Empresa Brasileira de Pesquisa Agropecuária Embrapa Instrumentação Agropecuária Ministério da Agricultura, Pecuária e Abastecimento

Rede de Nanotecnologia Aplicada ao Agronegócio Anais do V Workshop 2009

Odílio Benedito Garrido de Assis Wilson Tadeu Lopes da Silva Luiz Henrique Capparelli Mattoso Editores

Embrapa Instrumentação Agropecuária São Carlos, SP 2009

Exemplares desta publicação podem ser adquiridos na:

Embrapa Instrumentação Agropecuária

Rua XV de Novembro, 1452

Caixa Postal 741

CEP 13560-970 - São Carlos-SP

Fone: (16) 2107 2800 Fax: (16) 2107 2902

http://www.cnpdia.embrapa.br E-mail: sac@cnpdia.embrap.br

Comitê de Publicações da Unidade

Presidente: Dr. Luiz Henrique Capparelli Mattoso

Membros: Dra. Débora Marcondes Bastos Pereira Milori,

Dr. João de Mendonça Naime,

Dr. Washington Luiz de Barros Melo

Valéria de Fátima Cardoso

Membro Suplente: Dr. Paulo Sérgio de Paula Herrmann Junior

Supervisor editorial: Dr. Victor Bertucci Neto

Normalização bibliográfica: Valéria de Fátima Cardoso

Capa: Manoela Campos e Valentim Monzane

Imagem da Capa: Imagem de AFM de nanofibra de celulose - Rubens Bernardes Filho

Editoração eletrônica: Manoela Campos e Valentim Monzane

1ª edição

1ª impressão (2009): tiragem 200

Todos os direitos reservados.

A reprodução não-autorizada desta publicação, no todo ou em parte, constitui violação dos direitos autorais (Lei nº 9.610).

CIP-Brasil. Catalogação-na-publicação.

Embrapa Instrumentação Agropecuária

Anais do V Workshop da rede de nanotecnologia aplicada ao agronegócio 2009 - São Carlos: Embrapa Instrumentação Agropecuaria, 2009.

Irregular

ISSN: 2175-8395

 Nanotecnologia - Evento. I. Assis, Odílio Benedito Garrido de.
 Silva, Wilson Tadeu Lopes da. III. Mattoso, Luiz Henrique Capparelli. IV. Embrapa Instrumentação Agropecuaria

SÍNTESE E CARACTERIZAÇÃO DE FILMES FINOS NANOESTRUTURADOS DE TIO₂: Ag E APLICAÇÃO NA FOTODEGRADAÇÃO DE CORANTES

Andréa Renata Malagutti¹, Henrique A. J. Loures Mourão^{1,2}, José Roberto Garbin³, Caue Ribeiro^{1*}

¹Laboratório Nacional de Nanotecnologia para o Agronegócio, Embrapa Instrumentação Agropecuária, 13560-970, São Carlos/SP *caue@cnpdia.embrapa.br

²Depto. de Química - UFSCar, 13560-905, São Carlos/SP

³Natureza Ativa Indústria e Comércio de Fotoreator Ltda ME, NATV, São Carlos/SP

Projeto Componente: PC4

Plano de Ação: 01.05.1.01.04.04

Resumo

Neste trabalho foram desenvolvidos filmes finos de TiO₂:Ag com diferentes camadas. Os filmes foram sintetizados a partir de resinas preparadas pelo método dos precursores poliméricos e depositados sobre substratos de vidro utilizando a técnica de spin coating. Os filmes foram caracterizados por DRX, Raman e por AFM, e em seguida foram utilizados na degradação fotocatalítica do corante Rodamina B. Os resultados mostraram que o método de síntese foi importante para a formação da fase anatase e que a dopagem dos filmes de TiO₂ com Ag aumentou a eficiência fotocatalítica.

Palavras-chave: nanoestruturas, filmes finos, fotodegradação, corantes.

Introdução

A oxidação fotocatalítica mediada por semicondutores tem sido aceita como um método promissor de descontaminação ambiental. Dentre os semicondutores utilizados, o TiO2 na fase anatase é conhecido por ser um bom fotocatalisador devido à sua alta foto-sensibilidade, não-toxicidade, facilidade de obtenção, alto poder oxidante e estabilidade (FOX e DULAY, 1993). Na literatura, vários trabalhos têm surgido sobre o preparo de filmes finos de TiO, utilizando diferentes técnicas, e existem grandes variações nas propriedades dos filmes finos de TiO, produzidos por cada técnica. A obtenção da fase TiO2 - anatase em escala nanométrica não é trivial e desta forma, metodologias de síntese capazes de controlar o tamanho de partícula final obtido são necessárias para desenvolvimento da fase (BOUDART e DJEGA-MARIADASSON, 1981). Um dos métodos de se controlar o tamanho das partículas e também a contaminação superficial do TiO, obtidos por métodos de calcinação é o método dos precursores poliméricos (RONCONI et al., 2007). No entanto, um dos principais desafios na otimização de nanoestruturas de TiO, é o alto grau de recombinação do par elétron-buraco, que reduz significativamente a eficiência fotocatalítica. Esta diminuição da recombinação e consequente aumento da eficiência podem ser alcançados através da incorporação de metais nobres à estrutura do semicondutor SUBRAMANIAN et al., 2001; MALAGUTTI et al., 2009). Assim, este trabalho tem por objetivo a síntese e a caracterização de filmes nanoestruturados de TiO, dopados com Ag, com diferentes camadas, a partir de uma resina preparada pelo método dos precursores poliméricos e aplicação destes filmes na fotodegradação do corante rodamina B.

