

II EVENTO DE INICIAÇÃO CIENTÍFICA DA *Embrapa Florestas*Colombo – 09 a 11 de dezembro de 2003

027

FITORREGULADORES DE CRESCIMENTO NO ALONGAMENTO IN VITRO DE Pinus greggii 1

Levi Souza Junior²
Ivar Wendling³
Danielle Cristine dos Santos⁴

RESUMO

O objetivo deste trabalho foi avaliar o comportamento de explantes de P.greggii oriundos do trigésimo subcultivo $in\ vitro$ em meio JADS 89 modificado em relação aos seguintes tratamentos de alongamento: T_1-1 mg L^{-1} de GA3; $T_2-1,2$ mg L^{-1} de AIA + 0,08 mg L^{-1} de BAP + 5 mg L^{-1} de Tiamina HCI; $T_3-0,1$ mg L^{-1} de AIB + 0,1 mg L^{-1} de BAP e; $T_4-0,1$ mg L^{-1} ANA + 0,05 mg L^{-1} de BAP. Foi avaliada a sobrevivência dos brotos, a produção de brotos e a altura das microestacas. Os resultados indicaram a toxidade do GA3 na concentração utilizada. De forma geral observou-se que o $P.\ greggii$ se adaptou bem ao alongamento, mas não se adaptou ao enraizamento $ex\ vitro$ e que seria necessário o estudo de enraizamento $ex\ vitro$ ou ainda estudar outra técnica de clonagem para a propagação vegetativa desta espécie.

Palavras-chave: micropropagação, Pinus greggii, propagação vegetativa.

INTRODUÇÃO

Pinus greggii é um pinheiro endêmico do México que apresenta altura variada, geralmente entre 10 e 25 metros e acículas de coloração verde clara (Borsato, 2000). A copa, irregularmente arredondada, pode apresentar os galhos inferiores na posição horizontal ou, ainda de forma pendente, com galhos tocando o chão. Do ponto de vista morfológico, *Pinus greggii* é muito semelhante ao *Pinus patula*, mas pode ser diferenciado pelas acículas muito curtas, ásperas e eretas (Mirov, 1967; Perry, 1991).

A micropropagação é uma técnica de produção de plantas a partir de órgãos diferenciados podendo ser gemas, embriões, partes de órgãos ou simples células (Gomes, 1987), que visa o rejuvenescimento do material selecionado para o processo de produção de mudas (Xavier e Comério, 1996).

A micropropagação é dividida em algumas fases, sendo que na fase de multiplicação o objetivo é produzir o maior número de explantes possíveis a um curto período. A fase de alongamento o objetivo é que o material se torne apto para o enraizamento que pode ser *in vitro* ou *ex vitro* (Santos *et al.*, 2002).

¹ Trabalho desenvolvido na Embrapa Florestas

² Aluno do curso de Biologia, Faculdades Integradas Espírita

³ Pesquisador *Embrapa Florestas* ivar@cnpf.embrapa.br

⁴ Aluna do curso de Química, Universidade Federal do Paraná

O presente estudo teve como objetivo avaliar o comportamento de explantes de *Pinus greggii*, em meio JADS 89 modificado (Correia, 1992), em relação a diferentes tratamentos de fitorreguladores de crescimento para alongamento *in vitro*.

MATERIAL E MÉTODOS

Para o presente estudo, durante a fase de multiplicação, foram utilizados tufos (brotações originadas de um explante introduzido no meio de cultura) de *Pinus greggii* provenientes de mudas produzidas via semente, submetidos a 30 subcultivos *in vitro* em meio JADS 89 modificado (Quadro 1), a intervalos de 30 dias. Após a fase de multiplicação, os explantes foram transferidos para meio de alongamento constituído de meio JADS 89 modificado, acrescido com 25 g L⁻¹ de sacarose, 6 g L⁻¹ de ágar e pH 5,8.

Quadro 1 – Sais e vitaminas utilizadas para o preparo do meio de cultura para multiplicação e alongamento de explantes de *Pinus greggii*.

