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Alternative hypotheses were tested to explain a previously reported anomaly in the response of leaf photosynthetic capacity at light
saturation (A,,) in Miconia ciliata to dry-season irrigation. The anomaly is characterized by an abrupt increase in leaf A, for
nonirrigated plants at the onset of the rainy season to values that significantly exceeded corresponding measurements for plants that
were irrigated during the previous dry season. Hypothesis 1 posits that a pulse in leaf nitrogen increases CO, assimilation in nonirrigated
plants at the onset of the wet season and is dampened for irrigated plants; this hypothesis was rejected because, although a wet-season
nitrogen pulse did occur, it was identical for both irrigated and nonirrigated plants and was preceded by the increase in assimilation
by nonirrigated plants. Hypothesis 2 posits that a reproduction-related, compensatory photosynthetic response occurs in nonirrigated
plants following the onset of the wet season and is dampened in irrigated plants; consistent with hypothesis 2, high maximum
assimilation rates for control plants in the wet season were significantly correlated with fruiting and flowering, whereas irrigation

caused flowering and fruiting in the dry season, spreading M. ciliata reproductive activity in irrigated plants across the entire year.
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Seasonal and interannual differences in frequency, duration,
and intensity of rain events in tropical forests have important
ecological consequences for tropical plants (Engelbrecht et al.,
2002). Drastic drought events can cause changes in plant mor-
tality as well asin population structure and dynamics (Wright
and Cornegjo, 1990; Borchert, 1992; Mulkey et al., 1996;
Wright, 1996; Tezara et al., 1998; Priori and Eamus, 1999;
Tobin et al., 1999; Engelbrecht et a., 2002; Nepstad et al.,
2002). When water deficiency is sufficient to hinder carbon
assimilation, drought also limits the productivity of tropical
plants (Mulkey et a., 1996) and hinders their phenological
development (Borchert, 1996; Borchert et a., 2002; Schongart
et a., 2002).

Mineral nutrition is also responsive to drought and is a pri-
mary determinant of growth and morphogenesis. In general,
high amounts of nitrogen are associated with high rates of
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maximum photosynthesis across contrasting taxa, due to the
high organic nitrogen requirement of photosynthetic enzymes
(Field and Mooney, 1986; Evans and Seeman, 1989; Osaki
and Shinano, 2001). Nitrogen content variation may be asso-
ciated with rapid changes in soil and litter moisture that cause
the decomposition of organic material and stimulate microor-
ganisms in the litter (Lodge et a., 1994). In Amazonian for-
ests, re-wetting of seasonally dry soil results in a pulse of
nitrogen mobilization (Luizdo et al., 1992).

Recent research on a common second-growth understory
species, Miconia ciliata (Rich.) DC, found leaf water status
and gas exchange strongly affected by changes in water avail-
ability caused by dry-season irrigation and occasional rain
events (Fortini et a., 2003). Individuals in nonirrigated plots
responded to the first wet-season rains with an abrupt recovery
of gas exchange, exhibiting maximum assimilation values well
above those of individuals located in irrigated plots during the
same period. This phenomenon could be attributed to a wet-
season nutrient pulse (e.g., Lodge et a., 1994) or to compen-
satory photosynthesis by control plants in response to an in-
crease in carbon sink strength caused by concentrated flow-
ering and fruiting in the rainy season, as suggested by Fortini
et a. (2003). The objective of the present study was to test
these alternative hypotheses for the abrupt wet-season increase
in leaf photosynthetic capacity at light saturation (A,.,) for
control plants relative to values for irrigated plants. Hypothesis
1 posits that a pulse in leaf nitrogen is related to the increase
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of CO, assimilation of control plants at the onset of the wet
season and is dampened for irrigated plants, for which the
drought constraint on N mobilization and uptake has been re-
duced throughout the dry season. Hypothesis 2 posits that a
reproduction-related compensatory photosynthetic response
occurs in control plants following the onset of the wet season
and is dampened in irrigated plants that spread their reproduc-
tion over a longer time.