Materiais e métodos

As resinas poliméricas de TiO, foram obtidas pelo método dos precursores poliméricos. A uma solução de ácido cítrico, foi adicionado isopropóxido de titânio em uma razão molar ácido cítrico: isopropóxido de titânio igual a 3:1. Em seguida, adicionou-se etilenoglicol à solução. Foram obtidas resinas de Ag pelo mesmo método, utilizando procedimento similar a partir de AgNO, como precursor. As resinas de TiO, e de Ag foram então misturadas nas proporções adequadas para obter o filme de TiO2 dopado com 1% de Ag. A deposição da resina sobre substratos de vidro previamente limpos, foi realizada utilizando a técnica de spin coating. A deposição dos filmes foi realizada em duas etapas, sendo a primeira consistindo de uma velocidade de rotação de 1000 rpm durante 10 s com uma aceleração de 15 rpm/s² e a segunda com uma velocidade de rotação de 5000 rpm durante 40 s e com a mesma aceleração utilizada na primeira etapa. Os filmes finos foram submetidos a um tratamento térmico em forno elétrico convencional a 300 °C por duas horas para promover a pirólise da resina, resultando num filme amorfo, e posteriormente foi cristalizado em um tratamento térmico a 450 °C para formar o filme nanométrico. A caracterização dos filmes foi realizada por Espectroscopia Raman utilizando um equipamento FT Raman (Bruker RFS 100/S) usando a linha em 1064 nm de um laser YAG, com uma potencia do laser de 450 W e foram feitas 200 scans para cada medida, à temperatura ambiente. Para as medidas de Difração de raios- X (DRX) foi utilizado um aparelho Rigaku (modelo Dmax 2500 PC), com anodo de cobre emitindo radiação com comprimento de onda $\lambda_{Cuk\alpha}$ = 1,54 Å. A morfologia dos filmes foi observada por Microscopia de Força Atômica (AFM) utilizando um equipamento Veeco NanoMan - MFA DIGITAL - NanosScope IIIA. A atividade fotocatalítica dos filmes foi investigada para a oxidação do corante Rodamina B diluído em água e sob irradiação UV. Os filmes finos de diferentes camadas preparados nos substratos de vidro foram colocados em béqueres contendo 20,0 mL de uma solução aquosa de Rodamina B (2,5 mg/L). Estes béqueres foram então colocados em um foto-reator com temperatura controlada a 25°C e a irradiação foi realizada com a utilização de 4 lâmpadas UV de 15 W. A oxidação fotocatalítica da Rodamina B foi monitorada por medidas de UV-Vis (Espectrofotômetro Shimadzu - UV-1601 PC) para diferentes tempos de exposição à irradiação.

Resultados e discussão

A Figura 1 apresenta os deslocamentos Raman para o suporte de vidro (a), filme de Ag (b), filme de TiO₂ puro (c) e TiO2:1% Ag (d), em suporte de vidro. A fase TiO2-anatase pode ser identificada

utilizando Espectroscopia Raman pelas bandas 144 (mais forte), 399, 515 e 639 cm-1, (ZHANG et al., 2006). De acordo com a Figura 1, foi possível observar somente a banda em 144 cm-1 devido à fase anatase, pois o espectro Raman para o filme de TiO₂ puro e o TiO₂: 1% Ag apresentou ampliação considerável nesta região em relação ao suporte de vidro e o filme de Ag puro.

Fig. 1. Espectros Raman para os filmes com 4 camadas de Ag, TiO₂ e TiO₂: 1% Ag

Foram feitas também análises de DRX para os pós das resinas utilizadas para preparação dos filmes, calcinando-as nas mesmas condições utilizadas para a preparação dos filmes. Foi possível observar a presença de rutilo nos pós do TiO₂, embora em menor quantidade em relação à anatase. A dopagem com Ag favoreceu a estabilização da fase anatase, pois os picos relativos á fase rutilo praticamente desaparecem para as amostras de TiO₂:1% Ag, como demonstrado na Figura 2. Para o pó de Ag, foi observada somente a presença de Ag metálico.

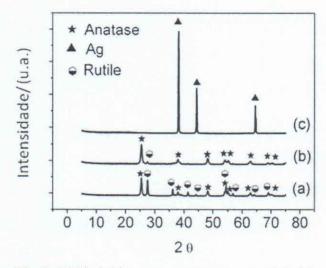


Fig. 2. DRX obtidos para as amostras em pó de (a) TiO₂ puro; (b) TiO₂:1,0% Ag e (c) Ag puro.

