COMPORTAMENTO PRODUTIVO DE GRAMÍNEAS FORRAGEIRAS CULTIVADAS SOB SOMBREAMENTO

Paulo Roberto de Lima Meirelles¹ e Silas Mochiutti²

Doutorando em Zootecnia UNESP-Botucatu e-mail: <u>prmeirelles@uol.com.br;</u> ² Pesquisador Embrapa Amapá, Rodovia JK, km 5, s/n^o, Macapá-AP,

1 Introdução

A derrubada da floresta nativa para a formação de pastagens é prática comum na Amazônia. Inicialmente essas áreas apresentam boas produções, aproveitando a adição de nutrientes pela adubação inicial, ou na forma de cinzas, resultado da queima da vegetação nativa. No entanto, com o decorrer dos anos, observa-se um declínio gradual na produtividade destas pastagens, como consequência da utilização de praticas inadequadas tanto de manejo dos solos como das pastagens (TOLEDO & SERRÃO, 1982).

Para alcançar a sustentabilidade das pastagens cultivadas nas regiões tropicais, é necessário o desenvolvimento de agrossistemas similares aos sistemas naturais de florestas e cerrados, minimizando as perdas de nutrientes e garantindo a sustentabilidade da atividade pecuária. Deste modo, sistemas alternativos que levem em consideração as peculiaridades dos recursos naturais e que sejam técnica e economicamente viáveis, devem ser concebidos e testados de modo a tornar a atividade agropecuária mais produtiva e sustentável. Os sistemas silvipastoris, ao aumentarem a eficiência de utilização dos recursos naturais pela complementariedade entre as diferentes explorações envolvidas (espécies frutíferas, florestais e industriais), surgem como uma alternativa para conter os impactos ecológicos decorrentes da derrubada de florestas para a formação de pastagens.

Para o sucesso dos sistemas silvipastoris deve-se selecionar as espécies forrageiras que se desenvolvam bem sob o sombreamento de árvores. O benefício das árvores sobre a produção e qualidade das gramíneas forrageiras associadas, tem sido atribuído a uma maior disponibilidade de nitrogênio e outros nutrientes, bem como do efeito da sombra sobre as condições microclimáticas nas áreas sombreadas, o que resulta em maior atividade biológica no solo (WILSON, 1996). Uma questão que chama atenção é que os programas de melhoramento das plantas forrageiras normalmente são desenvolvidos em condições de plena luz e, portanto, as espécies selecionadas podem não ser tolerantes a sombra.

Este trabalho tem como objetivo avaliar o comportamento produtivo de sete gramíneas forrageiras do gênero *Brachiaria (Brachiaria brizantha* cv. Marandu; *B. brizantha* BRA 4391; BRA 3441; BRA 4308; *B. dictyoneura*; *B. humidicola* e *B. decumbens*) sob três regimes de luminosidade: 1) 0% de sombra (pleno sol); 2) sombreamento médio (417 plantas/ha) e 3) sombreamento intenso (833 plantas/ha) em subbosque de taxi-branco (*Sclerolobium Paniculatum*)

2 Material e métodos

O experimento foi conduzido no Campo Experimental do Cerrado, da Embrapa Amapá, localizado no km 256 da BR 156 no Município de Macapá, em um Latossolo Amarelo de textura média (23% de argila). O clima, segundo a classificação de Köppen é Ami-Tropical chuvoso, com uma precipitação pluviométrica anual média de 2.260 mm concentrada entre os meses de janeiro a julho. A temperatura média é de 26 °C e umidade relativa do ar sempre superior a 80%.

Para instalação dos tratamentos com sombreamento, foi utilizado um plantio de taxi-branco com sete anos de idade, estabelecido no espaçamento 2 x 3 m (1667 plantas/ha), sendo efetuado um desbaste de duas e quatro fileiras do componente florestal, para a obtenção das densidades desejadas.Os tratamentos a pleno sol, foram instalados em área de cerrado nativo.

O delineamento experimental foi em blocos ao acaso com parcelas subdivididas e três repetições. As parcelas mediam 2 m x 5 m, com área útil de 4m² e as avaliações foram realizadas aos 21, 42, 63 e 84 dias de crescimento, após corte de uniformização nos períodos de máxima (jan./jun.) e mínima precipitação (jul./dez).

3 Análise e discussão

As produções de matéria seca (média de dois anos), de acordo com as intensidades de sombreamento e época do ano, são apresentadas na Tabela 1.

