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Abstract Among pests that have recently been introduced into the Americas, the red

palm mite, Raoiella indica Hirst (Prostigmata: Tenuipalpidae), is the most invasive. This

mite has spread rapidly to several Caribbean countries, United States of America, Mexico,

Venezuela, Colombia and Brazil. The potential dispersion of R. indica to other regions of

South America could seriously impact the cultivation of coconuts, bananas, exotic and

native palms and tropical flowers such as the Heliconiaceae. To facilitate the development

of efficacious R. indica management techniques such as the adoption of phytosanitary

measures to prevent or delay the dispersion of this pest, the objective of this paper was to

estimate the potential geographical distribution of R. indica in South America using a

maximum entropy model. The R. indica occurrence data used in this model were obtained

from extant literature, online databases and field sampling data. The model predicted

potential suitable areas for R. indica in northern Colombia, central and northern Venezuela,

Guyana, Suriname, east French Guiana and many parts of Brazil, including Roraima, the

eastern Amazonas, northern Pará, Amapá and the coastal zones, from Pará to north of Rio

de Janeiro. These results indicate the potential for significant R. indica related economic

and social impacts in all of these countries, particularly in Brazil, because the suitable

habitat regions overlap with agricultural areas for R. indica host plants such as coconuts

and bananas.
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Introduction

The red palm mite, Raoiella indica Hirst (Prostigmata: Tenuipalpidae), is an invasive pest

recently introduced into neotropical regions. In the Old World, it was initially reported in

India (Hirst 1924) and later in northeast Africa (Pritchard and Baker 1958), southern Africa

(Moutia 1958) and the Middle East (Gerson et al. 1983). In the neotropics, R. indica was

first reported in 2004 in Martinique (Flechtmann and Etienne 2004) and despite quarantine

measures established by some countries, it rapidly dispersed to several Caribbean islands

(Kane et al. 2005; Etienne and Fletchmann 2006), southern Florida (Welbourn 2006),

Mexico (NAPPO 2009), Venezuela (Vásquez et al. 2008), Colombia (Carrillo et al. 2011b)

and northern Brazil (Navia et al. 2011; Rodrigues and Antony 2011). Following the dis-

covery of R. indica in the Brazilian state of Roraima in 2009, the Brazilian Ministry of

Agriculture, Livestock and Supply established quarantine measures restricting the transit of

host plants and their parts (fruits and leaves) to other states. However, 2 years ago,

R. indica was also found to be infesting coconuts (Cocos nucifera L.), dwarf royal palms

[(Veitchia merrillii (Becc.) H. E. Moore] and fishtail palm trees (Caryota mitis Lour.)

(Rodrigues and Antony 2011).

The initial reported host range of R. indica was limited to Arecaceae plants such as

coconut (Sayed 1942; Moutia 1958; Kapur 1961). However, since its introduction in the

Americas, this mite has expanded its host plant range to 96 reported plant species:

Arecaceae (75 species), Cannaceae (1), Heliconiaceae (5), Musaceae (6), Pandanaceae (1),

Strelitziaceae (2) and Zingiberaceae (6) (Cocco and Hoy 2009; Navia et al. 2012).

The potential impact of R. indica in South America is high, particularly for coconuts,

bananas and flowers of the Heliconiaceae, Musaceae, Zingiberaceae and Strelitziaceae

families. The presence of R. indica in the production areas for these host plants may affect

exportation of these plants to other counties and non-infested areas due to the imposition of

sanitary barriers (Navia et al. 2012). Additionally, particularly in the northern and north-

eastern regions of Brazil, exotic and native palms such as açaı́ (Euterpe oleracea Mart.),

moriche palms (or burit, Mauritia flexuosa L.) and peach palm (Bactris gasipaes Kunth.),

play important economic and social roles, especially for low-income populations that

depend on their fruit.

To reduce problems associated with R. indica infestation in areas in which it has already

been introduced, control methods such as plant resistance (Rodrigues and Irish 2011),

chemical controls (Rodrigues and Peña 2012) and biological controls (Peña et al. 2009;

Carrillo et al. 2010, 2011a, 2012; Carrillo and Peña 2011; Hoy 2012) have been investi-

gated. The prediction of potential suitable habitats for this invasive species is important to

support these studies and the implementation of phytosanitary measures to prevent or delay

the dispersion of R. indica in South America.

