) nacomposição enzimáticados extratos produzidos e suas característicasem termos da estabilidade térmica. O substrato indutorutilizado foi bagaço de canade açúcar pré-tratado por explosão a vapor.

## 2. MATERIAIS E MÉTODOS



## 2.1. Microrganismos

Os agentes fermentadoresutilizados foram os fungos filamentosos *Aspergillus niger* 3T5B8, *Trichoderma harzianum*P49P11 e *Trichoderma* sp INPA 666, pertencentes à coleção de culturas da Embrapa Agroindústria de Alimentos, Embrapa Instrumentação e Embrapa Agroindustrial Tropical, respectivamente. Os conídiosforam mantidos sob congelamento em glicerol 20% a -18°C e ativados em meio de cultivo batata dextrose ágar (BDA) a 32°C durante cinco dias para o *A. niger*, e 30°C durante sete dias para as duas linhagens de *Trichoderma*.

## 2.2. Matéria-Prima Lignocelulósica

A matéria-prima lignocelulósica indutora utilizada foi o bagaço de cana-de-açúcar prétratado por explosão a vapor (BEX). O material seco foi selecionado por peneiramento na faixa granulométrica 1,00≤X≤2,00 mm.

## 2.3. Condições dePré-Cultivo

Os procedimentos descritos envolvendo as condições de cultivo e a produção enzimática foram realizados para cada microrganismo.

Meio de cultivo: O meio de cultivo utilizado foi o meio descrito por Mandels and Sternberg (1976), adaptado por Cunha *et al.* (2012).

Procedimento de pré-cultivo submerso (FSm): no método de fermentação submersa (ou convencional) os esporos ativados em BDA foram ressuspendidos e inoculados diretamente em meio líquido. Nesse procedimento, foram inoculados  $10^7$  esporos/mL de meio de cultivo, enriquecidos por 30 g/L de glicose e pH inicial 4,5. Essa etapa foi conduzida em mesa incubadora rotativa a 200 rpm e na temperatura ideal para cada microrganismo descrito na secção 2.1, por aproximadamente 48 horas, o tempo necessário para a germinação dos esporos.

Procedimento de pré-cultivo combinado (FC): este tipo de pré-cultivo foi conduzido em duas etapas. A primeira etapa foi realizada em estado sólido, na qual 10<sup>7</sup> esporos/g de substrato sólido foram inoculados diretamente no BEX.A umidade do indutor foi ajustada para 60% com a adição do meio de cultivo, sem a suplementação de glicose.Os frascos permaneceram incubados em estufa na temperatura ideal para cada microrganismo descrito na secção 2.1por 24h. Após esse período iniciou-se a segunda etapa, que consistiu na transição dos pré-cultivos para a fermentação submersa através da adição de meio líquido enriquecido com 30 g/L de glicose e pH inicial 6,0. Os fracos foram mantidos em mesa incubadora rotativa a 200 rpm na temperatura ideal para cada microrganismo descrito na secção 2.1 por 48h (Cunha *et al.*,2012).

## 2.4. Produção Enzimática

A produção enzimática foi realizada em frascos Erlenmeyer contendo 100 mL de volume útil, composto pelo meio de cultivo descrito na secção 2.3 enriquecido com 10g/L de glicose, 1%



(m/v) de BEX e inoculados com 10% (v/v) do caldo do pré-cultivo. Os fracos foram mantidos em mesa incubadora rotativa a 200 rpm por 72h na temperatura ideal para cada microrganismo (secção 2.1). No final das 72h as amostras foram filtradas e centrifugadas a 11000 rpm por 15 min a 4°C e mantidas sob congelamento para posteriores análises.

#### 2.4. Procedimento Analítico

Atividade de endoglucanase: a atividade de endoglucanase foi determinada a 50°C, tendo como substrato a solução de carboximetilcelulose (CMC) 0,4% em tampão citrato de sódio 0,2M, pH 4,8, por 10 minutos à 50°C de acordo com adaptações feitas na metodologia de Ghose (1987).

