Eficiência no controle de pragas e seletividade a predadores de inseticidas utilizados no sistema de produção de soja

Ivan Carlos Corso

O controle químico de insetos-praga que atacam a soja ainda é o método mais rápido e eficiente de que o agricultor dispõe para resolver o problema. Entretanto, a seletividade de inseticidas para inimigos naturais é um aspecto de importância fundamental no Programa de Manejo Integrado de Pragas da Soja (MIP-Soja).

Visando atender aos objetivos de verificar a eficiência de moléculas novas de inseticidas para controle das principais espécies de percevejos que atacam a soja e à eficiência de inseticidas e/ou outras substâncias químicas para controle de algumas pragas secundárias ou regionais, foram realizados vários ensaios de campo em lavouras de agricultores a partir da safra 2003/04 até a safra 2005/06.

Com o objetivo de quantificar o impacto de alguns inseticidas, em diferentes doses, sobre o complexo dos principais predadores de pragas da cultura, conduziram-se dois experimentos de campo na Embrapa Soja, Londrina, PR, em 2003/04. O impacto dos inseticidas testados foi medido por meio de levantamento da população de predadores sobreviventes, cerca de 2, 4, e 7 dias após a sua aplicação sobre as plantas.

Eficiência no controle de pragas

Ao longo desses anos agrícolas, observou-se que para controle do percevejo-marrom *Euchistus heros*, foram eficientes (mortalidades ≥ 80 %) as seguintes misturas de frasco de inseticidas: imidaclopride + betaciflutrina, na dose de 750 mL de produto comercial/hectare, fipronil + alfacipermetrina (350 mL p.c./ha) e tiametoxam + lambacialotrina (150, 200 e 250 mLp.c./ha), sendo que

esta última apresentou um desempenho melhor e um maior poder residual de controle da praga (até dez dias após a aplicação), em relação aos demais produtos avaliados: lambdacialotrina, acefato e as misturas de acefato + etofenprox e fenitrotiom + esfenvarelato.

O mesmo resultado com imidaclopride + betaciflutrina e tiametoxam + lambdacialotrina foi observado para outra espécie importante do complexo de percevejos que atacam a soja: o percevejoverde-pequeno *Piezodorus quildinii*.

De acordo com os dados obtidos em experimento conduzido na região de Campo Mourão, PR, em novembro/2005, visando ao controle de caracóis atacando plantas de soja e reduzindo o estande das lavouras, o melhor resultado também foi obtido com a mistura de frasco dos inseticidas tiametoxam + lambadacialotrina, na dose de 300 mL p.c./ha, a qual reduziu a população da praga em cerca de 55 %, 24h após a aplicação.

No município de Bela Vista do Paraíso, PR, em 2005/06, conduziu-se um ensaio para verificar o controle químico da lagarta-falsa-medideira, uma praga tida como secundária, de baixa incidência na cultura, mas que nas últimas safras tem aumentado a sua ocorrência e causado danos acentuados em lavouras de soja de várias regiões produtoras do País. O melhor resultado foi obtido com flubendiamide, na dose de12 g i.a./ ha, um novo inseticida com excelente ação residual de controle, o qual, inclusive, superou a performance do inseticida metomil, tido como "padrão" para o controle desse inseto-praga.

Seletividade de inseticidas para predadores de pragas

Nas Tabelas 15 e 16 aparecem os resultados obtidos. Considerandose a média das avaliações efetuadas após a aplicação dos inseticidas e os resultados dos dois experimentos, conjuntamente, verificou-se que tiametoxam + lambdacialotrina, na dose de 35,3 + 26,5 gramas de ingrediente ativo/hectare foi o tratamento mais tóxico ao complexo de predadores avaliado (*Nabis* spp., *Geocoris* sp. *Orius* sp., *Podisus* sp.,

Lebia concinna e aranhas), não apresentando seletividade alguma e ficando com a nota final 4.

Acefato (300 g i.a./ha), imidaclopride + betaciflutrina (75 + 9,375 e 100 + 12,5 g i.a./ha) e tiametoxam + lambdacialotrina (21,2 + 15,9 e 28,2 + 21,2 g i.a/ha), foram muito tóxicos, apresentando pouca seletividade aos predadores (nota 3) e acefato (187,5 e 225 g i.a./ha) e betacipermetrina (6 e 7,5 g i.a./ha) apresentaram seletividade média, com reduções populacionais de 20 % a 40 % (nota 2).

Acefato, na dose de 150 g i.a./ha, e betacipermetrina (5 g i.a./ha) foram os tratamentos menos tóxicos para esses inimigos naturais, os únicos considerados realmente seletivos (nota 1) e que afetaram somente até 12 % e 19 % da sua população, respectivamente.

