

Área: Ciência de Alimentos

Controle do escurecimento emzimático em maçãs cvs. Fuji e gala minimamente processadas.

RUFINO FERNANDO FLORES CANTILLANO, LEONARDO NORA, MÉDELIN **MARQUES DA SILVA***

Curso de Agronomia, Departamento de Ciência e Tecnologia de Alimentos, Universidade Federal de Pelotas, Pelotas, RS

*E-mail: medelinmarques@hotmail.com

RESUMO – Os produtos minimamente processados podem apresentar alguns problemas, como o escurecimento enzimático e para minimizar este problema pode-se utilizar métodos de controle químico e físico. O objetivo deste trabalho foi avaliar o efeito de métodos físicos e químicos na inibição do escurecimento enzimático de maçãs cv. "Fuji" e cv. "Gala" minimamente processadas. Foram utilizadas maçãs cv. "Fuji" e cv. "Gala", estas foram minimamente processadas e tratadas com os seguintes tratamentos: T1 (água destilada); T2 (ácido cítrico 1%); T3 (ácido ascórbico 1%); T4 (água destilada 50°C por 30 segundos); T5 (água destilada 50°C por 5 minutos) e T6 (água destilada 50°C por 10 minutos). Logo foram armazenadas em câmara fria a 4°C. Foi realizada a análise de coloração da superfície por método colorimétrico. Ao observar os resultados pode-se constatar que em geral é a cultivar "Fuji" a que apresenta os maiores valores de L* e os menores de a* e b*, o contrário ocorre para cv. "Gala". As cultivares "Fuji" e "Gala" quando tratadas com o T3 apresentaram maiores valores de L* do que aquelas tratadas com os demais tratamentos. O T6 proporciona maçãs cv. "Fuji" minimamente processadas com menores valores de L* e maiores de a* e o T5 e T6 foram responsáveis pelas fatias de maçã cv. "Gala" minimamente processadas com menores valores de L*. Pode-se concluir que, com relação ao escurecimento enzimático, a cv. "Fuji" é mais apta para o processamento mínimo quando comparada com a cv. "Gala" e que o tratamento com ac. ascórbico 1% foi o mais eficiente no controle do escurecimento enzimático.

Palavras-chave: Processamento mínimo, qualidade, cor da superfície.

1 INTRODUÇÃO

Produtos minimamente processados (PMP) são definidos como qualquer fruta ou hortaliça, ou ainda qualquer combinação destas, que foi alterada fisicamente a partir de sua forma original, embora mantenha o seu

ISSN 2236-0409 v. 8 (2013) p. 2/7

estado fresco. Independente do tipo, eles são selecionados, lavados, descascados e fatiados, resultando num produto 100% aproveitável que, posteriormente, é embalado ou pré-embalado (UFPA, 2006).

Porém, os PMP apresentam algumas desvantagens quando comparados aos inteiros (BRECHT et al., 2007), como maior taxa respiratória, mudanças na coloração, sabor e textura, perda de água, ocorrência de reações oxidativas e maior suscetibilidade ao crescimento de micro-organismos.

O escurecimento enzimático, uma reação oxidativa que ocorre sobre os produtos minimamente processados, é considerado uma das mais importantes alterações que afetam estes produtos, o qual pode levar a consideráveis perdas econômicas e a rejeição do produto por parte do consumidor.

Segundo Espín et al. (1998) a ocorrência do escurecimento enzimático é devido a oxidação enzimática de compostos fenólicos pela enzima polifenoloxidase (PFO). Na presença do oxigênio a PFO catalisa a hidroxilação

de monofenóis para o-difenóis e depois a dehidrogenação dos o-difenóis para o-quinonas que posteriormente polimerizam para produzir pigmentos escuros indesejáveis, conhecidos como melaninas (CRUMIÉRE, 2000). A enzima PFO e seus respectivos substratos fenólicos ficam localizados em compartimentos celulares distintos, porém durante as etapas de descascamento e corte do processamento mínimo ocorre a descompartimentalização celular, onde as estruturas celulares são rompidas e então é possível o acoplamento da enzima PFO com seu substrato fenólico, gerando o escurecimento enzimático.

Para controlar o escurecimento enzimático, existem métodos físicos e químicos. Dentre os métodos físicos existe o controle da temperatura, quando reduzida diminui o metabolismo do produto e quando aumentada pode inativar a enzima. Outra forma de controlar o escurecimento enzimático através de método físico é a proteção do produto contra o oxigênio, com auxílio de atmosfera modificada e embalagens ativas. Já os métodos de controle químico envolvem o uso de compostos antioxidantes que inibem a ação da enzima PFO (OLIVEIRA, 2008).

O objetivo deste trabalho foi avaliar o efeito de métodos físicos e químicos na inibição do escurecimento enzimático de maçãs cv. "Fuji" e cv. "Gala" minimamente processadas.