Atividade de xilanase: a atividade de xilanase foi determinada utilizando-se como substrato uma solução de xilana 1% em tampão acetato de sódio 0,2 M, pH 5,0, por 5 minutos à 50°C, adaptado de Bailey e Poutanen (1989).

Uma unidade de atividade enzimática (UI) corresponde a 1 µmol de grupos redutores liberados por minuto de reação. Os açúcares liberados foram determinados pelo método de DNS segundo Miller (1959).

Estabilidade Térmica: para os ensaios de estabilidade térmica o complexo enzimático permaneceu incubado em condições estáticas, em banho termostatizado à 50°C por 24 horas. As alíquotas foram retiradas após 10, 60, 120, 240, 360, 480, 720 e 1440 minutos, e imediatamente resfriadas em banho de gelo para interromper a reação de inativação e analisadas de acordo com os procedimentos de atividades descrito na secção 2.4. Os dados foram ajustados utilizando um modelo exponencial não-linear de Sadana e Henley (1987). A partir da Equação (1) foi possível calcular a constante de inativação térmica, na qual Ar é a atividade relativa (adimensional),  $\alpha$  é a relação entre a atividade específica no estado final e inicial,  $k_d$  é a constante de inativação térmica de primeira ordem (min<sup>-1</sup>) e t é o tempo de incubação da solução enzimática (min). O tempo de meia vida foi definido como o tempo necessário para que ocorra uma redução de 50% da atividade inicial.

$$Ar = (1-\alpha) * exp(-k_d * t) + \alpha \tag{1}$$

# 3. RESULTADOS E DISCUSSÃO

O cultivo submerso (FSm) e o cultivo combinado (FC) com os fungos *A. niger, T. harzianum*, e *T. sp* foramconduzidos a fim de avaliar a influência da metodologia de cultivo e da linhagem do microrganismona produção enzimática. Quantitativamente, avaliou-se a atividade da endoglucanase e da xilanases e, qualitativamente, a estabilidade térmica à 50 °C, temperatura na qual as enzimas apresentam maior desempenho e a hidrólise da biomassa lignocelulósica se processa.

A Figura 1mostra o comportamento da termoestabilidade dos extratos enzimáticos para atividade de endoglucanase em função do tempo de incubação. Todos os coquetéis enzimáticos se



ajustaram ao modelo escolhido edesse modo pôde-se determinar o tempo de meia vida das endoglucanases. Os dados para os extratos obtidos pela linhagem do T. sp, naFSm e FC, e a linhagem T. harzianum, naFC, foram os que melhores se ajustaram ao modelo exponencial não linear para essa classe enzimática. O comportamento dos extratos enzimáticos para atividade da enzima xilanase também foi avaliado com o decorrer do período de incubação (Figura 1). O extrato combinado do fungo T. sp INPA 666 foi o que menos se ajustouao modelo de Sadana e Henley (1987), porém foi possível para todas as linhagens determinaro tempo de meia vida.

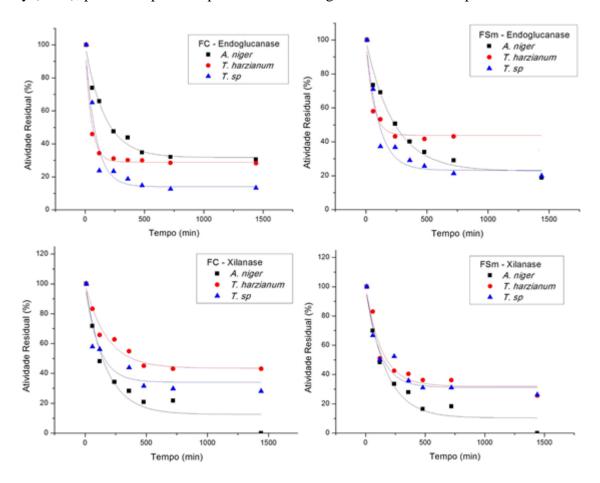



Figura 1 – Atividade residualde endoglucanase e xilanase para os cultivos submerso (FSm) e combinado (FC), os extratos foram incubados a 50°C por 1440min.