Observa-se em todas as gramíneas, que o sombreamento reduziu a produção de forragem, sendo que as menores produções para todas as gramíneas estudadas em todos os cortes foram sempre observadas no sombreamento intenso. Nota-se ainda, que as gramíneas responderam diferentemente ao sombreamento, com destaque para o capim marandú, que apresentou os melhores rendimentos, em todos os níveis de sombreamento e nas duas épocas do ano.

REYNOLDS (1979) e LISIERI et al. (1994), também observaram a tolerância de *B. brizanta* ao sombreamento, enquanto SHELTON et al. (1987), citam essa forrageira pertencente ao grupo de gramíneas que apresentam tolerância média ao sombreamento. No sombreamento intenso, todas as espécies apresentaram produções muito reduzidas, evidenciando o efeito negativo da baixa luminosidade, sendo que nessa condição, *B. humidicola* não apresentou condições de corte quando submetido ao sombreamento intenso aos 63 e 84 dias nas duas épocas do ano, devido ao reduzido vigor das plantas. Cabe salientar, que as gramíneas tropicais, pertencem ao grupo C₄, especialmente adaptadas à luminosidade intensa sendo, portanto, esperado uma significativa queda na produção de forragem, principalmente no sombreamento intenso.

No presente estudo, com a redução progressiva da luminosidade, todas as gramíneas apresentaram diminuição quantidade de forragem produzida. Essa resposta negativa ao sombreamento geralmente é observada em gramíneas, principalmente as pertencentes ao grupo C₄. WOODS et al.(1982); KENNETT et al. (1992) e CASTRO (1996), também observaram queda na produção de matéria seca em pastagens com a intensificação do sombreamento, seja ele imposto pela cobertura arbórea ou artificial.

4 Conclusões

Os resultados obtidos nos permitem concluir as gramíneas estudadas apresentaram respostas distintas e negativas às condições de sombreamento por taxi-branco, sendo que o sombreamento intenso (833 árvores/ha) tem comprometido o desempenho produtivo das espécies estudadas. Considerando-se os rendimentos e distribuição estacional de forragem, o capim marandú destaca-se como promissor para a formação de pastagens em sistemas silvipastoris com taxi-branco no Amapá.

Tabela 1. Produção de matéria seca (kg/ha) de sete gramíneas forrageiras em quatro idades de crescimento nos períodos de máxima e mínima precipitação sob sombreamento de taxi-branco e a pleno sol em Macapá, Amapá.

