

ANÁLISES DE DESENVOLVIMENTO VEGETATIVO E PRODUÇÃO DE CLONES DE CUPUAÇUZEIRO EM DOIS AMBIENTES NO MUNICÍPIO DE TOMÉ AÇU, PARÁ.

Odimar Ferreira de Almeida¹, Rafael Moysés Alves², Jéssica Natalia do Nascimento Barbosa³, José
Raimundo Quadros Fernandes⁴

Resumo: O trabalho teve por objetivo avaliar genótipos de cupuaçuzeiro promissores para o programa de melhoramento genético, identificando materiais produtivos e resistentes à principal doença da cultura, para atender produtores rurais e a indústria beneficiadora de polpa dessa fruteira. Os experimentos foram conduzidos no período de 2005 a 2012. Foi analisado o desenvolvimento vegetativo nos três primeiros anos, a produção de frutos por safra de vinte e um clones de cupuaçuzeiro, e a resistência à vassoura de bruxa. Observou-se que, nos dois ambientes testados, o destaque foi clone 7, com média de produção nas cinco safras de 21,9 frutos/planta no primeiro ambiente (Fazenda do Sr. Elias Covre) e 14,4 frutos/planta no segundo ambiente (Fazenda do Sr. Konagano), superando os demais clones de ambos locais. Durante as avaliações de incidência da doença *Moniliophthora perniciosa*, uma planta de cada um dos clones: 3 17 e 21 apresentaram ocorrência de sintomas dessa doença, todas com taxas de infecção baixas. O ambiente 1 e ambiente 2 mostraram-se estatisticamente similares quanto à produção.

Palavras-chave: Clones resistentes; cupuaçuzeiro; produção de frutos.

Introdução

O cupuaçuzeiro (*Theobroma grandiflorum* (Willd. ex Spreng, Schum)) é uma fruteira de ampla ocorrência na região norte e parte do nordeste brasileiro, tem importante participação na alimentação e cultura da população nativa. Na Amazônia, o cupuaçuzeiro se destaca entre as demais fruteiras nativas da região, por apresentar alternativas de caráter rentável significativo e promissor (Homma, 1996).

Alves (1999) relatou que os bons preços alcançados pelo cupuaçu ofertado *in natura* e a polpa beneficiada e congelada ao longo dos anos propiciaram maior intensidade do cultivo na região. Entretanto, a principal doença que afeta os cupuaçuzeiros é a *Moniliophthora perniciosa*, conhecida

¹ Bolsista Pibic Embrapa Amazônia Oriental, Pavilhão de Pesquisa, odimar_almeida14@hotmail.com

² Pesquisador, Embrapa Amazônia Oriental, Pavilhão de Pesquisa, rafael@cpatu.embrapa.br

³ Estagiária Embrapa Amazônia Oriental, Pavilhão de Pesquisa, jdonascimentobarbosa@yahoo.com.br

⁴ Técnico Agrícola Embrapa Amazônia Oriental, Laboratório de Fitomelhoramento, quadros@cpatu.embrapa.br

17º Seminário de Iniciação Científica e 1º Seminário de Pós-graduação da Embrapa Amazônia Oriental. 21 a 23 de agosto de 2013, Belém-PA

vulgarmente como vassoura-de-bruxa, uma doença que em alta incidência pode acarretar até 90% de perda da produção (Souza, 2009) atacando os meristemas da planta deformando e secando ramos, flores e frutos. Na tentativa de reduzir a incidência de ataques da doença e promover maior produção, programas de melhoramento genético dessa espécie têm sido conduzidos na Amazônia Oriental (Alves, 1999) e na Amazônia Ocidental (Souza et al., 2002), e, mais recentemente, em todos os Estados da região Norte.

Objetivou-se avaliar clones de cupuaçuzeiro de origens distintas, com fontes de resistência à vassoura-de-bruxa, possivelmente diversas, a fim de ampliar a base genética já existente da cultura, oferecendo aos produtores novos materiais, incrementando aos disponíveis no mercado.

Material e Métodos

A presente atividade foi executada no período de 2005 a 2012, pela Embrapa – CPATU nas áreas de produtores rurais, no município de Tomé Açu - Pará. Foram estudados dois experimentos localizados a 2°24'06,7" S e 48°00'06,2" W (propriedade do Sr. Elias Covre) e a 2°32'54,4" S e 48°15'50,4" W (propriedade do Sr. Michinori Konagano), os quais contam com temperatura média anual de 27,4°C, 80% de umidade relativa do ar e pluviosidade média anual de 2448 mm. O solo é do tipo Latossolo Amarelo, textura média.

