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ABSTRACT: This study aimed to compare five models 
fitness and top effect SNPs obtained with three different 
Bayesian GWAS methods applied to cattle tick resistance in 
Braford and Hereford. After SNPs and sample’s quality 
control analyses, 78% of the SNPs (41,045) were selected 
to be used simultaneously in the GWAS analysis of 3,455 
animals. Among the tested models, Bayes C (BC) was the 
method showing the best goodness of fit, according to the 
posterior mean of the log-likelihood and the Deviance In-
formation Criterion parameters, while the worst results 
were obtained with Bayes B (BB3). The standardized esti-
mated squared-marker effects and the top ten SNPs ranked 
across tested models also favored Bayes C method, and 
highlighted SNPs in BTA5, BTA11 and BTA15, especially. 
Results indicate that further analyses to identify specific 
genes or genomic regions related to cattle tick resistance 
should be concentrated in these chromosomes. 
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Introduction 
 

Brazil has the world's largest commercial herd of 
cattle and historically is one of the leading beef producer 
and exporter. The tick Rhipicephalus (Boophilus) microplus 
is among the main causes for losses in cattle production in 
Brazil, causing decreased performance of their hosts both 
directly by blood sucking and indirectly as vector of viral, 
bacterial and protozoal diseases (Machado et al. (2010)). 
Recent technological advances in molecular biology and 
quantitative genetics have enabled the advancement of 
knowledge on the genetic mechanisms of tick resistance. In 
this context, genome wide association studies (GWAS) are 
ideal methods to discover major genes responsible for con-
trolling complex traits (Zhang et al. (2012)) and more re-
cently, in order to identify more complex relationships, a 
shift to more sophisticated multi-SNP (Single Nucleotide 
Polymorphism) approaches has taken place (Moore, 2010), 
either applying frequentist statistics or through Bayesian 
inference methods. The latter, even though it requires in-
creased computational power provides a flexible approach 
to solving high dimensional problems due to its ability to 
incorporate prior knowledge and its unified probabilistic 
approach of data analysis. More specifically, Bayesian 
methods like Bayes B (BB) (Meuwissen et al. (2001)), 

Bayes C (BC) (Habier et al. (2011)) and Bayes Lasso (BL) 
(Park and Casella (2008)) provide flexible penalizing strat-
egies to estimate marker effects compared to the typical 
normal distribution assumption imposed by some other 
methods (e.g RR-BLUP, Hoerl and Kennard (1979)). 
Therefore, comparison of results obtained by different 
Bayesian GWAS methods, in terms of number of associated 
SNPs and ranking of their effects may contribute to under-
stand tick resistance in Hereford and Braford beef cattle. 
Bayesian methods were originally adopted and are largely 
used for genomic prediction of breeding values (Meuwissen 
et al. (2001), Cleveland et al. (2010)), however, in recent 
years they have been applied for GWAS as well (Zare et al. 
(2014)). In this paper, we aimed to compare model fitness 
and top effect SNPs obtained by different Bayesian GWAS 
methods applied to tick-count data from Braford and Here-
ford cattle raised in Brazil. 

 
Materials and Methods 

 
Animal Sample and Data. The animals sampled 

from Hereford and Braford cattle breeds (N=3,545) were 
derived from eight different herds belonging to the Delta G 
Connection breeding program located in the Rio Grande do 
Sul state of Brazil.	
  Tick counts over one side of the body  
of the animals were registered twice or three times consecu-
tively during the post-weaning period of the animals, which 
were born between 2008 and 2011. In the total, 10,673 tick 
counts were considered for further analyses. Blood, hair or 
semen samples were used for DNA extraction and genotyp-
ing with the Illumina BovineSNP50 SNP Chip (54,609 
SNPs).  

