Método de extração de DNA de folhas de soja adaptado para larga escala

Maia, M.S.¹; Brumer, B.B.¹; Novaes,R.M.L.²; Silva, D.C.G. ²; Kuwahara, M.K.²; Dalcin, M.B.¹; Marcelino-Guimaraes, F.C²; Abdelnoor, R.V².

Universidade Estadual do Norte do Paraná/ Bolsista EMBRAPA-SOJA¹, EMBRAPA-SOJA²

Introdução

A extração de DNA de alta qualidade a partir de plantas é ainda um problema importante no campo da biologia molecular (Cankar, 2006). Seu isolamento efetivo é um passo crucial para técnicas de analises diretas de DNA, no entanto, são muitos os problemas descritos por autores para o seu isolamento e purificação (Mazza, 2000). Esses problemas têm sido atribuídos ao elevado teor de proteínas, polissacarídeos, compostos fenólicos e compostos secundários que são extraídos juntamente com o DNA e afetam a sua qualidade, ocasionando dificuldades na sua restrição, amplificação e clonagem e também, interferência na atividade de enzimas e inibição da PCR. Esses compostos ligam-se ao DNA após a lise das células e muitas vezes não podem ser removidos por procedimentos convencionais de extração (Maliyakal, 1992).

A maior parte dos protocolos de extração de DNA de plantas disponível deriva dos métodos descritos por Dellaporta et. al. (1983) e Doyle e Doyle (1987, 1990). Esses métodos são demorados e comumente adaptados para tubos de PCR, o que dificulta a extração de DNA de para um grande número de amostras. Muitos laboratórios fazem análises genético-moleculares em larga escala, necessitando de protocolos de extração rápidos, de baixo custo, e com DNA de qualidade e em quantidades suficientes para que se atenda o objetivo da análise. Encontramse disponíveis no mercado kits comerciais para extração de DNA de plantas que atendem aos requisitos citados acima, os quais, embora tenham bom desempenho, apresentam custos elevados, o que limita sua aquisição e utilização por vários laboratórios. O Laboratório de Genética Molecular e Seleção Assistida (LGMSA) da Embrapa Soja Londrina-PR realiza prestação de serviços que atendem tanto para o programa de melhoramento da própria empresa, quanto para empresas particulares, gerando grandes demandas de análises. O laboratório já conta com um protocolo de extração de larga escala para folhas, no entanto, este não possui etapas de purificação o que restringe a sua utilização para algumas análises que exigem DNA de melhor qualidade. Com isso o presente trabalho tem por objetivo desenvolver um protocolo de extração de DNA de soja de qualidade e quantidade suficientes, baixo custo e adaptado para larga escala.

Materiais e Métodos

Anteriormente ao desenvolvimento do presente trabalho, realizou-se um levantamento de protocolos de extração de DNA de plantas disponíveis em artigos científicos, revistas especializadas e na forma de *kits* comerciais. Foram pré-selecionados alguns protocolos que se mostraram promissores para obtenção de DNA de qualidade, custo baixo e potencial para adequação à larga escala. Após testes iniciais, verificou-se que um deles melhor atendia aos

critérios citados acima, o protocolo descrito por Kotchoni e Gachomo (2009) denominado "KG". Modificações foram feitas no protocolo original, visando à sua otimização, como a adição de etapas de purificação. Desenvolveu-se a primeira versão do KG modificado (KGM versão 1; tabela 1) que atendeu parcialmente às demandas do LGMSA. No entanto, o método ainda apresentava algumas restrições, como produção de pouca quantidade de DNA e não adaptação a utilização em larga escala e por isso optou-se pelo desenvolvimento de um novo protocolo de extração de DNA baseado no KGM versão 1.

Tabela 1. Protocolo de extração de DNA para tecidos de folha de soja, adaptado do método Kotchoni e Gachomo (2009), denominado KGM versão 1. Embrapa Soja, 2013.