MATERIALS AND METHODS

Site description—The study was carried out at the UFRA field station
(Universidade Federal Rural da Amazodnia, 1°17'46" S and 45°55'28" W) near
the city of Castanhal, in the Bragantina Region of Parg, Brazil. The Bragantina
Region is distinguished from other Amazon regions by the predominance of
secondary vegetation, resulting from constant human occupation since the
rubber boom at the beginning of the 20 century (Ludovino, 2001). Previously
covered by humid tropical forest, the study area was first cleared in 1939.
Corn and manioc were the main crops of the slash-and-burn agriculture in
the area. After six to eight cycles of slash and burn, the area was abandoned
and alowed to regrow for the past 15 yr. Mean annual temperature is 26°C,
average relative humidity is 80%, and mean annua precipitation is 2500 mm.
A dry season extends from July to December with at least 1 mo with total
rainfal less than 60 mm (Diniz, 1986). Daily precipitation was measured at
the site from February 2001 to September 2003. The predominant soil type
is dystrophic yellow latosol, stony phase |, in the Brazilian classification (Ten-
orio et al., 1999), corresponding to Sombriustox in U.S. soil taxonomy. Soils
are well-drained and shallow to laterite. Predominant botanical families are
L acistemataceae, Clusiaceae, and Myrtaceae.

Study species—Miconia ciliata (Rich.) DC, Melastomataceae family, is a
woody, shallow-rooted understory shrub with most individuals below 2 m tall
(Fortini et al., 2003). Miconia ciliata is a common roadside plant and is often
present in the understory during early secondary succession; it is the third
most common understory species at the study site (Coelho et al., 2004).

Experimental design—The study was conducted in eight 20 X 20 m treat-
ment plots separated by 10-m buffer strips. Four plots were randomly selected
to receive dry-season irrigation; the other four served as untreated controls.
Nested 10 X 10 m measurement plots were located in the center of each 20
X 20 m plot. Irrigation provided the equivalent of 5 mm daily precipitation
during rainless dry-season days through an irrigation tape system, correspond-
ing to regional estimates of daily evapotranspiration (Shuttleworth et al., 1984;
Lean et a., 1996; Jipp et a., 1998). Plots were irrigated from July to Decem-
ber during the 2001 and 2002 dry seasons. Data reported here were collected
from May 2002 to October 2003.

Gas exchange—Gas exchange was measured monthly in three plants per
plot on one healthy and fully developed leaf per individual between 0900 and
1500 hours with a portable photosynthesis system (L1-6400, Licor, Lincoln,
Nebraska, USA) at ambient H,O and CO, concentrations with flow rate of
400 wmol/s. Temperature in the measurement chamber was kept below 32°C.
Measured variables include photosynthetic capacity at light saturation (A,
stomatal conductance (g,), and intercellular CO, concentration (C). The A,/
g, ratio was evaluated as a parameter of intrinsic water use efficiency. Pho-
tosynthetic capacity at light saturation was reached by initially exposing
leaves to 10 wmol - m~2 - s~ photosynthetic photon flux density (PFD) until
complete stabilization of CO, assimilation. After stabilization, the leaf was
exposed to 800 pwmol - m~2 - 571, until it reached a steady state of assimilation
(see Fortini et al., 2003). Data logged at 5-s intervals during the stabilization
of assimilation were plotted graphically and a representative value of A,
was chosen. Values of stomatal conductance and internal carbon concentration
associated with the representative A, value were automatically selected.

Leaf water potential—We selected three M. ciliata individuals per plot for
leaf water potential. We did not do these measurements on the individuals
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Fig. 1. Miconia ciliata leaf gas exchange, leaf nitrogen concentration, and
daily precipitation from June 2002 to September 2003 (=1 SE). A, .., pho-
tosynthetic capacity at light saturation; g, stomatal conductance; C,, interna
CO, concentration.

used for leaf gas exchange because individuals were small and leaves were
removed monthly for sampling. Two sets of measurements were made on a
monthly basis using a PM S pressure bomb (Corvalis, Oregon, USA), one set
in the mid afternoon (1400-1500 hours) and one set at pre-dawn (0300-0400
hours). One leaf per individual per measurement was used since |eaf-to-leaf
variation for same individuals was low.

