

Comemoração dos 20 Anos da AUREMN

LIVRO DE RESUMOS E PROGRAMA

04 A 08 DE AGOSTO DE 2008 UFF, NITERÓI, RJ, BRASIL

COMISSÃO ORGANIZADORA

José Daniel Figueroa Villar (IME/RJ)
Kátia Zaccur Leal (UFF/RJ)
Luzineide Wanderley Tinoco (UFRJ)
Rodrigo Bagueira de Vasconcellos Azeredo (UFF)
Rosane Aguiar da Silva San Gil (UFRJ)
Sonia Maria Cabral de Menezes (PETROBRAS)

COMISSÃO CIENTÍFICA

José Daniel Figueroa Villar (IME/RJ), Coordenador
Luzineide Wanderley Tinoco (UFRJ), Assistente da Coordenação
Claudio Francisco Tormena (UNICAMP)
Ernani A. Basso (UEM)
Fernando Hallwass (UFPE)
José Dias de Souza Filho (UFMG)
Kátia Zaccur Leal (UFF/RJ)
Luiz Alberto Colnago (EMBRAPA/SP)
Maria Cecília Bastos V. Souza (UFF/RJ)
Peter R. Seidl (UFRJ)

DIRETORIA DA AUREMN

José Daniel Figueroa Villar (IME) figueroa@ime.eb.br

Presidente

Sonia Maria Cabral de Menezes (PETROBRAS) <u>soniac@petrobras.com.br</u> *Vice-Presidente*

Luzineide Wanderley Tinoco (UFRJ) <u>lwtinoco@nppn.ufrj.br</u> Secretária

Rosane Aguiar da Silva San Gil (UFRJ) <u>rsangil@iq.ufrj.br</u> Tesoureira

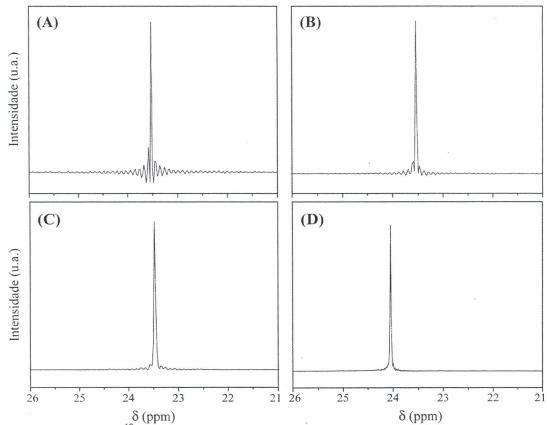
SECRETARIA DE EVENTOS

Sandra Mello sandramello@globo.com

AGRADECIMENTOS

ELIMINAÇÃO DAS ANOMALIAS DE FASE E AMPLITUDE EM ESPECTROS DE RMN ¹³C NO ESTADO ESTACIONÁRIO Poliana Macedo dos Santos(PG)^{1,2*}; André Alves de Souza(PG)³;

Luiz Alberto Colnago(PQ)²


¹Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos-SP; ²Embrapa Instrumentação Agropecuária, São Carlos-SP; ³Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos-SP. *poliana@cnpdia.embrapa:br

Keywords: SSFP: 13C NMR; Phase and Intensity Anomalies

A técnica de Ressonância Magnética Nuclear (RMN) de Precessão Livre no Estado Estacionário (Steady State Free Precession – SSFP), desenvolvida por Carr¹, tem como principal vantagem a utilização de intervalos de tempo entre os pulsos (T_p) independentes dos tempos de relaxação longitudinal (T₁) e transversal (T₂). Ernest e Anderson² ao aplicarem a técnica de SSFP com o objetivo de promover um aumento na razão sinal/ruído (s/r) em espectros de RMN, verificaram que a utilização de um Tp menor que 3T2 originava espectros com anomalias de fase e amplitude do sinal. Freeman e Hill³, dando seqüência aos estudos de Ernest e Anderson, desenvolveram uma metodologia para eliminação destas anomalias baseada na aquisição de espectros de RMN com diferentes valores de T_p, sendo estas variações realizadas de forma randômica. Schwenk⁴ também a fim de eliminar estas anomalias de fase presentes nos espectros de RMN, obtidos com a técnica de SSFP, desenvolveu a técnica denominada de Quadriga Fourier Transform (QFT). Esta técnica baseava-se na aquisição de quatro espectros no regime SSFP com diferentes valores de freqüências de irradiação. No entanto, essas propostas não foram adotadas pelos usuários de RMN. Assim, este trabalho tem como objetivo avaliar as metodologias desenvolvidas por Freeman e Hill e por Schwenk, bem como analisar uma nova seqüência proposta em que as variações de Tp foram executadas em passos fixos, para eliminação das anomalias observadas. Os resultados obtidos foram comparados com a técnica padrão⁵ de análise de ¹³C.

As análises de RMN ¹³C foram realizadas em um espectrômetro Varian Inova de 9,4 T (400 MHz para o núcleo de ¹H e 100,5 MHz para o núcleo de ¹³C). Para a técnica SSFP foram empregados pulsos de 55° e 90° espaçados por 300 ms, enquanto que para a técnica padrão utilizaram-se pulsos de 30º espaçados por 1,3 s. As amostras analisadas foram: acetato de sódio $(C_2H_3O_2Na)$ enriquecido com 99% de $^{13}C_2$, acetato de etila $(C_4H_8O_2)$, octanol $(C_8H_{18}O)$ e brucina ($C_{23}H_{26}N_2O_4$).

Na Figura 1 têm-se os espectros de RMN ¹³C de acetato de sódio, adquiridos com a técnica SSFP (Figura 1A), SSFP com variações randômicas (Figura 1B) e calculadas (Figura 1C) de T_p e QFT (Figura 1D).

Figura 1. Espectros de 13 C de acetato de sódio obtidos com as técnicas (A) SSFP com T_p fixo, (B) SSFP com variações randômicas de T_p , (C) SSFP com variações calculadas de T_p e (D) QFT.

O desenvolvimento da seqüência baseada na aplicação de variações calculadas para T_p é resultante da necessidade de se utilizar, em alguns casos, muitos números randômicos para cobrir igualmente a escala de variação de T_p , o que acarreta um aumento considerável no tempo total do experimento.

Assim, a partir destes resultados, conclui-se que ao aplicar as metodologias para correção das anomalias de fase, observa-se que estas proporcionaram uma melhora significativa na qualidade do espectro, como mostra as Figuras 1B, C e D quando comparado com o espectro obtido com a técnica de SSFP (Figura 1A).

Referências:

- 1. Carr, H.Y. Phys. Rev. 1958, 112, 1693-1701.
- 2. Ernst, R.R.; Anderson, W.A. Rev. Scient. Inst. 1966, 37, 93-102.
- 3. Freeman, R.; Hill, H.D.W. J. Mag. Res. 1971, 4, 66-383.
- 4. Schwenk, A. J. Mag. Res. 1971, 5, 376-389.
- 5. Braun, S.; Kalinowski, H.O.; Berger, S.; 150 and More Basic NMR Experiments; Wiley-VCH, Weinhein, 1998.

FAPESP