Species distribution modeling (SDM), in which predictive models of geographic dis-

tributions of species are developed based on the environmental conditions (suitable habitat)

of sites where the species is known to be present, has applications in conservation plan-

ning, ecology, evolution, epidemiology, invasive-species management and other fields

(Yom-Tov and Kadmon 1998; Corsi et al. 1999; Peterson et al. 1999; Scott et al. 2002;

Welk et al. 2002; Peterson and Shaw 2003).

When both absence and presence data are available for modeling, general-purpose

statistical methods such as generalized linear models (GLM), generalized additive models

(GAM), classification and regression trees (CARTs), principal component analysis (PCA)

and artificial neural networks (ANNs) (Guisan and Zimmermann 2000; Moisen and

Frescino 2002; Guisan et al. 2002; Berg et al. 2004) can be used. However, while presence-
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only data are abundant, absence data are limited (Soberón 1999; Ponder et al. 2001;

Anderson et al. 2002). In addition, even when absence data are available, they may be of

questionable value in many situations (Anderson et al. 2003). Thus, modeling techniques

that require only presence data are extremely valuable (Graham et al. 2004). Therefore, a

second group of methods, including genetic algorithms (GARP) (Stockwell and Peters

1999) and Bioclim (Busby 1991), is gaining more consideration. The recently proposed

maximum entropy (Maxent) algorithm (Phillips et al. 2006) permits the use of presence-

only data and categorical predictors.

Maxent outperforms many different modeling methods (Elith et al. 2006; Ortega-Huerta

and Peterson 2008) and may remain effective despite small sample sizes (Hernandez et al.

2006; Pearson et al. 2007; Papes and Gaubert 2007; Wisz et al. 2008; Benito et al. 2009).

Elith et al. (2006) demonstrated that Maxent performed better than more established

methods such as Bioclim, GARP, GAM and GLM. In addition, Barry and Elith (2006)

noted that Maxent, GLM and GAM were similar in their ability to fit nonlinear response

surfaces, which are frequently observed in biological data. Hernandez et al. (2006) tested

four modeling methods and demonstrated that Maxent had the strongest performance

among the tested methods because it performed well and its prediction accuracy remained

reasonably stable across all sample size categories, producing maximal accuracy levels for

the smallest sample size categories. Sérgio et al. (2007) showed that Maxent outperformed

GARP when applied to presence-only herbarium collection data.

Maxent is a machine learning algorithm which estimates the distribution of the species

by finding the probability distribution of maximum entropy (i.e., the closest uniform as

possible) subject to constraints representing the incomplete information about the distri-

bution. The constraints are that the expected value of each environmental variable should

match its average over sampling locations from environmental layers (Phillips et al. 2006).

Maxent searches for the statistical model that produces the most uniform distribution but

still infers as accurately as possible the observed data. To do that, it compares the presence-

only records with random data extracted automatically from all the background (including

the species records; see Phillips et al. 2006), or ‘pseudo-absence’’ data.

The pseudo-absences represent true absences, being considered an intermediate meth-

odological approach between presence-only and presence-absence distribution modes

(Pearce and Boyce 2006; Sillero et al. 2010). The aim here is to assess differences between

the occurrence localities and a set of localities chosen from the study area that are used in

place of real absence data. The pseudo-absences points may be selected randomly

(Stockwell and Peters 1999) or according to a set of weighting criteria (Engler et al. 2004;

Zaniewski et al. 2002). Random selection of pseudo-absences has recently been found to

outperform selection of pseudo-absences in low suitability areas (Wisz and Guisan 2009).

To facilitate the development of a strategy for the surveillance, quarantine and control

of R. indica, the purpose of this paper was to estimate the potential geographical distri-

bution of this mite using the Maxent model.