Etapas	Procedimentos
1.	Coleta de um disco foliar e acondicionamento em recipiente de capacidade de 2 mL;
2.	Colocar junto com a amostra uma esfera de teflon (polietileno) de ~ 6 mm de ¤;
3.	Macerar no GenoGrinder por 30 segundos a 1750 rotações/min;
4.	Adicionar 400 μL do componente A acrescido de 2 μL do componente B;
5.	Vortexizar suavemente e dar um spin;
6.	Incubar a 65°C com 210 RPM por 30 min;
7.	Retirar da incubação e adicionar 260 µL do componente C; vortexizar suavemente e incubar a 4°C por 15 min;
8.	Centrifugar a 4000 RPM, 4°C por 15 min;
9.	Transferir 400 µL do sobrenadante para um tubo de 1,5 mL; adicionar 400 µL do componente D; vortexizar suavemente e incubar a -20°C por 15 min;
10.	Centrifugar a 4000 RPM, 4°C por 15 min;
11.	Descartar o sobrenadante suavemente de modo que o DNA precipitado (pellet) continue aderido ao fundo do tubo; depois adicionar 500 µL de componente E;
12.	Centrifugar a 4000 RPM, 4°C por 15 min;
13.	Descartar o sobrenadante suavemente e secar o pellet em centrífuga aquecida a 60°C por 15min
14.	Diluir o DNA em 50 μL do componente F
15.	Ressuspender o DNA em B.O.D. a 35°C por 30 min
16.	Quantificar

O desenvolvimento do protocolo KGM versão 2 e 3 foi realizado no LGMSA no período de outubro de 2012 até abril de 2013. Foram realizadas uma série de testes e modificações da versão 1, as quais serão detalhadas a seguir. Os testes foram feitos a partir de tecidos de folhas de soja frescas, coletadas com alicate furador para obtenção de discos foliares de cerca de cinco mm de diâmetro. Para verificar a eficiência do método de extração, avaliou-se a quantidade e a qualidade do DNA, além de sua performance em ensaios de genotipagem na reação em cadeia da polimerase em Tempo Real (RT-PCR). A quantidade de DNA foi estimada por espectrofotometria no NanoDrop ND-1000 e por visualização da intensidade de bandas em gel de agarose, de acordo com protocolos otimizados pelo laboratório Biotecnologia Vegetal. A qualidade do DNA foi avaliada de acordo com análises da densidade óptica (OD) em espectrofotometria no equipamento NanoDrop. A relação entre a absorbância do DNA (260 nm) e de proteína (280nm) ou de polissacarideos (230nm) foi usada para avaliação dessa qualidade do DNA. Considera-se de baixa qualidade do DNA quando o índice 260/280 é menor que 1,6 e ótimo quando maior que 1,8. Para o índice 260/230 considera-se de baixa qualidade quando menor que 1,6 e ótima quando maior que 1,9 (NanoDrop, 2007). Para analisar a eficiência da amplificação do DNA extraído em ensaios de genotipagem, foram avaliados os valores de CycleThreshold (CT) em corridas de Quantificação Absoluta utilizando-se primers de genotipagem no equipamento RealTime 7900HT. Os CTs equivalem à quantidade de ciclos que a amplificação da amostra leva para ser detectada no processo de termociclagem no RT-PCR.

Foram utilizados alguns parâmetros para serem testados na tentativa de eliminar problemas decorrentes do protocolo de extração e se alcançar o objetivo proposto acima. O trabalho foi dividido em duas etapas: a primeira buscou o desenvolvimento do protocolo de extração para tubos de 2mL, em que se testou variações nos equipamentos da etapa de incubação (etapa 6), tipos de folhas, quantidades de discos foliares para a extração de DNA e quantidades dos componentes utilizados no protocolo de extração. A segunda etapa visou o desenvolvimento de um protocolo de extração para placas de 96 poços profundos (DeepWell) utilizando como base os resultados obtidos na primeira etapa, permitir assim a realização do protocolo de extração em larga escala. Como a extração em DeepWell poderá ser feita com 96 amostras de folhas de uma só vez com auxilio de pipeta multicanal a quantidade de amostras extraídas em um mesmo intervalo de tempo tende a aumentar, possibilitando extrações em larga escala. Nesse segundo momento, foram testadas variações nos formatos e modelos dos blocos, nas quantidades de sobrenadante coletado, nos métodos para secagem do DNA precipitado (pellet) e no tempo de centrifugação na etapa 8. Os detalhamentos de cada teste estão mostrados na Tabela 3 e nos resultados.

