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The bioaccumulation of saxitoxins (STX) in the trophic chain, mainly in freshwater, are not
completely known. This work aimed to elucidate the effects of STX on Hoplias malabaricus
through trophic bioassay. The fish were fed once every five days with Astyanax sp. before
being subjected to an intraperitoneal inoculation with the lysate of Cylindrospermopsis
raciborskii culture containing 97% STX and 3% by neosaxitoxin and gonyautoxin during 20
Keywords: days. The animal’s liver was assessgd using biomarkers as activities of §uperoxid§ dis-
Eutrophic.ation mutase (SOD), catalase (CAT), glutathione S-transferase (GST), and glutathione peroxidase
Fish (GPx), and concentrations of reduced glutathione (GSH) and lipoperoxidation (LPO) and
protein carbonylation (PCO). In the blood was analyzed the genotoxic and hematological
parameters. The hepatosomatic index and the relative condition factor did not show
a significant difference between the exposed and control groups. The values of mean
corpuscular hemoglobin concentration and mean corpuscular hemoglobin increased in
the STX group. The hepatic tissue from both groups exhibited a typical pattern that have
been already described for most teleost fish. The results suggested the generation of
reactive oxygen species, with increased activity of GPx and concentrations of LPO and
GSH; whereas the specific activity of SOD decreased. However, no changes were observed
in the CAT, PCO, and DNA damage. Although the STX effects are known as neurotoxic, this
cyanotoxin caused liver biochemical alterations that can be considered ecologically
relevant.

Cyanotoxin
Genotoxicity
Paralytic shellfish poison

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The anthropogenic pressure that is closely related to the
nutrient input from point sources (usually sewage dis-
charge) as well from diffuse sources (agriculture and other
industrial activities) in the drainage basin is certainly one of
the main causes of cyanobacteria mass occurrence. The
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presence of potentially toxic cyanobacteria in water supply
reservoirs has been described in many countries in the
world (Garcia Nieto et al., 2011) and leads to concerns
regarding the risk for human health. In Brazil, cyano-
bacterial blooms are an important issue, as the deaths of
human beings that are caused by water contaminated with
cyanotoxins were already reported in this country
(Azevedo et al., 2002).

Saxitoxin (STX) is a water-soluble neurotoxin that binds
to the voltage-dependent sodium channels in excitatory
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cells. This binding blocks the inward Na" current while
leaving the outward K current unaffected (Cestelle and
Catterall, 2000), ultimately leading to hyperpolarization
of the cell. In addition, the Na*-channel blockage may alter
the selective permeability of the membrane and change the
flow of ions, leading to damage to the cellular homeostasis
(Silva et al., 2011).

Fish are particularly sensitive to water contamination,
and pollutants may impair many physiological and bio-
chemical processes when assimilated by fish tissue. When
abnormal or xenobiotic-induced reactive oxygen species
(ROS) production exceeds the endogenous protection,
damage to cellular components can be often observed. This
process is known as oxidative stress (Oakes and Van der
Kraag, 2003). The antioxidant defense system includes
enzymes such as superoxide dismutase (SOD), glutathione
peroxidase (GPx), catalase (CAT), glutathione S-transferase
(GST), and other low-molecular-weight scavengers such as
reduced glutathione (GSH). The liver is not the target organ
to the STX, but it plays a key role in most metabolic pro-
cesses, especially detoxification and, consequently, in the
formation of free radicals. It is known that the STX causes
oxidative stress in the brain (Silva et al., 2011), but this has
not yet been investigated in the liver of Hoplias malabaricus
after trophic exposure.

The freshwater fish species H. malabaricus exhibits
a large ecological plasticity, with a wide distribution in
Brazilian rivers and reservoirs (Hensley and Moody, 1975)
and occupies high trophic levels.

The aim of the present work was to evaluate oxidative
stress, as well as the hematological, morphologic, and
genotoxic effects of STX in the liver of H. malabaricus after
subchronic and trophic exposure using biomarkers of
environmental contamination.

