EFEITO DO TIPO DE MINIJARDIM E DA ÉPOCA DE PLANTIO SOBRE O DESENVOLVIMENTO DE ESTACAS DE PINUS RADIATA

Bruno Schultz¹, Paula Rachel Rabelo¹, Lizy Tank Sampaio Barros², Antônio Rioyei Higa¹, Celso Garcia Auer³

¹Curso de Pós-graduação em Engenharia Florestal-UFPR, ²Curso de Graduação em Engenharia Florestal-UFPR, ³Embrapa Florestas schultz.florestal@gmail.com

1. INTRODUÇÃO

Há cerca de 30 anos, extensas áreas de florestas foram estabelecidas na região sul, em escala comercial para atender a demanda de matéria prima de qualidade nas indústrias brasileiras. Entre esses plantios, o gênero *Pinus* se destacou por apresentar uma boa adaptação para as condições edafoclimáticas brasileiras, dependendo o seu sucesso apenas da escolha correta da espécie, da área escolhida para o seu estabelecimento e do manejo correto dos plantios (SHIMIZU e MEDRADO, 2010).

No Chile, a substituição gradativa da madeira serrada nativa por madeira serrada de *Pinus radiata* foi uma alternativa para manter a produção florestal em superávit sustentável. O setor madeireiro do Chile é composto na sua grande maioria por esta espécie, ocupando 1,5 milhões de hectares, sendo à base da indústria florestal Chilena e garantindo um total de US\$ 3,5 milhões (REMADE, 2010).

Pinus radiata é uma pinácea nativa dos EUA que se adaptou muito bem às condições edafoclimáticas de vários países do Hemisfério Sul. O sucesso desta exótica florestal é devido ao seu rápido crescimento, às qualidades excepcionais de sua polpa na fabricação de papel e às facilidades de serrar e entalhar sua madeira (ROGERS, 2002).

O melhoramento genético desta espécie é um importante mecanismo para selecionar material com grande capacidade produtiva e resistente ao Sphaeropsis sapinea, sendo fungo propagação vegetativa via produção massal é uma ferramenta que auxilia o estabelecimento de plantios clonais, pois permite, a um custo menor, a multiplicação de genótipos selecionados, em um curto período de tempo (GRAÇA E COOPER, 1986). Este trabalho teve como objetivo avaliar o efeito do ambiente do minijardim de origem e da época de transplantio no crescimento de estacas de Pinus radiata tendo como finalidade montar um minijardim clones resistente ao patógeno.

2. PROCEDIMENTO EXPERIMENTAL

Em 2008, um ensaio de minijardins foi instalado no viveiro do LAMEF/UFPR com matrizes (progênies) selecionadas de P. radiata ao fungo S. sapinea, instaladas em três ambientes (campo, vaso e canaletão) por BARROS et al. (2008). Dando continuidade a esse ensaio, após 95 dias, foram retiradas estacas destas matrizes em 3 diferentes épocas (inverno, primavera e verão). Foram retiradas 30 estacas de cada matriz com o mesmo tamanho inicial (2 cm) e sempre da região apical, conforme indicação de SCHULTZ et al. (2007). Estas estacas foram transplantadas tubetes com substrato para comercial (vermiculita mais casca e pínus) nos dias 20/09/2008 20/05/2008 (INVERNO), (PRIMAVERA) e 20/12/2008 (VERÃO) e avaliadas quanto ao crescimento em casa de enraizamento. O experimento foi montado em delineamento em blocos ao acaso com 1 planta por parcela, 3 repetições por época. Mediu-se a altura final das estacas depois de um mês com um paquímetro digital e calculado o incremento além dos 2 cm iniciais do ensaio. Os dados foram analisados com o auxílio do programa Excel e as diferenças entre as variâncias foram pelo Teste de Bartlett. Para testadas diferenciação das médias utilizou-se o Teste de Tukey.

3. RESULTADOS E DISCUSSÃO

A média do crescimento das estacas para os 30 tratamentos (3 ambientes x 10 progênies) foi 0,73 cm, para um intervalo de confiança variando de 0 a 4,9 cm. Os valores de Qui-Quadrado (\(\chi 2\)) referente ao teste de Bartlett dos apresentou variâncias tratamentos homogêneas, não requerendo transformação dos dados. A análise dos dados mostrou que não houve diferença estatística significativa entre as progênies (tabela 1), bem como a interação dos fatores ambiente e progênies (p > 0,01), indicando que seus efeitos não são dependentes. O fator ambiente (minijardim de origem) apresentou diferenca estatisticamente

significativa (p < 0,01), sendo que as estacas retiradas do ambiente campo, no inverno produziram os melhores resultados (tabela 2). No ambiente canaletão, as estacas se desenvolveram melhor na primavera e verão (tabela 2). Os blocos apresentaram diferença estatística significativa, indicando que existem diferenças entre a época de coleta (tabela 1).