Resultados

Primeiramente foram testados dois equipamentos na etapa de incubação (etapa seis do KGM versão1): Banho Maria eThermomixer. Para a incubação em ambos os equipamentos, as quantidades de DNA extraído foram equivalentes e em relação a valores de CT oThermomixer se mostrou superior (Tabela 2). Como essa superioridade não foi representativa, decidiu-se utilizar o Banho Maria na etapa 6 devido a uma facilidade no manuseio do equipamento e sua maior capacidade de incubação de amostras.

Tabela 2: Comparação dos resultados obtidos para os testes realizados visando a adaptação do protocolo KGM versão 1 para extração de DNA em baixa escala (primeira etapa) e larga escala (segunda etapa). Os parâmetros e variações testadas foram analisados de acordo com sua quantidade, qualidade e valores de *CycleThreshold* (CT)

	Parâmetros	Variação	Quantidade*	Qualidade		СТ	
			ng/uL	260/280	260/30	Sonda 1	Sonda 2
	Incubação	Banho Maria	29,2			30,67	36,5
		Thermomixer	26,9			26,28	27,08
	Tipo de folha	Congelada	199	1,94	1,42		
		Senescente	117,4	1,84	1,11		
primeira etapa	Quantidade de discos	1	18,2			33,1	35,65
eta		2	28,1			28,5	31,8
eira		4	301,2	2	2,4	27	28,8
<u>ë</u> .		6	533,36	1,97	2,25	28,5	30,7
pr		8	609,8	1,95	2,15	31,9	39,5
	Quantidades dos componentes C e D	400uL de C e 500 de D	559,3	2	2,3	28,4	31,9
		300uL de C e 400uL de D	583,9	1,9	2,1	32,05	38,35
	Tipos de blocos	1,0 ml	194,9	1,3	1,1		
		2,0 ml	570,3	1,9	1,76		
pa		2,2 ml	381,9	1,75	1,45		
segunda etapa	Quantidade de sobrenadante coletado	340uL	90,16	1,95	0,94		
seć		240uL	134,33	1,96	1,2	29,4	30,4
	Secagem do pellet	Temperatura Ambiente	153,23	1,96	1,25	29,4	30,4
		Vortemp	71,26	1,95	0,87		

^{*}Quantidade estimada por espectrofotometria no NanoDrop

^{*}As variações destacadas geraram os melhores resultados e foram incluídos no KGM versão 2 e 3

Para analisar a eficiência quanto a extração em diferentes tipos de material, foram utilizados tecidos de folhas congeladas e em fase de senescência. Ambos os tipos de tecidos apresentaram uma média de concentração de DNA superior a 100 ng/µL com índice 260/280 maior que 1,8, ou seja, um valor ótimo (NanoDrop, 2007). Já o índice 260/230 ficou abaixo do valor de 1,6, o qual é o padrão estabelecido como de baixa qualidade. Isso mostrou que a extração está em qualidade boa para o índice que indica presença/ausência de proteínas, portanto já suficiente para algumas análises laboratoriais, mas ainda pode ser melhorado para o índice 260/230. De acordo com esses resultados, o protocolo de extração foi eficiente para obtenção de DNA tanto de amostras de folhas congeladas ou senescentes, o que flexibiliza o momento da coleta.