Materials and methods

Raoiella indica occurrence data

The geographical coordinates available for R. indica were obtained from existing literature,

online databases (CABI 2012; EPPO 2012) and new field sampling data from the states of

Roraima and Amazonas. When just a state or county was cited, the coordinates for a point
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near the center of the polygon representing that region were used. Altogether, 92 known

R. indica locations were used in the model (Table 1 in supplementary material; Fig. 1).

Environmental variables

Twenty environmental variables were considered as potential predictors of R. indica
habitat distribution (Table 1), including nineteen bioclimatic variables (Nix 1986) that are

biologically meaningful for defining the eco-physiological tolerances of a species (Graham

and Hijmans 2006; Murienne et al. 2009) and one topographic variable (digital elevation

model—DEM), as a proxy for missing environmental variables. All variables were

obtained from the WorldClim (http://www.worldclim.org/) current (*1950–2000) data-

base version 1.4, release 3 (Hijmans et al. 2005), as generic 2.5 arc-min grids.

Modeling procedure

Maxent software version 3.3.3 k was used with the following settings: auto features

(feature types are automatically selected depending on the training sample size), logistic

output format (provides an estimate of presence probability), random seeds, replicates = 5,

replicate run type = cross validate (Hope et al. 2010), regularization multiplier = 1,

maximum iterations = 2,000, convergence threshold = 10-5 and maximum number of

background points = 20,000 (Phillips and Dudik 2008). The model was developed based

on all R. indica occurrences and projected onto South America to assess the potential

geographic distribution of R. indica.

Cross-validation is a straightforward, rapid and useful method for resampling data for

training and testing models (Kohavi 1995; Hastie et al. 2009). In cross-validation, the

occurrence data is randomly split into a number of equal-sized groups called ‘‘folds’’ and

models are created sequentially by omitting each fold. The removed folds are used for

evaluation. Cross-validation has one important advantage over using a single training/test

split: it uses all of the data for validation, thus making better use of small data sets (Phillips

et al. 2012).

Fig. 1 Raoiella indica occurrence worldwide
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The jackknife approach (Yost et al. 2008; Phillips et al. 2012) was used to assess

variable importance. This approach excludes one variable at a time when running the

model, by training with each environmental variable first omitted and then used singly. In

so doing, it provides information on the performance of each variable in the model in terms

of how important each variable is at explaining the species distribution and how much

unique information each variable provides.

The area under the curve (AUC) of the receiver operated characteristics (ROC) was

used to test the agreement between observed species presence and projected distribution

(Manel et al. 2001). The ROC plot relates the sensitivity (proportion of observed presences

correctly predicted) with 1-specificity (proportion of observed absences/pseudo-absences

incorrectly predicted). To develop a ROC plot, a certain percentage of the data is selected

for training data; the other portion is used for test data. A good model is defined by a curve

that maximizes sensitivity for low values of the false-positive fraction. The significance of

this curve is quantified by the AUC and has values that typically range from 0.5 (no better

than the expected by random) and 1.0 (perfect fit). Values \0.5 indicate that a model fits

worse than random (Fielding and Bell 1997; Engler et al. 2004; Hernandez et al. 2006;

Baldwin 2009).

Results

We performed Maxent modeling on 69 training and 17 testing presence records in a

fivefold cross-validation run that considered all occurrence points. The average AUCs were

Table 1 Environmental variables used and estimative of its relative contributions to the Maxent model

Variable mnemonic Variable % contribution

Alt Altitude (digital elevation model) 17.7

Bio01 Annual mean temperature 3.1

Bio02 Mean diurnal range [mean of monthly (max - min)] 0.7

Bio03 Isothermality (Bio02/Bio07) 9 100 2.6

Bio04 Temperature seasonality (standard deviation 9 100) 5.1

Bio05 Max temperature of warmest month 0.1

Bio06 Min temperature of coldest month 22.5

Bio07 Temperature annual range (Bio05–Bio06) 3.1

Bio08 Mean temperature of wettest quarter 0.2

Bio09 Mean temperature of driest quarter 2.5

Bio10 Mean temperature of warmest quarter 0.7

Bio11 Mean temperature of coldest quarter 20.4

Bio12 Annual precipitation 2.5

Bio13 Precipitation of wettest month 0.4

Bio14 Precipitation of driest month 4.6

Bio15 Precipitation seasonality (coefficient of variation) 4.9

Bio16 Precipitation of wettest quarter 1.6

Bio17 Precipitation of driest quarter 0.1

Bio18 Precipitation of warmest quarter 2.3

Bio19 Precipitation of coldest quarter 4.8
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0.9691 and 0.9469 for the training and test data, respectively, suggesting that the model

had high predictive power.