2. Material and methods
2.1. Experimental design

Ten individuals per group (experimental STX and
control groups) of H. malabaricus (mean weight
110.02 + 19.00 g) were fed once every five days with
Astyanax sp. before being submitted to intraperitoneal
inoculation with the lysate of Cylindrospermopsis racibor-
skii culture (T3) containing 97% STX and 3% by neo-
saxitoxin and gonyautoxin. The culture was carried out at
University of Rio de Janeiro, Rio de Janeiro, R]. In the STX
group, the used dose was 0.08 ug/100 g of H. malabaricus,
total of four doses. This chosen dose is below that
acceptable for human ingestion by Food and Agriculture
Organization (FAO) of the United Nations (Chorus and
Bartram, 1999). In the control group was administered
0.9% NaCl, as vehicle. After 20 days, the animals were
anesthetized and killed by medullar section. The blood
was collected to genotoxic assay and to the hematological
parameters. The body weight and the length were used to
the calculation of the hepatosomatic index and the con-
dition factor. The liver was collected for morphological
and for biochemical analysis, such as superoxide dismut-
ase (SOD), catalase (CAT), glutathione S-transferase (GST),

glutathione peroxidase (GPx), reduced glutathione (GSH),
lipoperoxidation (LPO) and protein carbonylation (PCO).

2.2. Hepatosomatic index and condition factor

The hepatosomatic index (HSI) represents the percentile
organ weight related to the fish total weight: HSI=WI x 100/
Wt; where WI represents the liver weight and Wt the total
weight. The length-weight relationship was expressed by
the equation Wt = aLb, where Wt represents the total body
weight (g) and L the total length (cm) of the fish and the
constants a and b were estimated by linear regression:
W =log a + b x log L. These data were employed in calcu-
lating condition factor (Kn) (Le Cren, 1951).

2.3. Hematological biomarkers

The blood was collected from the caudal vein using hep-
arinized syringes. Hematocrit (Ht) was determined by the
microhematocrit centrifugation technique at 12,000 rpm for
5 min and the hematocrit values (%) were read immediately.
Hemoglobin (Hb) was determined by cyanomethahemo-
globin method (Collier, 1944) and the results expressed in
g dL~L. The red blood cell count (RBC) was determined opti-
cally with a Neubauer chamber using Formol-citrate solution
and reported as the number of cells.uL~! of blood. Mean
corpuscular volume (MCV = fL), mean corpuscular hemo-
globin (MCH = g dL™!) and mean corpuscular hemoglobin
concentration (MCHC = g dL~!) were computed from the Ht,
Hb and RBC values (Wintrobe, 1934).

2.4. Biochemical biomarkers

Samples of liver were homogenized in phosphate buf-
fer (0.1 M, pH 7.5) and centrifuged at 10,000 x g for
20 min at 4 °C. The supernatants were used to estimate
the activities of the enzymes SOD, CAT, GST, GPx, and to
estimate the concentrations of GSH, LPO and products of
PCO.

The activity of SOD was assayed by measuring its ability
to inhibit the reduction of nitroblue tetrazolium (NBT),
which was determined by the method described by Crouch
et al. (1981). CAT activity was measured at 240 nm on the
basis of the method described by Aebi (1984). GST activity
was measured at 340 nm by the method described by Keen
et al. (1976), GPx activity was measured at 340 nm (Sies
et al., 1979), and GSH concentration was measured at
415 nm (Sedlak and Lindsay, 1968).

The analysis of LPO was carried out using the ferrous
oxidation - xylenol orange assay at 570 nm (Jiang et al.,
1992), PCO analysis was conducted at 360 nm by derivati-
zation of the protein carbonyl groups with 2,4-dinitr
ophenol hydrazine to yield dinitrophenyl hydrazones
(Levine et al., 1994; Quinlan and Gutteridge, 2000). Protein
concentration was determined using Bradford’s method
(1976), with bovine serum albumin as the standard.

2.5. Genotoxic biomarker

The comet assay was performed with peripheral blood
(erythrocytes) as described by Singh et al. (1988),
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modified by Ferraro et al. (2004). Briefly, 10 pL of the
homogenized blood in fetal bovine serum was diluted in
120 pL of low melting agarose (LMA) and placed on a slide
covered by normal agarose. The slides placed in lysis so-
lution (lysis stock solution: NaCl (2.5 M), ethyl-
enediaminetetraacetic acid (EDTA; 100 mM), tris
(hydroxymethyl)amino methane (Tris; 10 mM), NaOH
(0.8%), and N-lauroyl sarcosinate (1%); working lysis so-
lution: Triton X-100 (1%), dimethyl sulfoxide (DMSO) (10%
in lysis stock solution) for 24 h at 4 °C. In the following
step, the slides were first immersed in a solution of NaOH
(10 N) and EDTA (200 mM), pH > 13, for 20 min to cause
DNA denaturation and were subjected to electrophoresis
at 300 mA/25 V for 25 min. After neutralization in 0.4 M
Tris, pH 7.5, and fixation in ethanol for 10 min, the slides
were stained with 0.02 g/mL ethidium bromide, and the
DNA strand breaks were scored using a Leica DMLS2
epifluorescence microscope at a magnification of 400x.
For each liver slide, 100 cells were visually analyzed by the
method of Collins et al. (1997) and scored visually as
belonging to one of five classes—from undamaged (0) to
maximally damaged (4)—predefined with reference to the
tail intensity. The score of the comets for a group could
range from O (completely undamaged = 100 cells x 0) to
400 (maximum damage = 100 cells x 4).

