Parâmetros microbiológicos como indicadores de qualidade do solo em sistemas de manejo e rotação de culturas

Rosinei Aparecida de Souza¹; Letícia Carlos Babujia²; Thais Portantiolo Correa²; Eleno Torres³; Julio Cezar Franchini³; Mariangela Hungria³. ¹Mestranda em Química Ambiental da UEL; ²Estudante de graduação do Curso de Química da UEL; ³Embrapa Soja.

Introdução

Alguns experimentos têm indicado que o plantio direto (PD), associado à rotação de culturas, pode incrementar a biomassa microbiana (BM) qualitativa e quantitativamente. Além disso, outras populações de microrganismos relevantes para a agricultura, como os rizóbios fixadores de $\rm N_2$ e fungos micorrizicos, podem ser beneficiadas. Um dos principais efeitos resultantes do incremento na BM é o do aumento temporário nas imobilizações de N e outros nutrientes que serão, posteriormente, liberados lentamente, de acordo com as necessidades das culturas (Balota et al., 1998, 2003; Hungria, 2000).

Tem sido sugerido que mudanças quantitativas e qualitativas na população de microrganismos do solo podem refletir em mudanças na qualidade do solo sendo, portanto, potencialmente adequadas como indicadores do efeito do manejo do solo e das culturas. Entretanto, existe deficiência de informações consistentes, especialmente para os trópicos, a respeito dos efeitos, a longo prazo, da adição de diferentes resíduos culturais e do uso de sistemas de manejo do solo, sobre a atividade microbiológica. Informações sobre o efeito do manejo do solo e da cultura na microbiota do solo precisam ser obtidas, pois representam a base da sustentabilidade agrícola.

Objetivos

Avaliar o potencial de uso de parâmetros microbiológicos para monitorar mudanças do solo em resposta aos sistemas de manejo do solo e de rotação de culturas.

Material e Métodos

O ensaio de campo foi estabelecido em 1997, na estação experimental da Embrapa Soja, em Londrina. O experimento foi desenhado para comparar os efeitos dos sistemas de plantio direto (PD) e convencional (PC) e rotação de culturas, incluindo culturas de grãos (soja, milho e trigo) e culturas de cobertura (tremoço e aveia preta). Os sistemas de rotação são apresentados na Tabela 1. O ensaio foi delineado em blocos ao acaso, com quatro repetições.

Tabela 1. Sistemas de manejo adotados para o ensaio.

Rotações	Inverno 97	Verão 97/98	Inverno 98	Verão 98/99	Inverno 99
1	Aveia	Milho	Aveia	Soja	Trigo
2	Aveia	Soja	Tremoço	Milho	Aveia
3	Aveia	Soja	Trigo	Soja	Tremoço
					Continua

...Continuação Tabela 1

Rotações	Verão 99/00	Inverno 00	Verão 00/01	Inverno 01	Verão 01/02
1	Soja	Tremoço	Milho	Aveia	Soja
2	Soja	Trigo	Soja	Tremoço	Milho
3	Milho	Aveia	Milho	Trigo	Milho

As taxas de emissão de CO₂ do solo foram determinadas em treze períodos, seis antes e sete depois da aração do solo, durante o período de agosto a novembro. O CO₂ foi avaliado nos tratamentos que estavam sob as culturas de aveia e trigo com o uso de câmaras estáticas (tubos de PVC, 10 x 20 cm, diâmetro x comprimento), pelo método da armadilha alcalina, modi-

ficado de Anderson (1982) e os valores foram expressos em g de CO₂-C m⁻² dia⁻¹. O carbono e o nitrogênio da biomassa microbiana (CBM e NBM) foram determinados antes e após o preparo do solo no PC. Cinco subamostras foram coletadas na camada de 0-10 cm, homogeneizadas e combinadas como uma amostra por parcela. A biomassa microbiana do solo foi avaliada pelo método da fumigação-extração, com valores de 0,33 e 0,54 para o quociente de extração de C e N, respectivamente (Brookes et al., 1985; Vance et al., 1987). Os teores de C e N nos extratos foram determinados por espectrofotometria, segundo Bartlett & Ross (1988) e (Feije & Anger, 1972), respectivamente. Os valores obtidos para a BM foram corrigidos para a densidade do solo e expressos em g m⁻².

O quociente metabólico (qCO₂) foi estimado através da razão entre a emissão de CO₂ e CBM obtidos antes e após a aração, sendo expresso como mg of CO₂-C g⁻¹ de CBM dia⁻¹. As analises estatísticas foram realizadas para cada tempo de amostragem e combinando as amostras antes e após a aração do solo no PC.

Resultados

As taxas de emissão de CO₂ foram afetadas pelas variações no período de amostragem, bem como pelo cultivo e sistemas de rotação de culturas. Antes da aração do solo no PC, as emissões de CO₂ foram similares nos sistemas de manejo, entretanto, após a sexta amostragem, a aração aumentou as perdas de CO₂ no PC em 57%, quando comparado com o PD. Considerando todas as amostragens, as emissões foram 21% maiores no PC (dados não mostrados).

Em relação à rotação de culturas, a emissão média total de CO₂ foi 13% maior na área previamente cultivada com tremoço do que naquela com trigo. Diferenças entre as culturas foram associadas com a decomposição dos resíduos de tremoço entre a terceira e a sexta amostragens após o corte, com valores similares entre os resíduos após essa coleta, indicando uma rápida taxa de decomposição dos resíduos da leguminosa. Deste modo, após a sexta coleta as taxas de emissão de CO₂ foram 31% menores do que as observadas previamente (dados não mostrados).