Máxima precipitação					Mínima precipitação					
				Plend	Sol					
Basulioric	Dias de crescimento						Dias de crescimento			
AS module	21	48	63	84		21	48	63	84	
Brizantha BRA-4391	*1114 ^a	2941 ^a	4158 ^a	5652 ^a	Brizantha BRA-4391	708 ^a	756 ^a	751 ^a	757 ^a	
Decumbens	1096 ^a	2889ª	4027 ^a	5236°	Decumbens	626 ^{ab}	656 ^{ab}	663 ^{ab}	688 ^{ab}	
Brizantha BRA-3441	1084 ^a	2804 ^a	3992ª	5033ª	Brizantha BRA-3441	542 ^{ab}	581 ^{abc}	596 ^{abc}	599 ^{ab}	
Marandu	797 ^a	2592 ^a	3797 ^a	4764 ^a	Marandu	533 ^{ab}	576 ^{abc}	593 ^{abc}	594ªb	
Brizantha BRA-4308	777 ^a	2532 ^a	3610°	4754 ^a	Brizantha BRA-4308	431 abc	471 bc	494 ^{abc}	512ab	
Dictyoneura	744 ^a	2233 ^a	3433 ^a	4554 ^a	Dictyoneura	382 bc	435 bc	449 bc	452 b	
Humidicola	601 ^a	2147 ^a	3399 ^a	4545 ^a	Humidicola	206 °	307 °	352 °	373	
CV (%)	26,4	24,0	15,9	16,6	CV (%)	21	18,6	17,4	17,6	
Rums				Sombra m	noderada					
	21	48	63	84		21	48	63	84	
Brizantha BRA-4391	329 b	1637 ^{ab}	2703 ^{bc}	2927 ^{bc}	Brizantha BRA-4391	290 b	894 ^a	1057 ^a	1140	
Decumbens	400 ^b	1259 ^b	2213 ^a	2504 °	Decumbens	344 b	617 ^a	749 ^a	831 ^a	
Brizantha BRA-3441	312 b	1786 ^{ab}	2989 ^{ab}	3130 ^{ab}	Brizantha BRA-3441	283 b	988 ^a	1157 ^a	1232	
Marandu	659 ^a	2175 ^a	3266 ^a	3532 ^a	Marandu	494 ^a	964 ^a	1150 ^a	1401	
Brizantha BRA-4308	319 ^b	1855 ^a	2893 ^{ab}	2986 b	Brizantha BRA-4308	290 b	911 ^a	1067 ^a	1107	
Dictyoneura	367 ^b	1654 ^{ab}	2743 b	2806 ^{bc}	Dictyoneura	344 b	910 ^a	998 ^a	1076	
Humidicola	400 b	1627 ^{ab}	2704 ^{bc}	2466 c	Humidicola	316 ^b	774 ^a	899 ^a	946 ^a	
CV (%)	15,7	11,3	8,9	7,5	CV (%)	11,0	21,7	16,0	20	
0.161.0				Sombra	intensa					
	21	48	63	84		21	48	63	84	
Brizantha BRA-4391	192 °	414 cd	622 b	592 b	Brizantha BRA-4391	129 ^a	192ª	215 ^{ab}	256 ^{at}	
Decumbens	211 ^{bc}	616 ^{ab}	700 ^{ab}	641 ^b	Decumbens	123 ^a	182ª	205 ^{ab}	229 ^{at}	
Brizantha BRA-3441	211 ^{bc}	516 bc	595 ^b	606 b	Brizantha BRA-3441	148 ^a	164 ^a	201 ^{ab}	239 ^{at}	
Marandu	341 ^a	712 ^a	818 ^a	1469 ^a	Marandu	169 ^a	201ª	239 ^a	278ª	
Brizantha BRA-4308	239 ^{abc}	560 b	606 b	621 ^b	Brizantha BRA-4308	123 ^a	157 ^a	195 ^{ab}	233ª	
Dictyoneura	299 ^{ab}	338 ^d	398 °	419 ^b	Dictyoneura	127 ^a	141 ^a	148 ^b	173	
Humidicola	167 ^c	193 ^e	-	-	Humidicola	145 ^a	172ª	-	-	
CV (%)	15,8	11,0	9,0	22,2	CV (%)	20,2	15,3	17,2	17,	

^{*} Médias seguidas pelas mesmas letras, nas colunas, não diferem entre si pelo teste de Tukey (P>0,05).

5 Referências Bibliográficas

- CASTRO, C. R. T. Tolerância de gramíneas forrageiras tropicais ao sombreamento., MG: UFV, 1996. 247p. Tese (Doutorado) Universidade Federal de Viçosa, 1996.
- KENNET, G. A., LACEY, J. R., BUTT, C. A., OLSON-RUTZ, K. M., HAFERKAMP, M. R. Effects of defoliation, shading and competition on spotted and bluebunch weatgrass. **Journal of Range Management**, Denver, v.45, n.3, p.363-369, 1992.
- LIZIERI, R. S., DIAS, R. F., SOUTO, M. S. Comportamento de gramíneas forrageiras na sombra. In REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 31, 1994, Maringá, Anais...:SBZ, 1994b. p.265.
- REYNOLDS, S. G. Evaluation of pasture grasses under coconuts in Western Somoa. **Tropical Grassland**, v.12, n. 1, p. 146-151, 1978.
- SHELTON, H. M., HUMPRHEYS, L. R., BATELLO, C. Pastures in the plantations of Asia and the Pacific performance and prospect. Tropical Grassland, v.21.n4, p.159-168, 1987.
- TOLEDO, J.M.; SERRÃO, E.A.S. Producción de pastos y ganado en la Amazonia. In: HECHT, S.B., ed. Amazonia, Investigación sobre agricultura y uso de tierras. CIAT, 1982. p.297-323.
- WILSON, J.R. Shade-stimulated growth and nitrogen uptake by pasture grasses in a subtropical environment. **Australian Journal of Agricultural Research**, Melbourne, v. 47, p. 1075-1093,1996.
- WOODS, R.F., BETTERS, D.R., MOGREN, E.W. Understory herbage production as a function of rocky mountain aspen stand density. Denver, v.35, n.3, p.380-381, 1982.