COMPOSIÇÃO	CONCENTRAÇÃO (g L ⁻¹)
NH ₄ NO ₃	32,4
KNO₃	80,9
Ca (NO ₃) ₂ . 4 H ₂ 0	118,1
KH ₂ PO ₄	40,8
MgSO₄ . 7 H₂O	73,95
MnSO ₄ . 7 H ₂ O	1,69
CuSO ₄ . 5 H ₂ O	0,125
ZnSO ₄ . 7 H ₂ O	0,432
FeSO ₄ . 7 H ₂ O	7,450
Na ₂ EDTA . 2 H ₂ O	5,560
H₃Bo₃	0,310
Na_2MoO_4 . 2 H_2O	0,015
CoCl ₂ . 6 H ₂ O	0,025
KI	0,016
Tiamina HCI	0,050
Mio Inositol	5,000
Glicina	0,025
Ácido Nicotínico	0,025
Piridoxina HCI	0,025

Foram utilizados quatro tratamentos constituídos de diferentes tipos de reguladores de crescimento em combinações distintas: T1 – 1 mg L⁻¹ de GA3; T2 – 1,2 mg L⁻¹ de AIA + 0,08 mg L⁻¹ de BAP + 5 mg L⁻¹ de Tiamina HCI; T3 – 0,1 mg L⁻¹ de AIB + 0,1 mg L⁻¹ de BAP e; T4 - 0,1 mg L⁻¹ ANA + 0,05 mg L⁻¹ de BAP. O delineamento utilizado foi o inteiramente casualizado, com cinco explantes de 1 a 3 cm por repetição. As médias obtidas foram comparadas pelo teste de Tukey a 5% de probabilidade.

Uma vez inoculados, os tufos foram mantidos em sala de crescimento com temperatura de 25 $^{\circ}$ C \pm 2 $^{\circ}$ C e luminosidade mantida por meio de lâmpadas fluorescente branca-fria, por um período de 16 horas luz/dia e intensidade lumínica de 1800 klux.

Após 30 dias em meio de cultura, foram avaliados o percentual de sobrevivência, o número de brotos produzidos para cada explante introduzido, a altura e o enraizamento *ex vitro*. Nesta última etapa as microestacas foram acondicionadas em casa de vegetação com temperatura variando de 22 a 28 °C e umidade relativa do ar acima de 80%. Utilizou-se como substrato uma mistura de composto orgânico (30%), vermiculita fina (35%) e casca de arroz carbonizada (35%) em tubetes de 55 cm³.

RESULTADOS E DISCUSSÃO

O percentual de sobrevivência de *pinus greggii* em meio de alongamento foi T1 (0%), T2 (100%), T3 (100%) e T4 (100%), demonstrando que o T1 (1 mg L⁻¹ de GA3) é inapropriado para o alongamento *in vitro* desta espécie, o que pode ser atribuído a uma provável intoxicação por GA3 na concentração utilizada, enquanto que os demais tratamentos não diferiram entre si quanto a esta característica. (Figura 1A). Desta forma não foi possível a avaliação do T1 nas demais características avaliadas, corroborando os resultados obtidos por Rosa *et al.* (2003), quanto ao efeito tóxico do GA3 na mesma concentração sobre a mortalidade de 100% dos explantes de *Eucalyptus pellita*.

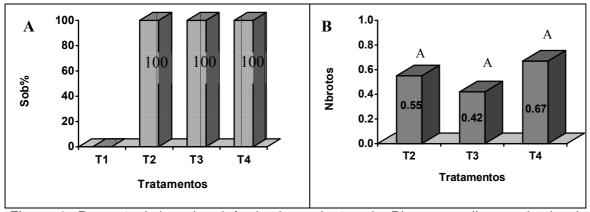


Figura 1- Percentual de sobrevivência de explantes de *Pinus greggii* no meio de alongamento (Sob% - A); média de número de brotos produzidos por tratamentos de *Pinus greggii* (Nbrotos – B). Médias seguidas de uma mesma letra entreosdiferentes tratamentos não diferem entre si, pelo teste de Tukey a 5% de probabilidade.

Com relação ao número de brotos produzidos, Figura (1B), não foi observada diferença significativa. O tratamento superior foi o T4, T2 e T3 com 0,67, 0,55 e 0,42 brotos por explante respectivamente.Rosa *et al.* (2003) encontraram 1,75 brotos por explante para *Eucalyptus pellita*, enquanto que Wiecheteck *et al.* (1991) conseguiram 6,2 brotos por explante para *Eucalyptus viminalis*. Também deve-se considerar que os tratamentos foram elaborados com a finalidade de alongar as brotações para o enraizamento (formação de microestacas) e não para a formação de brotos, mesmo assim conforme citado acima houve produção de brotos nos três diferentes tratamentos o que pode ser atribuído ao acréscimo de BAP nos três tratamentos.