Em seguida,com o objetivo de aumentar a quantidade de DNA extraído, avaliou-se a capacidade de saturação do tampão de extração (componente A+B; tabela 1) com diferentes quantidades de discos foliares. Para isso, foram testados em uma mesma quantidade de tampão, o uso de um, dois, quatro, seis e oito discos foliares. Foi verificado que a quantidade de DNA aumentou gradativamente com aumento na quantidade de tecido foliar, mantendo os índices 260/230 e 260/280 apresentaram boa relação (Tabela 2). A extração de seis ou oito discos foliares se mostrou semelhantes em relação às quantidade e qualidade do DNA, no entanto a coleta de seis discos é mais rápida e menos dispendiosa. Com isso recomenda-se utilizar seis discos foliares para extração KGM em tubos de 2 mL. Assim, originou-se o KGM versão 2.

Na tentativa de melhorar o índice 260/230, que indica contaminação por polissacarídeos, a qual vinha mostrando-se abaixo do padrão ótimo, testou-se o aumento de certos componentes que compõe o protocolo de extração. O componente C, que precipita carboidratos, foi aumentado para 400μL enquanto o componente D foi aumentado para 500 μL. O protocolo para extração utilizado foi o KGM versão 2 e para critério de comparação foi testado também o mesmo protocolo de extração sem aumentos de componentes. A utilização de 400μL de componente C e 500μL de componente D não apresentou melhorias na qualidade do DNA (Tabela 2), portanto não é necessário, já que seria gasto uma maior quantidade de reagentes encarecendo a extração. O protocolo KGM versão 2 foi comparado com os protocolos tradicionais *Doyle* e *Doyle* e *DNEasy e* apresentando quantidades maiores de DNA, qualidade 260/280 equivalente e qualidade 260/230 melhores (tabela 3). Como esse protocolo tem a vantagem de ter um custo bem mais baixo (cerca de R\$ 1,00 por amostra) em relação aos kits comerciais e utilizar reagentes de menor toxicidade que o método *Doyle* e *Doyle*, mostrou elevado potencial para ser incorporado à rotina do laboratório para extrações em tubos quando a demanda não for excessiva.

Tabela 3. Comparação entre médias da quantificação de DNA em NanoDrop e seu respectivo índices entre os protocolos DNEasy, Doyle e Doyle e KeGM

Evityação	ng/ul		260/280		260/230	
Extrações	Média	DP	Média	DP	Média	DP
Extraídas com DNEasy 1	76,89	63%	1,84	3%	1,58	16%
Extraídas com DNEasy 2	84,25	26%	1,87	2%	1,71	13%
Extraídas com DNEasy 3	111,19	58%	1,8	1%	1,8	13%
Extração CTAB 1	167,64	53%	2	2%	1,32	13%
Extração CTAB 2	212,97	27%	1,96	1%	1,34	7%
Extração KeG Modificado versão 2	503,2		1,94		2,2	

^{*} DP= Desvio Padrão

Com os resultados conclusivos para extração em tubos de 2 mL para uma baixa escala, a segunda etapa visou à otimização da extração em placas de 96 poços fundos (visando a utilização em larga escala). Primeiramente testamos diferentes modelos de placas de 96 poços fundos: de capacidade 1 mL, 2 mL e 2,2 mL. Para cada placa foi realizada a extração segundo o protocolo KGM versão 2. A placa de 96 poços fundos de 2 mL apresentou os melhores resultados, para à quantidade e qualidade de DNA. No entanto, foram realizadas modificações na etapa da retirada do sobrenadante, pois este não foi coletado totalmente límpido o que resultou em um índice 260/230 em qualidade inferior à obtida na extração de seis discos foliares da primeira etapa (Tabela 3).

Na tentativa de resolver esse problema foram testados dois parâmetros: aumento do tempo da centrifugação na etapa 8; e coleta de diferentes quantidades de sobrenadante. Esses testes foram feitos em placas de 96 poços fundos de 2 mL com auxílio de pipeta multicanal. A extração das amostras seguiu o protocolo KGM versão 2. O aumento na etapa de centrifugação foi de 15 min para 20 min. Visualmente ficou evidente uma maior compactação da fase sólida o que evitou que esta se misturasse com o sobrenadante. Esse resultado facilitou a coleta de um sobrenadante totalmente límpido mostrando-se satisfatório para a resolução do problema.