Os experimentos foram levados a campo em delineamento de blocos ao acaso, com 21 tratamentos (clones de cupuaçuzeiro), sendo a parcela constituída de três plantas, com cinco repetições. O espaçamento adotado foi de 5 m x 5 m na propriedade do Sr. Elias e 6 m x 4 m na propriedade do Sr. Konagano.

Foi utilizado como variável de resposta o desenvolvimento vegetativo (altura e diâmetro) médio dos clones, nos três primeiros anos; a produção de frutos nas cinco primeiras safras, correspondentes ao período de 2007/2008 a 2011/2012, e a ocorrência de vassoura-de-bruxa.

Foi realizada a analise de variância e o teste comparativo entre médias da produção de frutos por planta ao nível de 5% pelo teste de Tukey.

Resultados e Discussão

Os resultados do desenvolvimento vegetativo das plantas encontram-se na Tabela 1. Observou-se que no Ambiente 1 o desenvolvimento das plantas foi melhor que no Ambiente 2, com médias de 1,96 m e 1,68 m de altura, e 4,26 cm e 3,56 cm de diâmetro, respectivamente.

Tabela 1 Clones e procedência de cupuaçuzeiros, avaliados pelo desenvolvimento vegetativo (altura e diâmetro), média de

17º Seminário de Iniciação Científica e 1º Seminário de Pós-graduação da Embrapa Amazônia Oriental. 21 a 23 de agosto de 2013, Belém-PA

cinco safras (07/08, 08/09, 09/10, 10/11 e 11/12) e a ocorrência de vassoura de bruxa em dois ambientes (Elias Covre¹ e Michinori Konagano²), no município de Tomé-Açu – PA, 2013.

		Ambientes*										Ocorrência de
		Altura	Diâmetro	Média das Seis			Altura	Diâmetro	Média das Seis			vassoura
Clones	Procedência	$(m)^1$	$(cm)^1$	Safras ¹			$(m)^2$	$(cm)^2$	Safras ²			**
1	INADA	2,10	4,16	11,2	fghi	A	1,70	3,40	9,0	efg	Α	0
3	INADA	1,98	4,40	13,8	bcde	A	1,70	3,40	7,9	fgh	В	1
4	INADA	2,00	4,58	15,6	b	A	1,80	3,80	11,7	bcd	В	0
5	INADA	1,92	4,37	11,4	efghi	A	1,80	4,00	10,3	bcdefg	A	0
6	INADA	2,05	4,51	14,5	bc	A	1,80	4,10	12,0	abc	A	0
7	INADA	2,25	4,67	21,9	a	A	2,00	4,20	14,4	a	В	0
8	INADA	1,85	4,06	10,7	ghijk	A	1,70	3,90	12,2	abc	A	0
9	INADA	1,86	4,27	12,5	cdefg	A	1,70	3,90	12,8	ab	A	0
15	HANTANI	2,06	4,41	14,1	bcd	A	1,90	3,80	12,3	abc	A	0
16	HANTANI	2,09	4,23	8,8	ijkl	A	1,60	3,10	4,4	i	В	0
17	MUROI	1,97	4,03	12,3	cdefg	A	1,70	3,30	9,4	defg	В	1
18	HOSHINA	1,81	4,52	9,0	ijkl	A	1,30	3,50	5,7		В	0
19	WATANABE	1,83	3,91	8,6	jkl	Α	1,60	3,40	8,5	efg	A	0
20	CEPLAC 1	2,26	4,59	6,8	1	Α	1,90	3,70	4,1	i	В	0
21	SEKO	1,92	4,26	10,6	ghijk	A	1,70	3,70	9,0	efg	A	1
22	174	1,97	4,07	9,4	hijk	A	1,80	3,70	11,9	abcd	A	0
23	186	2,04	4,37	10,4	ghijk	A	1,90	3,70	10,8	bcde	A	0
24	215	1,94	4,30	13,3	bcdef	Α	1,50	3,40	10,4	bcdef	В	0
25	622	2,05	4,31	11,9	defgh	A	1,80	3,70	9,9	cdefg	A	0
26	ITAQUI (Prog. 35/4)	1,54	3,81	8,2	kl	Α	1,20	2,70	7,9	gh	A	0
28	ITAQUI (Prog. 20/5)	1,74	3,56	11,1	fghij	A	1,20	2,30	5,8	hi	В	0
	Média Geral	1,96	4,26	11,7		A	1,68	3,56	9,5		A	
Coefic	ciente de Variação %			18,40					21,02			