A Tabela 1 apresenta os resultados endoglucanasedos parâmetrosestimados, tempo de meia vida (t<sub>1/2</sub>)em minutos e a atividade enzimática (UI.L<sup>-1</sup>) antes do início da inativação térmica por incubação a 50°C. Para as duas linhagens de *Trichoderma*o cultivo por FC influenciou positivamente na produção enzimática, masdiminuiu a estabilidade térmica, como pode ser observado pelos valores do tempo de meia vida.O fungo *T. harzianum* destacou-se com a resposta mais expressiva com relação às técnicas de cultivo.O tempo de meia vida, na FSm, e a atividadeenzimática, na FC, foram aproximadamente 2 vezes maiores para o *T. harzianum* em



comparaçãocom as enzimas produzidas pelas outras linhagens avaliadas.

Para a classe das endoglucanases dos extratos analisados, a maior atividade e viabilidade térmica enzimática não ocorrem simultaneamente.O extrato do *A. niger* produzido através da FSmapresentou o maior tempo de meia vida (156 min), contudo esse extrato apresentou a menor atividade enzimática (576 UI.L<sup>-1</sup>). O maiorvalor de atividade para endoglucanase encontrado(1668 UI/L<sup>-1</sup>) relaciona-se com o menor tempo de meia vida (62 min), oriundos da FC utilizando a linhagem*T. harzianum*.

Segundo Farinas *et al.* (2010), as endoglucanases presentes no extrato de uma linhagem de *A. niger* em FES, incubados nas mesmas condições experimentais desse estudo, apresentouo tempo de meia vida de 2598 minutos, esses resultados foram semelhantes aos de Soni *et al.* (2010), estimou que as endoglucanases produzidas por *Aspergillus*spem FES retinham 66% da estabilidade após 4320 minde incubação. De acordo com Busto *et al.* (1996) endoglucanases produzidas por uma linhagem de *T.Reesei*, em FSm,apresentou um tempo de meia vida de 564 e 252 minà 55 e 60°C, respectivamente. Assim as enzimas produzidas em FES são mais termoestáveis do que as produzidas por FSm e FC.

Tabela 1 – Tempo de meia vida e atividade inicial das enzimas endoglucanases produzidas por dois métodos de cultivo e diferentes linhagens de fungos filamentosos.

| Fungo         | Cultivo | Parâmetros |       |                                     | Tempo de           | Atividade                        |
|---------------|---------|------------|-------|-------------------------------------|--------------------|----------------------------------|
|               |         | R          | α     | K <sub>d</sub> (min <sup>-1</sup> ) | meia vida<br>(min) | Inicial<br>(UI.L <sup>-1</sup> ) |
| A. niger      | FSm     | 0,86       | 0,143 | 0,00561                             | 156                | 577                              |
|               | FC      | 0,86       | 0,288 | 0,01071                             | 113                | 575                              |
| T. harzianum  | FSm     | 0,85       | 0,439 | 0,01751                             | 126                | 769                              |
|               | FC      | 0,95       | 0,289 | 0,01959                             | 62                 | 1668                             |
| Trichodermasp | FSm     | 0,95       | 0,232 | 0,00953                             | 110                | 619                              |
|               | FC      | 0,95       | 0,140 | 0,01131                             | 77                 | 833                              |

Assim como para a endoglucanase, a Tabela 2 apresentaos resultados dos parâmetros estimados, tempo de meia vida ( $t_{1/2}$ ) em minutos e a atividade enzimática (UI.L<sup>-1</sup>) antes do início da inativação térmica por incubação a 50°C para a enzima xilanase. A linhagem *T. harzianum* destacou-se novamente com umaumento expressivo de valores a partir da mudança da técnica de cultivo, tanto para atividade enzimática quanto para a estabilidade das enzimas.O fungo *T. harzianum* apresentou o melhor tempo de meia vida (383 min)para as xilanases produzidas a partir da FC. O perfil das xilanases foi semelhante aos das endoglucanases.O coquetel enzimático com maior valor em relação à atividade (6030 UI/L<sup>-1</sup>)foi o mais instável termicamente, apresentando um tempo de meia vida de 56 min, sendo esse extrato produzido pelofungo *A. niger* no cultivo combinado.

