

Florianópolis/Brazil :: 2013 International Nonthermal Food Processing Workshop

Research and Innovation Towards Competitiviness

Aflatoxins degradation by aqueous ozone in different matrices							
SOUZA, M.L.M. ¹ , FREITAS-SILVA, O. ¹ , TEIXEIRA, A.S. ¹ , CASTRO, I.M. ¹ , TORREZAN, R. ¹							
SOUZA, B.M. ² , DEZOTTI, M. ²							
1) <u>maria</u>	Embrapa Ilourdes.m.sou	Food iza@embra	Technology, <u>pa.br</u>	Rio	de	Janeiro,	Brazil.
2)	Chemical Er	ngineering P	Program-COPPE, F	ederal Ur	iversity o	of Rio de Janei	ro, Brazil

Ozone is a potential oxidant agent and it can be used on food processing, as a sanitizing product, in reduction of microbial counts. Ozone also improves water quality and degrades mycotoxins and pesticides as well. In this work it was verified the potential of aqueous ozone on Aflatoxins B₁, B₂, G₁, G₂ and M₁ (AFB₁, AFB₂, AFG₁, AFG₂ and AFM₁) Degradation. These aflatoxins are secondary metabolites produced by fungi and can contaminated many food matrices causing several health damages. Since current ozone treatment technologies need to be optimized for each product, experiments were performed to determine the required doses to reduce the AFs in different matrices: (A) model with an 10% acetonitrile solution with mix of 5 AF (AFB₁, AFB₂, AFG₁, AFG₂ and AFM₁); (B) brazil nuts juice contaminated (AFB₁, AFB₂, AFG₁, and AFG₂) and (C) cow milk with only AFM₁. Evaluation of AF degradation by ozonation process was performed using an HPLC /Kobra-Cell® system coupled with Fluorescence detector and automatic sampler. Results showed that AFB₁ and AFM₁ were completely degraded in experiment A, with the first ozone doses level (1 mg/min.). The results in experiment B showed major level of AFB₁ degradation (70%) in an ozonation process at 20 mg/min. Concerning the reduction of AFM₁ in experiment C it was demonstrated that 30% of AFM₁ was degraded with 7.6mgO₃/min. The results showed the applicability of ozone solution to provide aflatoxins degradation in different food matrices, being an alternative food safety process.

Keywords: aflatoxins, degradation, ozonation

Acknowledgments: FAPERJ process No E-26/ 190.168/2010