The environmental variables that most influenced the predictions were ‘Minimum

temperature of coldest month’ (22.5 %), ‘Mean temperature of coldest quarter’ (20.4 %),

‘Altitude’ (17.7 %), ‘Temperature seasonality’ (5.1 %). The influence of all other variables

was 5 % or less (Table 1). The environmental variable with the highest gain when used in

isolation (red bars in Fig. 2) was the minimum temperature of the coldest month (Bio06).

The variable that decreased the gain most when it was omitted (blue bars in Fig. 2) was the

altitude (alt). The values in Fig. 2 are averages over five replicated runs.

A suitable habitat world map for R. indica is presented in Fig. 3. The predicted

occurrence is in good agreement with the occurrence data. However, the model predictions

suggest that there is more suitable habitat than is currently occupied and indicate that

R. indica may still be in the early stage of invasion. According to the potential distribution

in South America, the area suitable for R. indica is wider than the area defined thus far by

the occurrence points. The modeled suitable habitat areas range from northern to central

South America, with the greatest suitability in northern Colombia, east, west and central

Venezuela, Guyana, Suriname, east French Guiana and parts of Brazil. Other countries

have regions with moderate suitability, such as the coast of Ecuador, eastern Peru, central

and northern Bolivia and central Paraguay (Fig. 4).

In Brazil, the most suitable areas were mainly restricted to the coastal zones and the

Amazon basin. The projection of the occurrence data points onto Brazil showed that the

predicted occurrence included the actual distribution in Roraima and Manaus (Amazonas)

but also suggested that other areas in the Brazilian Amazon, such as the eastern Amazonas

state, the northern Pará state, the southern Amapá state and northern Maranhão, may also

be habitable (Fig. 4). The entire coasts of northeastern (from Piauı́, Ceará, Rio Grande do

Norte, Paraiba, Pernambuco, Alagoas to Bahia) and southeastern (Espı́rito Santo and Rio

Fig. 2 Jackknife test of regularized training gain for Raoiella indica modeling
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de Janeiro) Brazilian also exhibited a high probability of R. indica occurrence (Fig. 4).

Mato Grosso do Sul and southeastern São Paulo exhibited moderate suitability.

Discussion

Raoiella indica SDM (Fig. 4) represents an approximation of the potential geographical

distribution based in its fundamental ecological niche in the examined environmental

dimensions (South America). The fundamental niche of a species consists of a set of all

conditions that permit its long-term survival, whereas the realized niche of the species is

the subset of the fundamental niche that is actually occupied (Hutchinson 1957). The

realized niche of the species may be smaller than its fundamental niche, due to human

influence, biotic interactions (e.g., inter-specific competition or predation), or geographic

barriers that have hindered dispersal and colonization; such factors may prevent the species

from inhabiting (or even encountering) conditions encompassing its full ecological

potential (Pulliam 2000; Anderson and Martinez-Meyer 2004).

The selection of optimal areas within the fundamental niche may also limit the extent of

the realized niche (Hutchinson 1978). A species may be absent from suitable habitats

because of local extinction events or limited dispersal ability, or it may occur in a sink

habitat in which its population growth rate is\1 and thus would disappear without constant

immigration from source habitats (Guisan and Thuiller 2005). In this sense, SDM is used to

inductively interpolate or extrapolate fundamental niches outside the locations where a

species is present (i.e., the realized niche) by relating species presence to environmental

predictors (Franklin 1995).