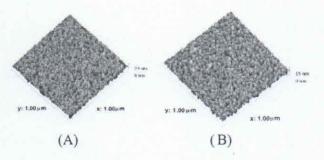


Fig. 3. Imagens de AFM mostrando as superficies dos filmes com 4 camadas de TiO_2 : (A) e de TiO_2 : 1% Ag: (B).

Tabela 1. Rugosidades dos filmes de TiO_2 , Ag e TiO_2 :1 % Ag com diferentes camadas.

Filmes	Rugosidade (nm)		
	TiO ₂	Ag	TiO2:1% Ag
1 cmd	1,70	0,79	1,88
2 cmds	1,69	0,71	1,73
4 cmds	2,23	1,79	1,63

O efeito da espessura dos filmes e a dopagem do TiO, com Ag foram estudados para ver como estes parâmetros afetam a eficiência fotocatalítica dos filmes sintetizados. A Figura 4 mostra os ensaios de fotodegradação para a solução de Rodamina B utilizando os filmes de TiO₂; de Ag e de TiO₂:1% Ag, com diferentes números de camada. Como pode ser observado na Figura 4 A para o filme de TiO, puro, a eficiência na degradação da Rodamina B aumentou quando se utilizou um filme com um maior do número de camadas, pois quando a espessura do filme é maior, o percurso dos elétrons até voltar à superficie do semicondutor aumenta e então o processo de recombinação torna-se mais lento, ocasionando um aumento da eficiência fotocatalítica. Para camadas muito finas este efeito é bastante rápido devido à pequena distância que o elétron percorre até recombinar com o buraco, resultando em uma menor eficiência. Na Figura 4 B, podemos verificar que ocorreu um aumento na eficiência de fotodegradação para o filme de Ag com 1 e 2 camadas, no entanto, o filme de 4 camadas não foi eficiente para a fotodegradação. Neste caso, os resultados sugerem que o filme é uma mistura de Ag e Ag₂O, sendo que provavelmente na superficie do filme existe mais óxido, em função do método de calcinação adotado. Quanto mais espesso o filme, maior é a interferência do óxido no processo fotocatalítico, pois a maior parte da radiação incidente será utilizada para reduzir o óxido a metal do que para oxidar a Rodamina B. Os resultados da Figura 4 C mostram que com a utilização do filme de TiO₂:1% Ag, ocorreu um aumento da eficiência de fotodegradação em relação à Rodamina sem o uso de catalisador. Como pode ser verificado, o filme de 2 camadas de TiO₂:1% Ag mostrou uma maior eficiência fotocatalítica quando comparado com os filmes de 1 e 4 camadas.

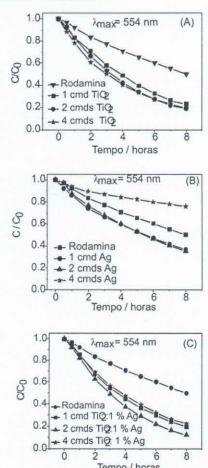


Fig. 4. Perfil de degradação da solução de Rodamina B utilizando filmes de diferentes camadas de: (A) TiO₂; (B) Ag e (C) TiO₂:1% Ag depositados sobre vidro.

Conclusões

Pode-se concluir que a síntese de filmes de TiO₂ nanoestruturados utilizando resinas preparadas pelo método dos precursores poliméricos foi importante para a formação da fase anatase. Além disto, a dopagem dos filmes de TiO₂ com Ag aumentou a eficiência fotocatalítica. O estudo com diferentes camadas de filmes depositados sobre suporte de vidro mostrou que para o TiO₂ puro, o aumento da espessura da camada é o único responsável pela maior atividade fotocatalítica. Para o caso do filme de TiO₂:1% Ag, a diminuição da

recombinação com consequente aumento da eficiência catalítica estão relacionados com a existência de dois efeitos associados que são a transferência de elétrons entre o TiO₂ e Ag e o efeito do aumento na espessura da camada.

CNPq, FAPESP, EMBRAPA, FINEP/MCT.

FOX, M. A.; DULAY, M.T. Chem. Rev., Washington, v. 93, p. 341, 1993.
BOUDART, M.; DJEGA-MARIADASSON, G. Princeton: Princeton University Press, 1981.
RONCONI, C. M.; RIBEIRO, C.; BULHÕES, L. O. S.; PEREIRA, E. C. Journal of Alloys and Compounds, Lausanne, v. 466, p. 435, 2008.
SUBRAMANIAN, V.; WOLF, E.; KAMAT, P. V. J. Phys. Chem. B., Washington, v. 105, p. 11439, 2001.
MALAGUTTI, A. R.; MOURÃO, H. A. J. L.; GARBIN, J. R.; RIBEIRO, C. Appl. Catal. B: Environ., Amsterdam, v. 90, p. 205, 2009.
ZHANG, J.; LI, M.; FENG, Z.; CHEN, J.; LI, C. J. Phys. Chem. B, Washington, v. 110, p. 927, 2006.