 
Quality control analysis. To proceed the Quality 

Control (QC) of the samples and markers, scripts on the R 
software version 3.0.2 (R Core Team, 2013) were devel-
oped using the snpStat package (Clayton (2012)). The crite-
ria and limits of SNP exclusion were minor allele frequency 
(MAF<0.03), deviation from Hardy-Weinberg equilibrium 
(P<10-7) and SNPs in the same position or highly correlated 
(r>0.98). For the QC of the samples genotyped, those which 
presented heterozigozity higher than 3 standard deviation 
were excluded, as well, those which fall in the call rate 
criteria (<90%, considered as DNA samples with low quali-
ty), those presenting more than 99.5% of identical geno-



types and those due to errors in sex recorded. Sex chromo-
some “x” was considered only to analyze this last criterion. 
The log-transformed tick counts were analyzed to estimate 
variance components and breeding values using the 
BLUPf90 family of programs (Misztal et al., (2002)). De-
regressed estimated breeding values (dEBV) and weighting 
information were calculated according to Garrick (2009) 
and used to estimate the marker effects in the GWAS analy-
sis. 

 
Statistical analyses. Comparisons of  model fit-

ness and complexity of three Bayesian methods (BB, BC 
and BL) for estimating SNP effects on tick resistance trait 
were applied to the samples using all markers simultaneous-
ly through R/BGLR package (de los Campos and Rodriguez 
(2013)). According to the prior densities available in BGLR 
to determine the type of shrinkage applied to markers effect 
estimates, the double exponential (DE) density, which has 
higher mass at zero and ticker tails than the normal density, 
was used in the BL model. On the other hand, a mixture 
point of mass at zero and a scale-t slab is used in the BB 
model and finally a mixture point of mass at zero and a 
Gaussian slab was used in the BC model (de los Campos 
and Rodriguez (2013)). In the Markov Chain Monte Carlo 
(MCMC) implementation, inferences were based on 40,000 
samplers obtained from the posterior distribution after dis-
carding 10,000 samplers as burn in, with no thinning. In 
BC, the value of π (proportion of SNPs with null effect) 
was deemed unknown and jointly estimated with other 
parameters of this model. For BB, the number of prior 
counts used to control how informative is the prior on π was 
set to 109, effectively fixing π at its prior value, which were 
alternatively specified as the BC posterior mean (BB1), or 
as 0.05 (BB2) or 0.95 (BB3), as proposed by Saatchi et al. 
(2013). The posterior mean of the log-likelihood, the esti-
mated number of effective parameters (pD) and the Devi-
ance Information Criterion (DIC, Spiegelhalter et al. 
(2002)) of each model were compared. Additionally, Man-
hattan plots of the standardized estimated squared-marker 
effects were presented, and the rank of the highest ten 
SNP’s effect were compared among the models by Pear-
son’s correlation. 

 
Results and Discussion 

 
Quality control analysis. After SNPs quality con-

trol criteria, 78% of SNPs (41,045) were selected to be used 
simultaneously in the GWAS analysis. In the total, 2,803 
Braford and 652 Hereford (n=3,455) were selected to pro-
ceed further analyses, which corresponded to 98% out of 
3,545 samples. 

  
Bayesian Methods and Models Comparison. 

The lowest DIC model choice criterion value was observed 
for BC model (Table 1), followed by BB1 and BB2 models 
(tested with similar π values; 0.035 and 0.05), then the BL 
model and finally BB3 model (π=0.95), which showed the 
highest value. The posterior means of the log-likelihood 
(pMLogLik) followed a similar pattern to DIC, despite the 
higher number of effective parameters (pD) estimated for 

the best fit models (Table 1). Therefore, BC model resulted 
in a better adjusted model, even though more parameterized 
than the others. These two parameters (pD and pMLogLik) 
help to identify the most promising model, but once DIC 
balances goodness of fit and complexity, model BC was 
favored. BB1 and BB2 models, which consider higher pro-
portion of SNPs with non-null effect (or lower π value), 
fitted the data similarly, and were considerably better than 
BB3 with π=0.95. According to Onteru et al. (2013), Bayes 
B method was used for GWAS in residual feed intake in 
pigs rather than a Bayes C approach because of its better 
performance for QTL mapping with 1 Mb genomic win-
dows and concluded that genomic selection Bayesian meth-
ods are more powerful than frequentist methods to detect 
association by GWAS. On the contrary, the current study 
corroborates to Porto Neto et al. (2011), reflecting that BC 
model may be proper to study cattle tick resistance in a 
genomics perspective, where the majority of markers seems 
to explain a small portion of the phenotypic variation of the 
trait. 