2 MATERIAL E MÉTODOS

O presente trabalho foi executado no Laboratório de Fisiologia Pós-Colheita da Embrapa Clima Temperado – Pelotas/RS. Foram utilizadas maçãs das cv. "Fuji" e "Gala" provenientes do município de Vacaria/RS. Quando os frutos chegaram ao laboratório, foi realizada a seleção e descarte daqueles que apresentavam presença de ataques fúngicos e/ou de insetos e danos mecânicos.

Os frutos foram armazenados em câmara fria a 1°C por 24 horas para que o calor de campo contido nestes fosse retirado. Logo realizou-se o processamento mínimo das maçãs, onde estas primeiramente foram sanitizadas com solução de hipoclorito de sódio a 100 ppm por 10 minutos. Na sequencia as maçãs foram descascadas, fatiadas e imersas nos seguintes tratamentos: T1 (controle – água destilada), T2 (ácido cítrico 1%), T3 (ácido ascórbico 1%), T4 (água destilada 50°C por 30 segundos), T5 (água destilada 50°C por 5 minutos) e

ISSN 2236-0409 v. 8 (2013) p. 3/7

T6 (água destilada 50°C por 10 minutos). As maçãs cv. "Fuji" e cv. "Gala" minimamente processadas permaneceram armazenadas em câmara fria a 4°C por 12 dias. No transcorrer deste período, realizou-se a avaliação da coloração da superfície das fatias de maçãs na região mediana das mesmas com o colorímetro Minolta CR-300, com um sistema de leitura de três parâmetros, o CIE L*a*b*, proposto pela Comission Internacionale de I'Eclairage (CIE), que permite medir a intensidade de absorção na região visível para obtenção dos parâmetros L*, a* e b*. O delineamento experimental utilizado foi inteiramente casualizado em fatorial 2 x 6 (duas cultivares x seis tratamentos). Após a compilação dos dados, foi realizada a análise de variância (ANOVA) e quando esta se apresentou significativa procedeu-se o teste de comparação das médias através do teste de Tukey (p ≤ 0,05). Estas análises foram realizadas com auxílio do programa SAS versão 8.0.

3 RESULTADOS E DISCUSSÃO

A Tabela 1 mostra os valores de L* em maçãs cv. "Fuji" e cv. "Gala" minimamente processadas tratadas com métodos químicos (ácido cítrico e ácido ascórbico) e físicos (tratamento hidrotérmico) de controle ao escurecimento enzimático. Nesta tabela observa-se que em geral é a cultivar "Fuji" que apresenta os valores de L* mais elevados. Isso significa que esta cultivar apresenta-se com aparência mais clara do que a "Gala".

Observando o efeito dos tratamentos químicos e físicos T1 (controle – água destilada), T2 (ácido cítrico 1%), T3 (ácido ascórbico 1%), T4 (água destilada 50°C por 30 segundos), T5 (água destilada 50°C por 5 minutos) e T6 (água destilada 50°C por 10 minutos) sobre a coloração de maçãs minimamente processadas, notase que ambas as cultivares ("Fuji" e "Gala") quando tratadas com ácido ascórbico 1% (T3) apresentam uma cor mais clara (maiores valores de L*) do que aquelas tratadas com os demais tratamentos (T1, T2, T4, T5 e T6). O ácido L-ascórbico é bastante utilizado como inibidor do escurecimento enzimático em frutas e hortaliças minimamente processadas, ele apresenta ação redutora, prevenindo o escurecimento através de duas maneiras: redução das o-quinonas, formadas através da oxidação dos fenóis pela enzima PFO, até os o-dihidroxifenóis e ação direta sobre a enzima PFO, complexando o cobre do grupo prostético desta, causando sua inibição (SAPERS; MILLER, 1998).

O T6 (água destilada 50°C por 10 minutos) não controla bem o escurecimento enzimático em maçãs cv. "Fuji" minimamente processadas apresentando frutos com aparência mais escura. Os tratamentos T5 e T6 foram responsáveis pelas fatias de maçã cv. "Gala" minimamente processadas de cor mais escura (menores valores de L*). Em trabalho realizado por Souza et al. (2010) com lichias cv. "Bengal" observa-se que aos 12 dias de armazenamento dos frutos em B.O.D. a 5°C os frutos que receberam tratamento térmico por 15, 20 e 25 minutos apresentaram menores valores do parâmetro L*.