Já para o segundo parâmetro, o protocolo de extração KGM versão 2 foi utilizado com aumento nos componentes A, B, C e D e coleta de 340 μL de sobrenadante em comparação com uma extração utilizando o mesmo protocolo no entanto sem aumento dos componentes e coleta de 240 μL de sobrenadante. O aumento de componentes foi novamente proposto devido à dificuldade da visualização do limite entre sobrenadante e descarte, o que gerou dificuldades do manuseio com pipeta multicanal. Esse aumento de componentes não gerou resultados satisfatórios, pois acarretou redução na quantidade e qualidade do DNA, quando comparado com os dados obtidos no protocolo sem alteração (Tabela 2). Portanto não é necessário o aumento de componentes.

A secagem do DNA precipitado também foi testada com duas variações: a secagem em Vortemp a 60°C por 15 min e em temperatura ambiente por 30 min. A secagem do DNA precipitado foi melhor à temperatura ambiente em relação à quantidade e ao índice 260/230 do DNA extraído, mesmo demandando maior tempo (Tabela 2). Portanto deve-se secar o DNA precipitado em temperatura ambiente por 30 min.

A maioria dos protocolos existentes não separa facilmente o DNA de polissacarídeos devido à similaridade estrutural desses polímeros (DANTASA, 2010) explicando a maior dificuldade de se chegar ao padrão ótimo do índice 260/230. Para a extração em blocos, o índice 260/230 está abaixo do padrão ótimo do NanoDrop. No entanto, está semelhante aos protocolos de extração Doyle e Doyle e o DNEasy (Tabela2) podendo já ser utilizado para algumas análises do LGMSA. A aplicação do protocolo de extração desenvolvido para larga escala será importante, pois satisfaz duas necessidades do laboratório LGMSA: a extração de um DNA puro para um grande número de amostras.

Conclusão

A partir das adaptações realizadas, foi possível a obtenção de um protocolo para extração de DNA de folhas de soja, o qual resultou na obtenção de amostras de DNA em quantidade e qualidade suficientes, além das vantagens de custo reduzido e menor toxicidade em relação aos métodos atualmente disponíveis;

Referências

CANKAR K.; STEBIH D.; DREOT.; ZEL J.; GRUDEN K. Critical points of DNA quantification by real-time PCR – effects of DNA extraction method and sample matrix on quantification of genetically modified organisms. **BMC Biotechnology**, EUA, p.1-15, 2006.DANTAS, A.C.M. Extração e análise de DNA vegetal, Parte1. Santa Catarina: Universidade Federal de Santa Catarina-Centro de Ciências Agrárias, 2010.18 p. Relatório técnico.

DELLAPORTA, S.L.; WOOD, J.; HICKS, J.B. A plant DNA minipreparation: version II. In: KORBAN, S.S. **Plant Molecular Biology Reporter.** 1. ed. Nova York, 1983. v.1, p.19-21.

DOYLE, J.J.T.; DOYLE, J.L. Isolation of plant DNA from fresh tissue. v.12. p.13-15, 1987

FRONZA, V. **Genética da reação da soja a** *Fusarium solani f.sp.glycines*. 2003. 166f. Tese (Doutorado em Genética e melhoramento de plantas) - Escola Superior de Agricultura Luiz de Queiroz, Piracicaba

KOTCHONI, S.O.; GACHOMO, E.W. A rapid and hazardous reagent free protocol for genomic DNA extraction suitable for genetic studies in plants. **Molecular Biology Reports**, v.14. p.1633–1636. 2008.

MAZZA M.C.M; BITTENCOURT J.V.M. Extração de DNA de tecido vegetal de Araucaria angustifolia (Araucariaceae), Colombo, n. 41, p.12-17, 2000.

NANODROPTECHNOLOGIES, **INC.ND-1000 Spectrophotometer V3.5 User's Manual**. Wilmington, USA, 2007. 61p.