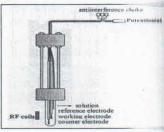

WWMR2010

Joint EUROMAR 2010 and 17th ISMAR Conference

Book of Abstracts

Florence, July 4-9, 2010


P643 Use of SSFP ¹³C NMR to monitor *in situ* electrochemical reaction in spectroelectrochemical cell

Luiza M. S. Nunes^a, Lúcio L. Barbosa^b, Luiz H. Mazo^c and Luiz A. Colnago^d

^{ac}Institute of Chemistry of São Carlos, University of São Paulo, 400 Trab.São-carlense St, 13560-970, São Carlos-SP, Brazil (<u>luizanunes@iqsc.usp.br</u>)
^bFederal University of Espírito Santo, 514 Fernando Ferrari St, 29075-910, Vitória - ES, Brazil
^dEMBRAPA Agricultural Instrumentation, 1452 XV de Novembro St, 13560-970, São Carlo - SP, Brazil

The main advantage *in situ* measurements, which couple, electrochemistry techniques (EC) and nuclear magnetic resonance spectroscopy (NMR) is obtain information in real time about electrogenerated species, in solution. Most EC

NMR studies uses the ¹H NMR detection to monitor the electrochemical processes due to ¹H high sensitivity and fast data acquisition.^{1,2} To obtain ¹³C spectra faster spectrum than conventional ¹³C NMR sequence to monitor *in situ* the electrolysis's reaction (organochloride reduction) we examined the application of ¹³C Steady State Free Precession sequence (SSFP). Figure 1 shows the diagram of EC-NMR cell assembled in a 10 mm NMR tube. The spectroelectrochemical cell contains the three electrodes, the reference, working and counter electrodes. The *in situ* electrochemical reaction was performed with potentiostat coupled in the cell placed inside the high-field NMR spectrometer. The ¹³C SSFP measurements were performed for 10 minutes during the

electrochemical reaction. The signal to noise enhanced provided by SSFP sequence demonstrates by first time the possibility of *in situ* monitoring of ¹³C NMR in spectroeletrochemical study.

References:

1. Webster R. D., Analytical Chemistry, 76, 1603-1610 (2004)

2. Klod S., Ziegs F. and Dunsch L., Analytical Chemistry, 81, 10262-10267 (2009)

Acknowledgments: FAPESP, EMBRAPA Agricultural Instrumentation.

P644

Assignment of the Proton and Carbon-13 Resonances of an unsymmetrical beta-Cyclodextrin Derivative

Bertrand Plainchont^a, Agathe Martinez^a, Severine Tisse^b, Jean-Philippe Bouillon^b, Jean-Michel Wieruszeski^c, Guy Lippens^c, Damien Jeannerat^d and <u>Jean-Marc Nuzillard^a</u>

^aInstitut de Chimie Moléculaire de Reims, Université de Reims-Champagne-Ardenne, 51687 Reims, France (<u>im.nuzillard@univ-reims.fr</u>) ^bSciences et Méthodes Séparatives, IRCOF, Université de Rouen, 76821 Mont-Saint-Aignan Cedex, France ^cGroupe RMN et Modélisation moléculaire, Université de Lille, 59655 Villeneuve d'Ascq Cedex, France

^dDépartement de Chimie Organique, Université de Genève, CH–1211 Genève 4, Suisse

Departement de Chimie Organique, Université de Genève, Cri-1211 Genève 4, Suisse

Compound 1 is a starting material in the synthesis of chiral stationary phases for gas chromatography.¹ The assignment of its ¹H and ¹³C sugar resonances was achieved by means of new and conventional pulse sequences.

The sequential assignment of the sugar units was obtained using a F_1 decoupled F_1 band-selective 2D TOCSY – ROESY experiment. The ¹H and ¹³C resonances in each sugar unit were assigned by means of sensitivity optimized 3D TOCSY – DQFCOSY and TOCSY – HSQC spectra, of F_1 band-selective 2D HSQC – RELAY and of aliased 2D HSQC – TOCSY² spectra.

References:

- Stephany O., Dron F., Tisse S., Martinez A., Nuzillard J.-M., Peulon-Agasse V., Cardinaël P. and Bouillon J.-P., J. Chromatogr. A, 1216, 4051 – 4062 (2009)
- Vitorge B., Bieri S., Humam M., Christen P., Hostettmann K., Munoz O., Loss S. and Jeannerat D., Chem. Commun., 950 (2009)