Phenological observations—Flowering and fruiting phenology were re-
corded for the same individuals used for gas exchange measurements. Ob-
servations were made monthly from January 2002 to June 2003 during the
period of leaf gas exchange measurements.

Leaf nitrogen content and leaf specific mass—From July 2002 to Septem-
ber 2003, six leaf samples were collected monthly for analysis of leaf N in
three individuals per plot. Three leaf disks were collected for calculation of
leaf specific mass from three plants per plot. Because M. ciliata is a small
plant and we needed to conserve material for repeated measures of photosyn-
thesis, we could not destructively sample the plants used for gas exchange
measurements. Therefore, leaf material for determinations of nitrogen content
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TaBLE 1. Statistical results for leaf gas exchange (treatment X time
interaction term) in Miconia ciliata.

Wilk's lambda Univariate G-G°
Variables df F P df F P
A 10, 7 278 0.09 5.73, 91.66 1.93 0.09
Ioh 10,7 241 013 2754393 050 067
C 10, 7 1.30 0.37 4.3, 68.8 3.51 0.01

Anad9e 10,7 224 015 544,8705 289 0.02

a A . photosynthetic capacity at light saturation; g, stomatal conduc-
tance; C; internal CO, concentration.
b G-G, Geisser and Greenhouse adjustment.

and leaf specific mass was collected from plants that were growing close to
those used for gas exchange measurements. Leaves were dried at 64°C until
constant mass. Nitrogen was analyzed by micro-Kjeldahl digestion and col-
orimetric determination using the method described by Kandeler and Gerber
(1988) with NIST reference standard 1547. Leaf specific mass was computed
as the ratio between the leaf area of each disc and its dry mass, then averaged
for the three discs. We collected the discs during representative dry- and wet-
season months (October 2002 and April 2003, respectively). These values of
leaf specific mass were used to estimate mass-based assimilation in plants
used for photosynthesis.

Statistical analysis—Statistical analyses of the data were performed with
JMP software, version 3.2.6 (SAS Institute, Cary, North Carolina, USA). A
repeated measures MANOVA model with treatment as the only effect was
used to evaluate time and treatment effects on A, and leaf nutrient data.
Each monthly measurement was considered as a dependent variable and time
was used as the effect between dependent variables. We used the Wilk's lamb-
da statistic to evaluate the MANOVA results. The Geisser and Greenhouse
(G-G) adjustment allowed us to perform a univariate repeated measures AN-
OVA parallel to the multivariate testing (SAS Institute, 1998). In both AN-
OVA and MANOVA models the effect of treatment on photosynthetic ca-
pacity was tested as the irrigation X month interaction. We also used ANOVA
to test the effect of the interaction between reproductive event and months on
photosynthetic capacity for irrigated and control plots separately. All results
are reported as significant when P < 0.05. We report marginal significance
when 0.05 = P < 0.10.

RESULTS

Seasonal and interannual leaf gas exchange—Throughout
the dry season, irrigated plants maintained higher A, 9., Ci,
and lower A,,../g; values, than did control plants (Fig. 1). Con-
trol plants exhibited a trend of slow decline in A, g, and
C, from the end of the rainy season to the end of the dry
season. Control A, values were lowest in the driest months
(October, November, and December) with related significant
treatment effects within-subjects (October, F = 5.5; P ;5 <
0.03; November, F = 34.6; P, ;¢ < 0.002; December, F = 7.8;
P, < 0.01). We found marginally significant treatment ef-
fects for A, in the multivariate model for leaf gas exchange
variables. In the univariate model, C, and A,,.,/9; showed sig-
nificant treatment effects, and A, showed marginally signif-
icant treatment effects (Table 1). Similar to the results of For-
tini et a. (2003), gas exchange and stomata conductance in
control plants were higher than in irrigated plants at the onset
of the wet season (Fig. 1).