Tratamento Cultivar Média

ISSN 2236-0409 v. 8 (2013) p. 4/7

69,64

65,79

ab

b

TUPF ®	anos
Universidade de Passo Fundo	Engenharia de Alimentos

T1 T2 T3 T4

T5

T6

Média

Passo Fundo/RS, 17 e 18 de outubro de 2013						
	••	C	1.			
Fu	.J1	Gai	ıa			
77,33	A b	70,09	Вс	73,71	a	
74,69	A d	71,93	Вb	73,31	a	
77,45	A a	72,83	Ва	75,14	a	
77,16	Αc	70,07	Βd	73,62	a	

66,22

68,10

69,87

B f

A e

В

Α T1: Controle (água destilada); T2 (ácido cítrico 1%); T3 (ácido ascórbico 1%); T4 (água destilada 50°C por 30 segundos); T5 (água destilada 50°C por 5 minutos) e T6 (água destilada 50°C por 10 minutos).

A e

Βf

73,05

63,48

73,86

Médias seguidas pela mesma letra maiúscula na linha e minúscula na coluna não diferem entre si pelo teste de Tukey ($p \le 0.05$).

Na Tabela 2, observa-se que o tratamento T6 proporciona fatias de maçã cv. "Fuji" mais escurecidas, ou seja, com maiores valores de a*. No caso da cv. "Gala", foi o tratamento T1 o que apresentou as fatias de maçã mais escurecidas. E com o T3 obteve-se amostras de maçã cv. "Fuji" e cv. "Gala" minimamente processadas com menores valores de a*, ou seja, menos avermelhadas e mais claras. Alguns trabalhos relacionam o aumento da coordenada a* com a elevação do escurecimento enzimático. Conforme Gonçalves, Carvalho e Gonçalves (2000) abacaxis cv. "Smooth Cayenne" tratados hidrotérmicamente por 10 e 20 minutos não apresentam diferença estatística para o parâmetro índice de escurecimento.

Em relação as cultivares "Fuji" e "Gala", é possível dizer que de forma geral é a cv. "Gala" a que apresenta os maiores valores de a*, sendo mais vulnerável ao escurecimento enzimático. Estes dados confirmam os obtidos para a coordenada L*, já que foi a cv. "Gala" que obteve os menores valores de L* e os maiores de a* e o contrário ocorre para cv. "Fuji". A cor da superfície da polpa da maçã é um atributo transmitido geneticamente, mas aspectos de manejo podem alterar ela.

Tratamento		Cul	tivar		— Méd	lie
Tratamento	Fu	ji	Ga	la	— Med	па
T1	-1,93	B d	0,10	A a	-0,92	a
T2	-1,37	Вb	-1,08	A d	-1,23	ab
Т3	-2,99	Βf	-2,19	A f	-2,59	b
T4	-2,20	Ве	-0,27	A b	-1,24	ab
T5	-1,90	Вс	-0,39	Αc	-1,15	a
T6	0,43	A a	-1,18	Ве	-0,38	a

Tabela 2. Valor de a* em maçãs cv. "Fuji" e cv. "Gala" minimamente processadas tratadas com métodos químicos e físicos de controle ao escurecimento enzimático

ISSN 2236-0409 v. 8 (2013) p. 5/7

Média	-1.66	В	-0.84	A

T1: Controle (água destilada); T2 (ácido cítrico 1%); T3 (ácido ascórbico 1%); T4 (água destilada 50°C por 30 segundos); T5 (água destilada 50°C por 5 minutos) e T6 (água destilada 50°C por 10 minutos).

Médias seguidas pela mesma letra maiúscula na linha e minúscula na coluna não diferem entre si pelo teste de Tukey ($p \le 0.05$).

Tratamento		Cul	tivar		Média	
Tratamento	Fu	ji	Ga	la	- Med	ıa
T1	23,85	Ва	26,99	A a	25,42	a
T2	23,70	A c	23,63	Βf	23,67	a
Т3	22,79	Ве	24,87	A e	23,83	a
T4	22,18	Βf	25,84	A d	24,01	a
T5	23,71	Вb	26,54	A b	25,13	a
Т6	23,23	B d	25,95	Αc	24,59	a
Média	23,24	В	25,64	A		

De forma geral os tratamentos aplicados (químicos e físicos) sobre as maçãs cv. "Fuji" e cv. "Gala" minimamente processadas não proporcionou diferença estatística sobre o valor de b* destas (Tabela 3). E comparando as duas cultivares, é notável que a maçã cv. "Gala" apresentou os maiores valores de b*, isso significa que as amostras provenientes desta cultivar apresentaram coloração mais próxima do amarelo (Tabela 3). González-Buesa et al. (2011) observaram que as coordenadas de cromaticidade (a*, b* e hueº) variam largamente entre diferentes cultivares.

Tabela 3. Valor de b* em maçãs cv. "Fuji" e cv. "Gala" minimamente processadas tratadas com métodos químicos e físicos de controle ao escurecimento enzimático

T1: Controle (água destilada); T2 (ácido cítrico 1%); T3 (ácido ascórbico 1%); T4 (água destilada 50°C por 30 segundos); T5 (água destilada 50°C por 5 minutos) e T6 (água destilada 50°C por 10 minutos).