A BM foi influenciada pelo momento de amostragem e pelo sistema de manejo, mas não pelos sistemas de rotação de culturas (Tabela 2). Após cinco anos, o CMB e o NMB foram 80% e 104% maiores no PD do que no PC, respectivamente. As diferenças entre amostragens foram observadas apenas no CMB no PD e foram associadas com a cultura do tremoço. A menor BM no PC foi associada com maior emissão de CO₂ implicando em pouca conversão do C dos resíduos em BM. É também notável que as diferenças entre o PD e PC, em relação à BM, tenham ocorrido num período de tempo relativamente curto, de cinco anos (Tabela 2).

Tabela 2. Carbono e nitrogênio microbiano nos períodos de pré-aração e pós-aração, em sistemas de manejo do solo e rotação de culturas.

	C-microbiano (g m ⁻²)				N-microbiano (g m ⁻²)			
•	Média	Pré-aração Pós-aração		Média	Pré-aração Pós-araçã			
Tratamentos								
C1	34,74b	35,02b	34,46b		4,76b	5,21b	4,32b	
C2	32,06b	29,73b	34,39b		4,16b	4,71b	3,61b	
C3	28,60b	25,96b	31,25b		4,90b	5,33b	4,48b	
D1	55,11a	51,89a	58,33a		10,09a	10,98a	9,19a	
D2	62,08a	56,96a	67,20a	¥	9,53a	9,47a	9,58a	
D3	54,59a	50,96a	58,21a		8,65a	9,29a	8,01a	
Sistemas de Manejo								
С	31,80 £	30,24 £	33,37 £		4,61 £	5,08 £	4,14 £	
D	57,26	53,27	61,25	¥	9,42	9,92	8,93	

C: PC; D: PD; 1, 2 e 3 se referem a aveia, tremoço e trigo, respectivamente, conforme seqüência de culturas dos sistemas de rotação descritos na Tabela 1. Letras indicam diferenças entre sistemas de manejo com a mesma cultura. £ indica diferença entre médias de sistemas de manejo. ¥ indica diferença entre épocas de amostragem

A eficiência da comunidade microbiana foi maior no solo sob PD; em média, o quociente metabólico (qCO $_2$) foi 55% menor do que no PC. O qCO $_2$ foi maior antes da aração do solo no CT e, após essa etapa, pareceu estar relacionado com a decomposição dos resíduos, embora nenhuma relação tenha sido observada com as culturas (dados não mostrados).

Considerações Finais

Os maiores valores encontrados de CBM e NBM e as menores taxas de emissão de $\mathrm{CO_2}$ e menores quocientes metabólicos ($q\mathrm{CO_2}$) encontrados no PD, em comparação ao PC, enfatizam a importância do PD para a conservação da matéria orgânica do solo. Os parâmetros microbiológicos avaliados neste estudo responderam com rapidez e sensibilidade aos efeitos do manejo do solo, demonstrando serem adequados como indicadores da qualidade do solo.

Agradecimentos

Projeto parcialmente financiado pela Fundação Araucária (convênio 046/2003) e pelo CNPq (301241/2004-0 e PRONEX).

Referências Bibliográficas

ANDERSON, J.P.E. Soil respiration. In: PAGE, A.L., MILLER, R.H., KEENEY, D.R., (Eds.). **Agronomy monograph** number 9, Part II, Chemical and biological properties, 2nd Edition. American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin, 1982. pp. 831-871.

BALOTA, E.L.; COLOZZI-FILHO, A.; ANDRADE, D.S.; DICK, R.P. Microbial biomass in soils under different tillage and crop rotation systems. **Biology and Fertility of Soils**, Berlin, v. 38, p. 15-20, 2003.

BALOTA, E.L.; COLOZZI-FILHO, A.; ANDRADE, D.S.; HUNGRIA, M. 1998. Biomassa microbiana e sua atividade em solos sob diferentes sistemas de preparo e sucessão de culturas. **Revista Brasileira de Ciência do Solo**, Campinas, v. 22, p. 641-649, 1998.

BARTLETT, R.J.; ROSS, D.N., Colorimetric determination of oxidizable carbon in acid soil solutions. **Soil Science Society of America J**ournal, Wisconsin, v. 52, p. 1191-1192, 1998.

BROOKES, P.C.; LANDMAN, A.; PRUDEN, G.; JENKINSON, D.S., Chloroform fumigation and the release of soil nitrogen: a rapid direct

extraction method to measure microbial biomass nitrogen in soil. **Soil Biology & Biochemistry**, Oxford, v.17, p.837-842, 1985.

FEIJE, F.; ANGER, V., 1972. Spot test in inorganic analysis. **Analytical Chemistry Acta**, v. 149, p. 363-367, 1972.

HUNGRIA, M. Características biológicas em solos manejados sob plantio direto. In: MEMORIAS DE LA REUNIÓN BIENAL DE LA RED LATINOAMERICANA DE AGRICULTURA CONSERVACIONISTA, 5., 1999, Florianópolis, SC, Brazil. **Anais...** EPAGRI, Florianópolis, 2000. pp. 1-15 (CD Rom).

VANCE, E.D.; BROOKES, P.C.; JENKINSON, D.S. 1987. An extraction method for measuring soil microbial biomass C. **Soil Biology & Biochemistry**, Oxford, v. 19, p. 703-707, 1987.