Estudo da estabilidade a longo prazo em material de referência de forrageira (*Brachiaria brizantha*)

Carla M. Bossu^{1,2,3}* (PQ), Nayara A. Cazo^{1,2} (IC), Gilberto B. Souza² (PQ), Ana Rita A. Nogueira^{1,2} (PQ) *e-mail: carlabossu@yahoo.com.br

Palavras Chave: Material de referência, Forrageira, Estabilidade, Contaminantes inorgânicos, Macro e micronutrientes

Introdução

"Materiais de referência são amostras que possuem valores propriedades ou mais de suficientemente homogêneos, estáveis e bem estabelecidos, de maneira a poderem empregados na calibração de um instrumento de medição, na validação de um método analítico, ou na atribuição de valores a um dado material". Existem dois tipos de estudos de estabilidade a serem considerados: a curto e a longo prazos. No primeiro caso é definida a estabilidade do material a diferentes condições de transporte armazenamento e com a estabilidade a longo prazo pode-se determinar o chamado "tempo de prateleira", ou seja, qual o período para o qual os valores de propriedades estão garantidos².

Resultados e Discussão

O material de referência foi preparado a partir do plantio da forrageira Brachiaria brizantha Stapf cv. Marandu em 375 vasos de 25 kg de solo em casa de vegetação na Embrapa Pecuária Sudeste. Definiu-se previamente a dose de 25 mmol/vaso de As, Cr, Cd e Pb, para que o material produzido apresentasse esses contaminantes em sua estrutura. Foram realizados dois cortes, um a cada 60 dias, sendo todo o material produzido seco em estufa a 45 °C e moído em moinho de facas. Visando diminuição do tamanho de partículas, foi utilizado moinho ultracentrífugo, obtendo-se 20 kg de material seco e moído. Após essa etapa a amostra foi homogeneizada em homogeneizador tipo Y e a seguir foi envasada em frascos de vidro previamente desmineralizados. O objetivo desta etapa do trabalho foi realizar o estudo de estabilidade a longo prazo em relação à presença de As, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, P, Pb e Zn como uma das etapas do processo de preparação do material de referência de forrageira. Para realizar esse teste, 3 frascos (nº 61, 81, 357) foram sorteados aleatoriamente e a cada 3 meses foi feita a quantificação dos analitos, em triplicata, durante o período total de 9 meses. O material foi armazenado a temperatura ambiente, visando acompanhar a estabilidade do material sob condições de armazenamento³. Para o preparo da amostra foi realizada a digestão de 200 mg de

amostra e 4 mL de $\rm HNO_3$ (7,0 mol $\rm L^{-1}$), 4 mL $\rm H_2O$ e 2 mL de $\rm H_2O_2$ (30% m m⁻¹) em micro-ondas com cavidade. As, Cd, Cr e Pb foram determinados por ICP-MS (CRI, Varian 820-MS) e Ca, Cu, Fe, K, Mg, Mn, Na, P e Zn foram determinados por ICP OES. Os materiais de referência certificados "Tomato Leaves" (NIST 1573a) e "Peach Leaves" (NIST 1547) foram incluídos nas determinações analíticas para controle de qualidade e garantia da rastreabilidade dos resultados obtidos. Foi realizada a análise de variância ANOVA one-way, sendo possível observar que o $F_{crítico} > F_{analítico}$ para todos os elementos de interesse. Na Tabela 1 são apresentados os resultados para o período avaliado.

Tabela 1. Teores médios e desvio-padrão da estabilidade a longo prazo (base seca).

Elemento	Início	3	6	9
		meses	meses	meses
As (mg kg ⁻¹)	2,15±0,36	1,41±0,04	1,70±0,12	1,78±0,09
Cr (mg kg ⁻¹)	3,03±0,23	3,52±1,34	2,17±0,37	2,20±0,20
Pb (mg kg ⁻¹)	5,07±0,83	3,94±0,23	4,78±0,25	4,96±0,33
Cd (mg kg ⁻¹)	23±0,8	19±0,6	19±1,2	20,0±0,7
Ca (g kg ⁻¹)	5,6±0,3	5,6±0,1	5,3±0,4	5,4±0,6
Mg (g kg ⁻¹)	3,14±0,12	3,11±0,05	2,96±0,30	3,26±0,17
Na (g kg ⁻¹)	0,15±0,01	0,13±0,01	0,21±0,03	0,20±0,05
Fe (mg kg ⁻¹)	90±7	81±3	83±9	81±4
Cu (mg kg ⁻¹)	3,43±0,10	3,44±0,10	3,26±0,12	3,27±0,14
Zn (mg kg ⁻¹)	6,3±0,4	7,1±1	6,8±0,6	7,7±0,8
K (g kg ⁻¹)	11±0,6	12±0,5	14±1,1	14±1,7
Mn (mg kg ⁻¹)	73±2	70±2	68±6	81±4
P (g kg ⁻¹)	1,0±0,1	1,1±0,1	1,0±0,3	1,0±0,3

Conclusões

Concluiu-se que o material de referência de forrageira é suficientemente estável para ser armazenado sob temperatura ambiente, sem alterações significativas na composição dos elementos avaliados neste trabalho.

Agradecimentos

CNPq, INCTAA e Processo n° 2006/59083-9, Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

¹Grupo de Análise Instrumental Aplicada, Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, Brasil.

²Embrapa Pecuária Sudeste, São Carlos, SP, Brasil.

³Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil.

¹Vocabulário Internacional de Metrologia: conceitos fundamentais e gerais de termos associados (VIM 2012). Duque de Caxias, 1. Ed. RJ: INMETRO, 2012, 94 p.

²ISO, 2006, Reference materials – General and statistical principles for certification (ISO Guide 35). 3rd ed. Genève, Switzerland, 64p.

³SILVA, P. H. T. Departamento de Quimica, Universidade Federal de São Carlos, São Carlos-SP, 2011. Dissertação de mestrado, 148p.