Dry season rainfall was 21% higher in 2002 than in 2001.
This interannual variation in rainfall within dry seasonsis cor-
related with significant interannual differencesin gas exchange
of control plants between this study and that of Fortini et al.
(2003) (Wilk's test, F = 7.36, P, ;; < 0.003. Univariate test,
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Fig. 2. Plot-level correlation between photosynthetic capacity at light sat-
uration (A,..) and leaf water potential in Miconia ciliata for representative
dry- and wet-season months. Squared Pearson product-moment: for control
data, R? = 0.82, P < 0.01; for irrigation data, R? = 0.10, P = 0.88. Each
point represents the average of al plants in each plot and error bars represent
standard errors. Dry season 2001 and wet season 2002 data from Fortini et
al. (2003).

F = 7.40, P, 5, > 0.99). Despite the milder 2002 dry season,
a positive correlation between control leaf water potential and
leaf gas exchange was still observed while no such correlation
was found for irrigated plots (Fig. 2).

Leaf nitrogen periodicity and A,,—A peak in nitrogen
concentration for both treatments occurred following the onset
of the wet season (Fig. 1), and a positive correlation between
leaf nitrogen content and A, was apparent for control plots
but not for irrigated plots (Fig. 3). However, the timing of the
increase in N content (30 January through 29 March 2003)
lagged behind theincrease in A, (16 December 2002 through
21 January 2003). No treatment differences were detected for
leaf nitrogen content during the experimenta period (Wilk's
test, F = 2.54, P,,; > 0.24; univariate test, F = 1.97, P, 19553
> 0.13).

Periodicity of phenology and A,,,,—Flowering and fruiting
events of M. ciliata were sensitive to climatic conditions (Fig.
4). In control plots, the number of individuals in flower was
concentrated in the wet season, peaking from March to May.
Control plants had high numbers of flowers and fruits in the
early wet season (Table 2). The peaks in flowering and fruiting
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Fig. 3. Plot-level correlation between estimated mass-based A, and leaf
nitrogen content in Miconia ciliata for representative dry- and wet-season
months. Squared Pearson product-moment: for control data, R2 = 0.60, P <
0.03; for irrigation data, Rz = 0.002, P = 0.92. Each point represents the
average of all plantsin each plot and error bars represent standard errors. Y-
axis standard error bars reflect A, variance and do not include propagation
of variances in leaf specific mass.

of M. ciliata following the onset of the wet season are asso-
ciated with high photosynthetic rates for the control plants
(chi-square, p < 0.005). In contrast with reproductive phe-
nology of control plants, the number of irrigated plants in
flower was relatively constant through the experimental peri-
od.

DISCUSSION

Miconia ciliata’'s pattern of decreasing photosynthetic po-
tential with increasing drought stress agrees with results from
previous studies with this plant (Fortini et a., 2003) and with
other understory tropical forest species (Mulkey and Wright,
1996; Brodribb et al., 2002; Nepstad et al., 2002). The irri-
gation treatment maintained relatively constant A, for M.
ciliata individuals throughout the measurement period. For
control plants, the magnitude of A, response to drought is
regulated by duration and amount of rainfall, determined by
intra- and interannual precipitation patterns. Rainfall has a crit-
ical rolein CO, assimilation and stomatal conductance for this
species because its low dry-season water status is evidently
related to soil water availability (Tezara et al., 1998). Miconia
ciliata's superficial root system may contribute to its fast re-
covery of water status during occasional rain events during the
dry season. Because rain does not initially penetrate quickly
into the soil and water is retained near or at surface by litter
and humus, plants with superficial root systems have an ad-
vantage in water status recovery (Cao and Booth, 2001). Be-
cause of the higher frequency of rainy days during the 2002
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TaBLE 2. Average number of months during which individual plants
of Miconia ciliata were flowering or fruiting (SE). Wet season data
from January to July 2002 (Fortini et al., 2003); dry season data
from August to December 2002.