2.6. Histopathological biomarker

Liver samples were preserved in Alfac fixative solution
(ethanol 80%; formaldehyde 40% and glacial acetic acid 5%)
for 16 h, dehydrated in a graded series of ethanol baths, and
embedded in Paraplast Plus resin (Sigma®). Sections (3-
5 um) were stained in hematoxylin/eosin (Woods and Ellis,
1994) and observed in Zeiss Axiophot photomicroscope. A
liver lesion index was determined according to the method
established by Bernet et al. (1999), and described in Mela
et al. (2007). Free melano-macrophages (MMs) and
melano-macrophages centers (MMCs) were evaluated ac-
cording to Rabitto et al. (2005).

2.7. Statistical analysis

The normality test preceded data analysis. The bio-
logical parameters were analyzed using the unpaired Stu-
dents’t-test. The comet assay results were analyzed using
the Mann-Whitney test. All tests were regarded as statis-
tically significant when p < 0.05.

3. Results

The HSI and the Kn did not exhibit significant differ-
ences (p > 0.05) between the groups. The HSI was
0.59% + 0.08 in the control group and 0.50 + 0.09 in the
experimental group.

The hematological parameters were not altered by the
STX, only the MCH and MCHC values increased (p < 0.05) in
the group with STX (Table 1).

In the fish liver, the specific activity of SOD decreased in
the STX group in relation to the control group (p < 0.05);
whereas the specific activity of GPx and the GSH concen-
tration increased in the STX group (p < 0.05). In addition,

Table 1

Hematological parameters of H. malabaricus of the control and saxitoxin
groups. Hematocrit (Ht), red blood cell count (RBC), hemoglobin con-
centration (Hb), mean cell volume (MCV), mean cell hemoglobin (MCH)
and mean cell hemoglobin concentration (MCHC). The values are
expressed as mean =+ standard error.

Parameter/Treatment Control Saxitoxin

Ht (%) 22.50 + 6.00 23.19 £ 4.36
Hb (gdL 1) 521 + 1.38 6.20 + 1.46
RBC (erythrocytes pL™") 1.61 + 0.44 1.58 + 0.24
MCV (fL) 141.13 £ 17.57 146.72 + 6.54
MCH (g dL™ 1) 32.60 + 1.40 39.15 + 4.80*
MCHC (g dL™") 2331 £2.14 26.63 £ 2.50*

* Indicates difference statistically significant between the treatments.

the LPO process, expressed as the concentration of hydro-
peroxides, increased in the STX group (p < 0.05) (Fig. 1).
Therefore, no changes occurred in the PCO process,
expressed as the concentration of dinitrophenyl hydra-
zones, GST and CAT activities (data not shown).

The hepatic tissue of H. malabaricus from the control
and exposed groups exhibited a typical pattern already
described for most teleost fish: a very homogeneous he-
patic tissue with sinusoids and polyhedral hepatocytes ar-
ranged in cords presenting spherical nuclei (Fig. 2A). The
presence of melano-macrophages centers (MMC) was also
observed in the experimental group than in the control
group. In H. malabaricus, the MMC present granular or
heterogeneous pigmented material (from yellow to dark
brown) when stained with hematoxylin/eosin (Fig. 2B). The
morphological lesions observed (necrosis and leukocyte
infiltration) in the liver of H. malabaricus were not
significant.

The DNA damage in the control group was not observed
in the blood cells of the fish exposed to STX (p > 0.05).