Médias seguidas pela mesma letra maiúscula na linha e minúscula na coluna não diferem entre si pelo teste de Tukey ($p \le 0.05$).

_		
Tratamento	Cultivar	Média
Tratamento	Cultival	Media

Analisando as médias dos tratamentos (T1, T2, T3, T4, T5 e T6) aplicados sobre as fatias das maçãs cv. "Fuji" e cv. "Gala" percebe-se que quando foram utilizados tratamentos com princípio de atuação físico (T4, T5, T6) houve menor valor do ângulo hue°. Este episódio ocorreu provavelmente devido ao fato de altas temperaturas proporcionarem escurecimento não-enzimático sobre a superfície dos produtos (ARAÚJO, 1999). Também analisando as médias, porém agora entre as cultivares, nota-se que não houve diferença estatística no valor do ângulo hue° entre as cultivares utilizadas neste trabalho.

Tabela 4. Valor do angulo Hueº em maças cv. "Fuji" e cv. "Gala" minimamente processadas tratadas com métodos químicos e físicos de controle ao escurecimento enzimático

ISSN 2236-0409 v. 8 (2013) p. 6/7

	Fu	ji	Ga	la		
T1	89,66	Вс	89,87	A a	89,77	a
T2	89,65	A e	89,64	Вс	89,64	a
Т3	89,67	A a	89,66	Вb	89,66	a
T4	89,66	A b	89,32	Βf	89,49	ab
T5	89,66	A d	89,49	Ве	89,57	ab
T6	88,94	Βf	89,64	A d	89,29	b
Média	89,54	A	89,60	A		

T1: Controle (água destilada); T2 (ácido cítrico 1%); T3 (ácido ascórbico 1%); T4 (água destilada 50°C por 30 segundos); T5 (água destilada 50°C por 5 minutos) e T6 (água destilada 50°C por 10 minutos).

Médias seguidas pela mesma letra maiúscula na linha e minúscula na coluna não diferem entre si pelo teste de Tukey ($p \le 0.05$).

4 CONCLUSÃO

Pode-se concluir que, com relação ao escurecimento enzimático, a cv. "Fuji" é mais apta ao processamento mínimo quando comparada com a cv. "Gala" e que o tratamento com ac. ascórbico 1% é o mais eficiente no controle do escurecimento enzimático de maçãs cv. "Fuji" e cv. "Gala" minimamente processadas.

6 REFERÊNCIAS

ARAÚJO, J. M. Química de Alimentos – Teoria e Prática. Viçosa. Editora da UFV, 2ª ed., 1999.

BRECHT, J. K.; SALTVEIT, M. E.; TALCOTT, S. T.; MORETTI, C. L. Alterações Metabólicas. In: MORETTI, C. L. **Manual de Processamento Mínimo de Frutas e Hortaliças**. Brasília: EMBRAPA, 2007, p. 41 – 77.

CRUMIÉRE, F. Inhibition of enzymatic browning in food products using bioingredients. 2000. Thesis (Department of Food Science and Agricultural Chemistry), McGill University, Montreal.

ESPÍN, J. C.; GARCÍA-RRUIZ, P.A.; TUDELA, J.; VARÓN, R.; GARCÍA-CÁNOVAS, F. Monophenolase and diphenolase reaction mechanism of apple and pear polyphenol oxidases. **Journal of Agricultural and Food Chemistry**, v. 46, p. 2968- 2975, 1998.

GONÇALVES, N. B.; CARVALHO, V. D.; GONÇALVES, J. R. A. Efeito do cloreto de cálcio e do tratamento hidrotérmico na atividade enzimática e no teor de fenólicos do abacaxi. **Pesquisa Agropecuária Brasileira**, v. 35, n.1, p. 2075 – 2081, 2000.

OLIVEIRA, T. M., SOARES, N. F. F., PAULA, C. D., VIANA, G. A. Uso da embalagem ativa na inibição do escurecimento enzimático de maçãs. **Ciências Agrárias**, Londrina, v.29, n.1, p.117-128, 2008.

SAPERS, G.M.; MILLER, R.L. Browning inhibition in fresh-cut pears. **Journal of Food Science**, v. 63, n. 2, p. 342-346, 1998.

SOUZA, A. V.; VIEITES, R. L.; KOHATSU, D. S.; LIMA, G. P. P. Tratamento térmico na manutenção da coloração de lichias. **Revista Brasileira de Fruticultura**, Jaboticabal, v. 32, n.1, p. 67 – 73, 2010.

ISSN 2236-0409 v. 8 (2013) p. 7/7

UFPA, 2006. United Fresh Produce Association. http://www.unitedfresh.org/ Acesso em: 25 jun 2013.