Tabela 2 – Tempo de meia vida e atividade inicial das enzimas xilanases produzidas por dois métodos de cultivo e diferentes linhagens de fungos filamentosos.



| Fungo        | Cultivo | Parâmetros |       |                                     | Tempo de           | Atividade                        |
|--------------|---------|------------|-------|-------------------------------------|--------------------|----------------------------------|
|              |         | R          | α     | K <sub>d</sub> (min <sup>-1</sup> ) | meia vida<br>(min) | Inicial<br>(UI.L <sup>-1</sup> ) |
| A. niger     | FSm     | 0,89       | 0,155 | 0,01580                             | 57                 | 4913                             |
|              | FC      | 0,89       | 0,179 | 0,01685                             | 56                 | 6030                             |
| T. harzianum | FSm     | 0,94       | 0,320 | 0,00745                             | 179                | 1407                             |
|              | FC      | 0,96       | 0,435 | 0,00564                             | 383                | 3054                             |
| T. sp        | FSm     | 0,92       | 0,312 | 0,00862                             | 151                | 1258                             |
|              | FC      | 0,83       | 0,341 | 0,00900                             | 158                | 1706                             |

Para as xilanases, Farinas *et al.* (2010) determinaram o tempo de meia vida de5400 min dessas enzimas presentes no extrato de uma linhagem de *A. niger* em FES, incubadas as 50°C. Shad e Madamwar (2005) verificaram que xilanases produzidas pela linhagem *A. foetidus* em FSm mantinham apenas 36% de sua ativade após 180min.Castro*et al.* (1997) avaliaram atermoestabilidade dasxilanasesproduzidasporumaestirpe de *Aspergillus*termotolerante em FSm, na ausência de substratoossistemas analisados mantinham50% e30% da sua atividadedepois de30mindeincubação a50°C.

Os resultados encontrados na literatura corroboram com o do presente trabalho, indicando que a técnica de cultivo e microrganismo produtor realmente influenciamna estabilidade e atividade enzimática. Observou-se ainda que a classe enzimática das endoglucanases apresenta um maior tempo de meia vida em relação as xilanases. Assim, ao escolher o extrato enzimático que será utilizado na hidrólise do material lignocelulósico deve-se analisar previamente a sua atividade enzimática e estabilidade térmica.

## 5. CONCLUSÃO

A estabilidade térmica enzimática foi influenciada tanto pela técnica de cultivo quanto pelo microrganismo utilizado para a produção das enzimas.Para as endoglucanases, os extratos do cultivo submerso se mostraram mais termoestáveis, destacando-se o extrato do *A. niger* com o tempo de meia vida de 156 min.Para xilanases, o cultivo combinado do *T. harzianum* resultou em uma maior termoestabilidade, com tempo de meia vida de 383 min.Entretanto, a maior atividade e viabilidade térmica enzimática não ocorrem simultaneamente tanto para as endoglucanases, quanto para as xilanases.

## 6. REFERÊNCIAS

BAILEY, M.J.; POUTANEN, K.; Production of xylanolytic enzymes by strains of *Aspergillus*. *Appl Microbiol Biotechnol*, n.30, p.5-10, 1989.

BUSTO, M. D.; ORTEGA, N.; PEREZ-MATEOS. Location, kinetics and stability of cellulasesinduced in *Trichoderma reesei* cultures. *Bioresource Technol*, n. 57, p. 187-192, 1996 CASTRO, L. P. M.; TREJO-AGUILAR, B. A.; OSORIO, G. A. Thermostable xylanases produced at 37°C and 45°C by a thermotolerant Aspergillus strain. Fems Microbiol. Lett. 146, 97–102, 1997