4. Discussion

Fish hepatosomatic index did not change and can
indicate that both the dose and the number of the doses of
the neurotoxin did not affect the health of H. malabaricus.
Therefore, the HSI values were low when compared with
other animals of the same species (2.32 4+ 0.40) (Rios et al.,
2006) and with other species as matrinxd, Brycon ama-
zonicus (1.13 £ 0.16). The liver histopathological analysis
did not exhibit any damage that can affect the HSI. Ernst
et al. (2007) report that Coregonus lavaretus exposed to
cyanotoxin, mainly microcistin, expressed a low condition
factor. These fishes also probably presented low HSI due to
the histopathological alteration in the liver detected during
the analysis. In other fish species such as Gasterosteus
aculeatus L., Clupea harengus L. and Salmo salar L. were also
found histopathological alterations in the liver and kidney
due to the ingestion of contaminated food with nodularin
in the Baltic Sea (Sipid et al., 2007). It is possible that the
exposure time was not enough to cause damage in the
liver.

Concern of the hematological parameters only the
MCH and MCHC values of H. malabaricus in the STX group
increased (p < 0.05) compared with the control group.
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Fig. 1. Biochemical biomarkers evaluated in H. malabaricus exposed to the STX extract: (A) specific activity of superoxide dismutase (SOD); (B) specific activity of
glutathione peroxidase (GPx); (C) Concentration of reduced glutathione (GSH). (D) Concentration of hydroperoxides (LPO). The results are expressed as mean
values + standard error. * indicates statistically significant differences (p < 0.05).

Probably, a high demand of oxygen to the tissues was
necessary due to STX exposure. Therefore, studies con-
ducted on the action of cyanotoxins (more specifically,
saxitoxin) about both the physiology and the health con-
dition of the fish were not found in the scientific
literature.

A significant increase in GPx activity in the fish from the
STX group indicates that the antioxidant pathway is stim-
ulated, and it is also involved in the metabolization of
hydrogen peroxide (Zhang et al., 2004; Maran et al., 2009).
Thus, the activation of GPx may indicate a response to
compensate the lack of increase in CAT activity. The GSH
levels also increased and can be an adaptive mechanism by
means of an increased synthesis. Protective and adaptive
roles of GSH against oxidative stress-induced toxicity are
well established in aquatic animals (Regoli and Principato,
1995; Otto and Moon, 1995).

Glutathione, the major non-protein thiol of cells, is
involved in the cellular defense against the toxic action of
oxyradicals. This low-molecular-mass thiol can be easily
oxidized and serve as a sink for free radicals and other
reactive species (Hermes Lima, 2004). Variations in cellular
glutathione content are considered indicators of the degree
and duration of exposure to oxidant pollutants in fish. The
reduction in SOD activity may be related to the production
of oxidants. It is known that there is a complex pathway of
interaction among the enzymes involved in the animal’s
antioxidant system and that the activity of one enzyme

influences the activity of other enzymes. An excess of
hydrogen peroxide may reduce SOD activity, whereas the
superoxide anion may be responsible for decreased CAT
activity (Bagnyukova et al., 2006). In the present work, no
changes in CAT activity were observed. The correlation
between the activities of both enzymes is not even
observed in biomarkers assays. In an experiment con-
ducted with Carassius auratus, an increase of SOD in the
liver was observed after metal exposure and a decrease of
CAT activity (Shi et al., 2005).

When not neutralized, ROS can react with membrane
lipids (Ahmad et al., 2000), producing lipid peroxidation,
which is considered one of the main consequences of
oxidative stress and cell death (Hermes Lima, 2004). In
this work, the occurrence of lipid peroxidation indicated
that the STX can cause membrane damage in the liver.
Therefore, this damage was not able to cause DNA damage
in the liver. In the brain of H. malabaricus, we observed
genotoxicity that can lead to neurodegeneration (Silva
et al, 2011).

In conclusion, the results found in this work suggest that
STX can cause oxidative stress and membrane damage in
the liver of H. malabaricus. Moreover, a further study con-
ducted with different doses of STX is highly recommended,
because it is a freshwater fish that is widely consumed in
Brazil and could represent an important vehicle of STX
transfer to humans when exposed to cyanobacterial
blooms.
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Fig. 2. Cross-section of liver of H. malabaricus stained with hematoxylin/
eosin. (A) Individual from control group showing the central vein (CV),
portal vein (PV), sinusoid vase (S) and hepatic parenchyma (HP). Scale
bar = 50 um. (B) Individual from exposed group showing the melano-
macrophage centers (MMC), hepatocytes nucleus (HN) and portal vein
(PV). Scale bar = 100 pm.
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