Conclusões

- a) O percevejo-marrom pode ser controlado, eficientemente, com as novas misturas de frasco dos inseticidas imidaclopride + betaciflutrina, fipronil + alfacipermetrina e tiametoxam + lambacialotrina.
- b) O percevejo-verde-pequeno pode ser controlado com as misturas de imidaclopride + betaciflutrina e tiametoxam + lambdacialotrina.
- c) Caracóis podem ter sua população reduzida em até 55 %, nas lavouras de soja, com a aplicação da mistura dos inseticidas tiametoxam + lambdacialotrina.
- d) A lagarta-falsa-medideira pode ser controlada pelo novo inseticida flubendiamide com alta eficiência.
- e) Os inseticidas acefato, imidacloppride + betaciflutrina e tiametoxam + lambdacialotrina, em doses superiores a 300, 75 + 9,375 e 21,2 + 15,9 g i.a./ha, respectivamente, não são

indicados para utilização em Programas de Manejo Integrado de Pragas, devido à sua alta toxicidade para predadores.

f) Os demais produtos e doses avaliados não apresentam restrições ao seu uso, pois se adequam aos padrões determinados pela pesquisa oficial.

Tabela 15. Número (N) total de predadores¹, presentes em 2 m de fileira, e percentagem de redução populacional (PRP), calculada pela fórmula de Henderson & Tilton, de inseticidas aplicados sobre plantas de soja. Londrina, PR, 2003/04.

	Dose	Dias após a aplicação (DAA)	n aplicação	(DAA)						
Tratamento	(g i.a./ ha)	0 Z	⁸ Z	PR P	2 Z	PR P	∠ Z	PR P	Média (PRP)	Nota
Betaciperme-trina	2	3,1 ² n.s. ³	3,6ab ⁴	. 0	2,6ab c	. 2	4,1a	. 0	2	_
Betaciperme-trina	9	5,1	3,3abc	31	3,2ab	29	3,8ab	59	30	7
Betaciperme-trina	7,5	4,5	2,8abcd	33	2,5ab c	37	3,5abc	56	32	2
Imidaclopride +betaciflutrina	75+9,375	4°,5	1,9 bcd	22	2,2 bc	45	2,4 cd	49	20	က
Imidaclopride +betaciflutrina	100+12,5	4.5	1,9 bcd	55	1,8 bc	55	2,3 cd	51	54	က
Tiametoxam + Iambdacialotrina	21,2+15,9	4,0	1,8 cd	53	1,8 bc	51	2,6 bcd	38	47	က
Tiametoxam + Iambdacialotrina	28,2+21,2	4,5	1,5 cd	64	1,9 bc	52	2,1 d	55	22	ო
Tiametoxam + Iambdacialotrina	35,3+26,5	8,4	1,4 d	69	1,4 C	29	2,0 d	09	65	4
Testemunha	ı	4,	4,1a	1	3,9a	1	4,6a	ı		
C.V. (%)		24	30		29		19			

pré-contagem (O DAA). ²Média de quatro repetições. ³Valor de F não significativo. ⁴Médias seguidas pela mesma ¹Aranhas (40 %), Geocoris sp. (40 %), Nabis spp. (11 %), Lebia concinna (3 %), Podisus spp. (3 %) e Orius sp. (3 %). Esses percentuais foram calculados com base nas populações presentes na testemunha, por ocasião da letra, na vertical, não diferem entre si, pelo teste de Tukey a 5 %.

populacional (PRP), calculada pela fórmula de Henderson & Tilton, de inseticidas aplicados sobre plantas de Tabela 16. Número (N) total de predadores¹, presentes em 2 m de fileira, e percentagem de redução soja. Londrina, PR, 2003/04.

	Dose	Dias após a aplicação (DAA)	aplicação	(DAA	_					
Tratamento	(g i.a./	0	က		2		7		Média	9
	ha)	z	z	Я ^Ч	z	A d	z	Я _Ч	(PRP)	Ϋ́
Acefato	150	6,3 ² n.s. ³	5,4ab	13	5,5ab	4	4,5 b	18	12	~
Acefato	187,5	6,4	4,8 bc	24	3,4 bc	42	3,4 cd	39	35	7
Acefato	225	6,5	5,0 bc	22	4,5abc	24	4,0 bc	59	25	7
Acefato	300	6,9	3,6 C	47	3,4 bc	46	3,8 bcd	37	43	က
Betaciperme-trina	2	6,4	5,0 bc	21	5,3ab	6	4,1 bc	56	19	-
Betaciperme-trina	9	9,9	5,4ab	17	5,0ab	17	4,8 b	16	17	~
Betaciperme-trina	7,5	0,9	4,5 bc	24	4,8abc	12	4,6 b	12	16	~
Imidaclopride + betaciflutrina	75+9,375	5,6	3,6 c	35	3,4 bc	34	3,3 cd	32	34	7
Imidaclopride + betaciflutrina	100+12,5	5,9	3,4 c	42	2,6 c	52	2,9 d	4 4	46	က
Testemunha	1	6,9	6,8a	1	6,3a	1	6,0a	1		
C.V. (%)		12	14		19		11			

Nabis spp. (24 %), Lebia concinna (23 %), aranhas (21 %), Geocoris sp. (15 %), Orius sp. (11 %) e Podisus spp. (6 %). (O DAA). ²Média de quatro repetições. ³Valor de F não significativo. ⁴Médias seguidas pela mesma letra, na vertical, não Esses percentuais foram calculados com base nas populações presentes na testemunha, por ocasião da pré-contagem diferem entre si, pelo teste de Tukey a 5 %.