Quanto a altura dos explantes (Figura 2), as microestacas estavam com uma altura padrão para o enraizamento *ex vitro*, tendo como média geral 4,7 cm de comprimento. Esse resultado médio de altura é superior àqueles encontrados por Rosa *et al.* (2003), e Wiecheteck *et al.* (1991) para *Eucalyptus pellita* (com 2,3 cm) e *Eucalyptus viminalis* (com 1,85 cm), respectivamente. Para Del Ponte *et al.* (2001), a concentração de BAP que produziu brotações mais alongadas foi 0,2 mg L⁻¹, seguida da testemunha, sem aplicação de regulador de crescimento. Valores bastante díspares quando comparados ao alongamento do *Pinus greggii* o que pode ser atribuído a melhor adaptação desta espécie no alongamento *in vitro*. Apesar da diferença nos valores da altura os tratamentos não se diferenciaram significativamente entre si pelo teste de Tukey a 5% de probabilidade.

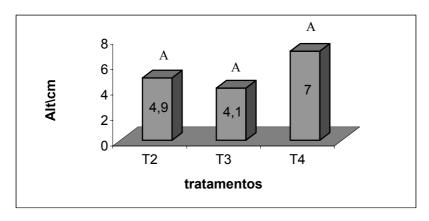


Figura 2 - Altura média das microestacas produzidas de *Pinus greggii* (Alt\cm). Médias seguidas de uma mesma letra entre os diferentes tratamentos não diferem entre si, pelo teste de Tukey a 5% de probabilidade

No enraizamento *ex vitro* das microestacas, houve mortalidade de 100% das microestacas em casa de vegetação, o que leva a conclusão de que novos estudos devem ser feitos com esta espécie na fase de alongamento, ou ainda que a mesma não se adaptou a esta técnica de propagação vegetativa.

CONCLUSÃO

Nas condições em que o trabalho foi desenvolvido, conclui-se que o alongamento de *Pinus greggii* para a formação de microestacas para o enraizamento *ex vitro* é tecnicamente viável, porém esta espécie necessita de maiores estudos para a fase de enraizamento, e a aplicação de GA3 no meio de alongamento de *Pinus greggii* é prejudicial para a formação de microestacas.

REFERÊNCIAS BIBLIOGRÁFICAS

BORSATO, R. Variação genética em *Pinus greggii* Engelm. e seu potencial para reflorestamento no Sul do Brasil. 86 f. 2000. (dissertação de mestrado).

CORREIA, D. Otimização da fase de multiplicação de gemas *in vitro* de *Eucalyptus* spp. 1992. 236f. (Dissertação de mestrado).

DEL PONTE, E. M.; MATTEI, V. L.; PETERS, J. A.; ASSIS, T. F. **Multiplicação e enraizamento** *in vitro* de *Eucalyptus globulus* subsp. *Globulus* Labill. Revista Árvore. v. 25. n. 1. Viçosa: SIF, 2001. p. 1 – 8.

GOMES, A. L. **Propagação clonal: princípios e particularidades**. Vila Real: Universidade de Trás-os-Montes e Alto Douro, 1987. 69 p. (Série Didáctica, Ciências Aplicadas, 1).

MIROV, N.T. The genus pinus. New York: The Ronald Press Company, 602p. 1967.

PERRY, J.R. The pinus of Mexico and Central America: Timber Press, 1991.

ROSA, L.S.; WENDLING, I.; SANTOS, D.C. Reguladores de crescimento no alongamento *in vitro* de microestacas de *Eucalyptus pellita*. In: 8°. CONGRESSO FLORESTAL BRASILEIRO. **Anais**... São Paulo. 2003. (cd rom).

SANTOS, D. C.; WENDLING, I.; GROSSI, F. Influência de diferentes reguladores de crescimento no alongamento *in vitro* de microestacas de *Grevillea robusta* (Cunn.) In: **I Evento de Iniciação Científica da Embrapa Florestas**. Colombo – PR: Embrapa Florestas, 2002. p. 009 – 013.

XAVIER, A. COMÉRIO, J. microestaquia: uma maximização da micropropagação em *Eucalyptus*. **Revista Árvore**, v.20, n.2, p. 9-16.

WIECHETECK, M.S.S.; GRAÇA, M.E.C.; ARAÚJO, A.J. Micropropagação de *Eucalyptus viminalis* a partir de material juvenil. In: CONGRESSO FLORESTAL E DO MEIO AMBIENTE DO PARANÁ. **Anais**... Curitiba-PR. Volume 1. P. 219-230. 1991.