 
Table 1. Proportion of SNPs with no effect (π), Deviance 
Information Criterion (DIC), estimated effective num-
ber of parameters (pD) and posterior mean of the log-
likelihood (pMLogLik) for each Bayesian model pro-
posed: Bayes C (BC), Bayes B (BB) and Bayes Lasso 
(BL). 
Model pi (π) DIC pD pMLogLik 

BC 0.035& -410.6 474.4 442.5 
BB1 0.035¥ -406.0 445.7 425.9 
BB2 0.05 -405.5 449.0 427.3 
BL  -405.3 446.7 426.0 
BB3 0.95 -307.8 105.4 206.6 

 & π value estimated after running Bayes C (BC). 
 ¥   π value suggested by BC used in BB1 model. 

 
 

Table 2. The mean of estimated squared-marker effects 
(bHat^2), the mean (SbHat) and maximum (SbHatm) of 
standardized estimated squared-marker effects obtained 
by each model. 
Model bHat^2 SbHat SbHatm 
BC 7.036E-09 1.120E-02 2.789E-01 
BB1 6.209E-09 1.004E-02 1.562E-01 
BB2 6.291E-09 9.882E-03 1.526E-01 
BL 6.222E-09 1.061E-02 2.401E-01 
BB3 3.796E-10 2.413E-04 2.242E-02 

 
 

Marker effects. Comparisons of the standardized 
estimated squared-marker effects (SbHat) reveled that BC 
model presented the highest average, as well as the highest 
maximum (SbHatm) value (SNP of higher effect) relative to 
other models (Table 2). BL model presented the second 
highest SbHat and SbHatm, followed by BB1 and BB2 
models. Finally, BB3 model presented the lowest values for 
both estimates. Figure 1 presents the two Manhattan plots 
resulting from the two most extreme models (BC and BB3). 



According to the results, we compared the ten SNPs with 
highest SbHat in each of the five analyses. After ranking 
them, BC and BL models presented the same nine SNPs 
(among the top ten) in a very similar order (r = 0.87).  More 
specifically, it was observed that the top three SNPs (in 
BTA15, BTA11 and BTA5, respectively) were ranked in 
the same way in both models. The others seven SNPs be-
tween BC and BL models were located in BTA6, BTA13, 
BTA14 and again, in BTA15. Even presenting four to seven 
SNPs, among the top ten, the others models (BB1, BB2 and 
BB3) ranked them in a very different order and with lower 
average estimates relatively to BC and BL. Machado et al. 
(2010), through a whole genome scan  using microsatellite 
markers, identified spec 
ific QTLs in BTA5 and BTA11 associated with tick re-
sistance mechanisms of cattle. The ability to find SNPs or 
genomic regions associated with a trait is the main purpose 
of GWAS. The agreement between top SNPs in terms of 
the size of their effects in two out of the three Bayesian 
methods tested, provides evidence of association of those 
markers with tick resistance in cattle, and suggests that 
Bayes B method may not be the best choice to select SNPs 
with high effects associated with cattle tick resistance. 
Peters et al. (2012) also inferred that Bayes C offers ad-
vantages, as the results tend to be more biologically realistic 
than estimation of locus-specific variances influenced by 
SNP frequencies. It also worth to emphasize that the values 
of the parameters considered in the present work for the 
Bayesian methods (e.g π) crucially impact GWAS results 
and Genomic Selection (GS) as well. SNPs of most interest 
in a GWAS are those showing the strongest evidence of 
association, so we focused on the question of choosing 
SNPs to follow up, suggesting deeper investigations in 
those chromosomes reported, especially BTA15. In order to 
assess the functional relevance, The cattle QTLdb database 
(Hu et al. (2013)) needs to be examined to find out if any 
top SNP identified here overlap with a previously described 
bovine quantitative trait locus (QTL) for tick resistance. 

 
Conclusion 

 
Results confirm that Bayesian methods are highly 

useful for analyzing large SNP datasets in GWAS studies 
aiming at identifying  more informative molecular markers 
to assist breeding. In the present work, Bayes C was the 
method of choice in terms of goodness of fit and identifica-

tion of SNPs with high effects related to cattle tick re-
sistance.  
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Figure 1. Manhattan plots representing standardized estimated squared-marker effects of the BC and BB3 models, 
respectively. X axes represents the 41,050 markers evaluated across the genome in order of chromosomes (BTA). w  