Flowering Fruiting
Treatment Wet season Dry season Wet season Dry season
Control 2.9 (0.8) 0.3 (0.2) 2.8 (0.7) 0.0
Irrigation 1.0 (0.5) 1.2 (0.4) 13(06) 0.9 (0.3

dry season, relatively low drought stress was evidenced in
control plants compared to data collected from the previous
dry season (Fortini et al., 2003).

Despite the positive correlation between averaged photo-
synthesis and averaged leaf nitrogen content for control plants
(Fig. 3), the abrupt increase of A, for these plants occurred
from the onset of the wet season while the leaf nitrogen pulse
occurred much later in the wet season (Fig. 1). Hence, the
observed nitrogen pulse correlates with A, across the entire
wet season, but cannot have caused the observed increase at
the beginning of the wet season. The increase in leaf nitrogen
content and stomatal conductance jointly occurred after abrupt
increases in A, during the wet season, suggesting that sto-
matal function and changes in N cycling occur concurrently,
following changes in water and plant-available N.

The increase in leaf nitrogen content is aso related posi-
tively with the observed production of new leaves in both
control and irrigated plants at the end of the wet season
(Borchert et al., 2002). We observed that leaves were ex-
changed more frequently during the wet season, a process that
could result in a crown of younger leaves with higher leaf
nitrogen content. This phenomenon may mean that increased
nitrogen availability causes increases in whole plant assimi-
lation but that remains to be tested. We found no support for
the hypothesis that a pulse in leaf nitrogen is related to the
increase of leaf A, for control plants at the onset of the wet
season.

In the absence of irrigation, M. ciliata produces flowers and
fruits during the wet season. Studies in tropical dry forests
reveal that phenological development is strongly affected by
seasona drought (Schongart et al., 2002). Because physiolog-
ical processes are linked to many plant functions that simul-
taneously determine reproductive events and CO, assimilation
(Ackerly et a., 2000), high demand for assimilates may have
a positive effect on assimilation (Watson and Casper, 1984;
Reekie and Bazzaz, 1987; Tonsor and Goodnight, 1997). Our
data are consistent with the hypothesis that the wet-season
increase of control plant A, relative to irrigated plant values
was caused by a reproduction-related, compensatory photo-
synthetic response that occurs in control plants during the wet
season.

Conclusions—This study confirmed the role of moisture
availability as the primary constraint on A, for M. ciliata at
this site, as reported by Fortini et al. (2003) and replicated the
measurement of increased A, for wet-season control plants
relative to the A, for irrigated plants. We have additionally
demonstrated that dry-season irrigation accelerates flowering
and fruiting, spreading the peaks of reproductive phenology of
the M. ciliata across the entire year. In the absence of irriga-
tion, higher photosynthesis is associated with reproductive
plants during the wet season, providing support for the hy-
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Fig. 4. Temporal distribution of fruiting and flowering for Miconia ciliata.

pothesis that reproductive phenology, triggered by the sus-
tained increase in soil moisture associated with the onset of
the rainy season, elicits a compensatory photosynthetic re-
sponse from control plants. Thus, water availability and repro-
ductive phenology triggered by increased water availability are
the primary factors that explain variance in gas exchange for
this species. The magnitude of gas exchange is responsive to
interannual variations in the intensity and frequency of precip-
itation, and flower and fruit production depend on changes in
water availability. Changes in reproductive phenology could
be among the first responses of fast regiona climate changes
and could have serious consequences for plants and animals
that depend on the periodic availability of plant resources
(Corlett and LaFrankie, 1998). Despite the increase of leaf
nitrogen during the wet season, the hypothesis of a nutrient
pulse-induced increase in A, was not supported by our study.
Because the increase in N content was preceded by the in-
crease in A, a nitrogen pulse cannot be the cause of the
observed increase in assimilation.
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