Temperature and altitude seem to be the limiting factors in R. indica dispersion. The

minimum temperature of the coldest month, mean temperature of coldest quarter and

altitude were the variables that most influenced the R. indica distribution predictions;

accordingly, the most suitable niches for R. indica in South America overlapped warm

regions with low temperature variation and low altitude. Dynamic population studies of

R. indica performed in India on coconut and on areca palm indicated positive relationships

Fig. 3 Modeled potential Raoiella indica distribution around the world using Maxent
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between the population density of this mite and temperature (Nagesha-Chandra and

Channabasavanna 1983; Sarkar and Somchoudhury 1989; Yadavbabu and Manjunatha

2007; Taylor et al. 2011). In these studies, R. indica densities were significantly higher in

April through June when the maximum temperature was approximately 38 �C, the

Fig. 4 Modeled potential Raoiella indica distribution in South America using Maxent
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minimum temperature was 22 �C and the average temperature was 30 �C. Relative

humidity also affects R. indica and higher densities of this mite were found in drier and

warmer conditions (Nagesha-Chandra and Channabasavanna 1983; Taylor et al. 2011).

Taylor et al. (2011) observed that density increases during these months appeared to be

related to mite dispersal. R. indica can disperse on wind currents, tropical storms and

through the transport of infected plant material (Welbourn 2006; CABI 2012). On

Caribbean islands and in Florida, this pest appears to have spread through the movement of

infested palm souvenirs such as hats, baskets, rugs, bowls and purses (Mendonça et al.

2005).

If we conservatively assume that the predicted distribution map presented is a proxy for

invasion potential, the Amazon states and the northeastern Brazilian coasts must be con-

sidered especially sensitive because they are important locations for the production of

bananas, coconuts and other economically important palm species such as açaı́, moriche

palm (buriti) and peach palm. The coconut has been considered the main host of R. indica
(Carrillo et al. 2010; Peña et al. 2009) and infestations of this plant with densities of up to

4,000 mites/leaflet have been reported (Duncan et al. 2010). R. indica causes a severe

yellowing of the leaves followed by tissue necrosis (Flechtmann and Etienne 2004) and

severe attacks have caused significant reductions in fruit production (Navia et al. 2011).

Brazil is the fourth largest coconut producer in the world and has an estimated annual

production of 2.7 million tons and a cultivation area of 287,000 ha and its production

comprises more than 80 % of all coconuts cultivated in South America (FAO 2011). At

least 70 % of Brazilian coconut production is located in the northern and northeastern

coastal regions (IBGE 2012), which coincide with the most suitable regions for R. indica.

In these regions, the coconut is cultivated by small family-based farmers who adopt few

modern production technologies and therefore may be greatly affected by possible pro-

duction losses due to R. indica infestation. High R. indica population levels on banana

plantations have been reported and attacked plants exhibit yellow leaf margins (Cocco and

Hoy 2009; Kane et al. 2005). The banana as a host plant is of special social and economic

interest in South America because this continent accounts for approximately 19 % of

worldwide banana production. Brazil and Ecuador, respectively, are the fourth and fifth

largest banana producers in the world (FAO 2011). The suitable R. indica niches in Brazil

overlap the four states with the largest banana production, Bahia, São Paulo, Ceará and

Pernambuco (IBGE 2012).

The açaı́ may be the native palm most affected by the possible establishment of

R. indica in the Brazilian Amazon. In 2012, Brazil produced 124,421 t of açaı́. More than

85 % of the production was concentrated in Pará (IBGE 2012), a state with high suitability

for R. indica habitat (Fig. 4). While there are no studies on the potential damage that this

mite can cause to açaı́ plants, this is an area of potential concern that should be

investigated.

The recent introduction of R. indica in Manaus (Amazonas, Brazil) (Rodrigues and

Antony 2011) may facilitate the spread of this mite to other regions due to the large

movement of people to and from this city, especially via boats to the state of Para.

Additionally, the continuity of suitable R. indica regions may facilitate and accelerate its

dispersion in Brazil. In particular, the entire northern region and the Brazilian coasts have

ideal environmental conditions for R. indica and present a large and diverse population of

potential hosts for this mite.

Both, an extensive suitable habitat and the high likelihood of human-aided spread,

indicate that invasive species such as R. indica could have a large potential economic

impact on production areas in South America. Researchers must develop extensive
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measures to avoid their rapid spread on this continent. Additionally, further research is

needed to understand the population dynamics of R. indica in South America and the real

host range of this mite because there are multiple potential native and exotic host species in

this continent.
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