- CUNHA, F.M.; BACCHIN, A.L.G.; HORTA, A.C.L.; ZANGIROLAMI, T.C.; BADINO, A.C.; FARINAS, C.S. Indirect method for quantification of cellular biomass in a solidscontaining medium used as pre-culture for cellulase production. *Biotechnol Bioproc Eng.* N. 17, p. 100-108, 2012.
- DODD, D.; CANN, I. Enzymatic deconstruction of xylan for biofuel production. *Glob. Change Biol. Bioenergy*, 1, 2–17. 2009.
- FARINAS, C. S.; LOYO, M. M.; BERALDO Jr. A.; TARDIOLI, P. W.; NETO, V. B.; COURI, S. Finding stable cellulase and xylanase evaluation of the synergistic effect of pH and temperature. New Biotechnol, v. 27, n. 6, p. 810-815, Dec 2010.
- GHOSE, T.K. Measurement of cellulase activies. *Pure & Appl Chem*, Oxford, v.59, n.2, p. 257-268, 1987.
- HÖLKER, U, HÖFER, M., LENZ, J. Biotechnological advantages of laboratory-scale solidstate fermentation with fungi. *Appl. Microbiol. Biotechnol.* n.64, p. 175-186, 2004.
- KANG, S.W.; PARK, Y.S.; LEE, J.S.; HONG, S.I. and KIM, S.W. Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour. technol, v. 91, n. 2, p. 153-156, Jan 2004.
- KING, B.C.; DONNELLY, M. K.; BERGSTROM, G. C.; WALKER, L. P.; GIBSON, D. M.. An Optimized Microplate Assay System for Quantitative Evaluation of Plant Cell Wall-Degrading Enzyme Activity of Fungal Culture Extracts. *Biotechnol Bioeng*, 102: 1033-1044, 2009
- KUMAR, R.; SINGH, S.; SINGH, O. V; Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. *J Ind Microbiol Biot*, 35: 377-391, 2008
- MANDELS, M.; STERNBERG, D. Recent advances in cellulase technology. *Fermentation Technol.* n.54, p.256-286, 1976.
- MILLER, G.L. Use of dinitrosalicilic acid reagent for determination of reducing sugar. *Anal. Biochem.*, v. 31, p. 426-428, 1959.
- PEREIRA JR, N. Biotecnologia de materiais lignocelulósicos para a produção química. Escola de Química. Universidade Federal do Rio de Janeiro..In: 11º Encontro Anual da Indústria Química. *Prêmio Abiquim de Tecnologia 2006*, São Paulo, 2006.
- PIROTA, R. D. P. B.; TONELOTTO, M.; DELABONA P. da S.; FONSECA, R.F.; PAIXÃO, D. A. A.; BALEEIRO, F. C. F.; NETO, V. B.; FARINAS, C. S. Enhancing xylanases production by a new Amazon Forest strain of Aspergillus oryzae using solid-state fermentation under controlled operation conditions. *Ind Crop Prod*, 45: 465-471, 2013
- SADANA, A.; HENLEY, J. P. Single-step unimolecular non-first-order enzyme deactivation kinetics. *Biotechnol Bioeng*, v. 30, p. 717-723, 1987.
- SHAH, A.R.; MADAMWAR, D. Xylanase production by a newly isolatedAspergillus foetidus strain and its characterization. *Process Biochem*, 40, 1763–177, 2005.
- SONI, S. K.; BATRA, N.; BANSAL, N.; SONI, R. Bioconversion of sugarcane bagasse into second generation bioethanol after enzymatic hydrolysis with in-house produced cellulases from Aspergillus sp, S4B2F. *BioRes.* 5, 741–757, 2010.
- VIIKARI, L.; ALAPURANEN, M.; PURANEN, T.; VEHMAANPERA, J.; SIIKA-AHO, M.Thermostable enzymes in lignocellulose hydrolysis. *Adv. Biochem. Eng. Biotechnol*,v. 108, p. 121–145, 2007.
- ZHANG, Y-H.P.; HIMMEL, M. E.; MIELENZ,J. R. Outlook for cellulase improvement: screening and selection strategies. *Biotechnol. adv.* v.24, p.452-481, 2006.