Tabela 1: Análise de variância dos fatores progênies (P), ambiente (A) e época de coleta de estacas de Pinus radiata.

FV	GL	QM ^a	p alfa	
Época de coleta	2	11,45	0,00	**
Progênies inverno	9	0,41	0,92	ns
Progênies primavera	9	0,822	0,28	ns
Progênies verão	9	0,885	0,5	ns
Ambiente inverno	2	0,32	0,12	ns
Ambiente primavera	2	7,945	0,00	**
Ambiente verão	2	13,664	0,00	**
P X A inverno	18	0,581	0,89	ns
P x A primavera	18	0,497	0,94	ns
P x A verão	18	0,859	0,57	ns

ns = não significativa; ** = significativo a 1 % de probabilidade.

O crescimento das estacas no inverno não diferiu estatisticamente nos diferentes ambientes (tabela 2). Na primavera, o crescimento foi superior no minijardim em canaletão e no verão o crescimento em vaso e canaletão foram superiores ao campo (tabela 2).

Tabela 2: Incremento médio em altura (cm) das estacas nos diferentes tratamentos (minijardim de origem e época de coleta).

	Campo	Vaso	Canaletão	Médias
Inverno	1,07	0,68	0,56	0,77 ^b
Primavera	0,69	0,75	2,42	1,28 ^b
Verão	1,28	1,91	2,18	1,79 ^a
Médias	1,01 ^A	1,11 ^{AB}	1,72 ^B	0,73

Médias seguidas pela mesma letra minúscula na coluna e maiúscula na linha, não diferem estatisticamente pelo teste de Tukey a 5% de probabilidade.

O crescimento médio das estacas nas 3 diferentes épocas foi 0,77 cm (INVERNO), 1,29 cm (PRIMAVERA) e 1,79 cm (VERÃO) (tabela 2).

4. CONCLUSÕES E PERSPECTIVAS

Os resultados indicam que a produção de estacas foi melhor no verão e que o ambiente canaletão foi o mais adequado. Estas condições podem ser utilizadas para a propagação vegetativa de *P. radiata*.

5. BIBLIOGRAFIA

BARROS, L. T. S; BASÍLIO, P. R. R. C.; HIGA, A. R. Avaliação da influência do local de plantio no desenvolvimento inicial de *Pinus radiata*. 2008. Iniciação Científica. (Graduando em Engenharia Florestal) - Universidade Federal do Paraná.

COOPER, M.A.; GRAÇA, M.E.C. Perspectivas para a maxização de enraizamento de estacas de Eucalyptus grandis Maid. Curitiba, EMBRAPA-CNPF, 1987. 9p. EMBRAPA-CNPF. (Circular Técnica, 12).

REMADE. Chile conquista o exterior com *Pinus radiata*. Disponível em: http://www.remade_revistamadeira.com/pinusradiata/3ed3marc/. Acesso em 12/08/2010.

ROGERS, D.L. In situ genetic conservation of Monterey pine (*Pinus radiata* D. Don): Information and recommendations. Report No.26. ed.P.E. McGuire University of California Division of Agriculture and Natural Resources, Genetic Resources Conservation Program, Davis CA USA. September 2002.

SHIMIZU, J.Y.; MEDRADO, M. J. S. **Cultivo de** *Pinus*. Embrapa Florestas, 2005. Disponível em:http://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Pinus/CultivodoPinus/apresentacao.htm>. Acesso em 7/08/2010.

SCHULTZ, B.; BASÍLIO, P. R. R. C.; HIGA, A. R.; AUER, C. G. Análise de enraizamento de estacas de *Pinus radiata* para multiplicação clonal. In: EVENTO DE INICIAÇÃO CIENTÍFICA DA EMBRAPA FLORESTAS, 6., 2007, Colombo. Anais. Colombo: Embrapa Florestas, 2007. 1 CD-ROM.

AGRADECIMENTOS

A CAPES pela bolsa de estudos, ao Curso de Pós-graduação de Engenharia Florestal e ao LAMEF/UFPR.

^a =valores referentes as médias da variância de 30 estacas por matrizes