^{*} Médias seguidas de mesma letra (minúscula na vertical e maiúscula na horizontal) não diferem entre si, ao nível de significância de 5%, pelo teste de Tukey.

Fonte: Embrapa Amazônia Oriental.

Quanto à produção de frutos, os dados também se encontram sumariados na Tabela 1. No primeiro ambiente (Elias) o clone 7 foi o grande destaque com média de 21,9 frutos/planta, diferenciando-se estatisticamente dos demais. O clone 7 destaca-se novamente no segundo ambiente (Konagano), desta vez com média de 14,4 frutos/planta na média das cinco safras, não havendo diferença estatística deste clone com os clones 6, 8, 9, 15 e 22 que apresentaram médias de 12,0; 12,2; 12,8; 12,3 e 11,9 frutos/planta, respectivamente.

Quando feitas comparações de produtividade entre os ambientes observou-se que o experimento instalado na propriedade do Sr. Elias obteve maior produção, com média de 11,7 frutos/planta. Teve evolução de produção constante desde a primeira safra (3,6 frutos/planta na safra) até a quinta safra (17,2 frutos/planta na safra). Por outro lado, na propriedade do Sr. Konagano a média geral dos clones

^{**} Ocorrência de Vassoura de bruxa durante o ciclo até 2013.

^{1 –} Elias Covre; 2 – Michinori Konagano.

17º Seminário de Iniciação Científica e 1º Seminário de Pós-graduação da Embrapa Amazônia Oriental. 21 a 23 de agosto de 2013, Belém-PA

foi de 9,5 frutos/planta, e também teve evolução de produção constante desde a primeira safra (3,1 frutos/planta na safra) até a quinta safra (13,9 frutos/planta na safra). Os clones 3, 4, 7, 15, 16, 17, 18, 20, 24 e 28, não tiveram o mesmo comportamento nos dois ambientes, indicando haver forte interação genótipo x ambiente. Dentre os 21 clones testados, três plantas de cada um dos seguintes clones (3, 17 e 21) apresentaram sintomas do *M. perniciosa* durante o período de avaliação realizado. Os demais genótipos mantiveram resistência a esse patógeno.

Conclusões

Foi possível identificar clones com bom desenvolvimento vegetativo, boa produção de frutos e resistência a *M. perniciosa*. Dentre estes, o clone 7, apresenta qualidades significativas com potencial para ser transformado em futura cultivar a ser recomendada aos produtores de cupuaçu.

Referencia Bibliográfica

ALVES, R.M. EMBRAPA. Centro de Pesquisa Agroflorestal da Amazônia Oriental (Belém, PA). **Programa de melhoramento genético e de adaptação de espécie vegetal para a Amazônia Oriental**. Belém, 1999. P.37-45. (Embrapa Amazônia Oriental. Documentos, 16).

HOMMA, A.K.O. Cupuaçu: potencialidades e mercado, algumas especulações. In: Workshop Sobre as Culturas de Cupuaçu e Pupunha. 1. 1996. Manaus. **Anais.** Manaus: Embrapa-CPAA, 1996. p. 85-95.(Embrapa-CPAA. Documento, 6).

SOUZA, A. G. C.; RESENDE, M. D. V.; SILVA, S. E. L.; SOUZA, N. R. The cupuaçuzeiro genetic improvement program at Embrapa Amazônia Ocidental. Crop Breeding And Applied Biotechnology, Londrina, v. 2, n. 3, p. 471-478, 2002.

SOUZA, A. das G.C.; ALVES, R.M.; SOUSA, N.R.; SOUZA, M.G. de. **Domesticação e Melhoramento de Cupuaçuzeiro**. In: Domesticação e melhoramento: espécies amazônicas / Aluízo Borém, Maria Teresa Gomes Lopes, Charles R. Clemente, editores. — Viçosa, MG, 2009. 319-331 p.