

ANAIS - II CONGRESSO BRASILEIRO DE RECURSOS GENÉTICOS

11-SESSÃO PÔSTER 01 25/09/2012 17:30-18:30 CAMAROTE A/B

[Trabalho 158]

Clique para abrir o Artigo Completo/Click to open the paper

VEGETAL

ANÁLISE DE COMPONENTES PRINCIPAIS EM POPULAÇÕES NATURAIS DE BABAÇU (ORBIGNYA PHALERATA MART.).

MICHELLI FERREIRA DOS SANTOS¹; CAMILA CAMPÊLO DE SOUSA²; MARIANA APARECIDA CARVALHAES³; KAESEL JACKSON DAMASCENO E SILVA⁴; PAULO SARMANHO DA COSTA LIMA⁵; 1.UFPI/EMBRAPA MEIO-NORTE, TERESINA, PI, BRASIL; 2.UFPI, TERESINA, PI, BRASIL; 3,4,5.EMBRAPA MEIO-NORTE, TERESINA, PI, BRASIL; michelly m santos@yahoo.com.br

Resumo:

Resumo: O objetivo desse trabalho foi quantificar a variabilidade genética entre populações naturais de babaçu, a partir de caracteres morfoagronômicos, visando dar suporte a trabalhos de seleção, manejo e melhoramento dessa espécie Foram mensurados, no período de março a dezembro de 2010, os seguintes dados: número de cachos/planta (NCP), circunferência do estipe ao nível do solo (CAS), circunferência do estipe ao nível do peito (CAP), altura do estipe (ALT), peso dos frutos/planta (PFP), peso das amêndoas/planta (PAP), peso das amêndoas/peso dos frutos (PAPF), números de frutos/planta (NFP), peso médio dos frutos (PMF), números de amêndoas (NAM) e peso médio das amêndoas (PMA). Para avaliação da divergência genética, utilizou-se a análise multivariada por meio dos componentes principais e da distância Euclidiana Média Padronizada. Pela análise dos componentes principais, verificou-se que o primeiro componente principal absorveu 99,62% da variação acumulada. Os caracteres de maior contribuição para discriminação dos genótipos foi o peso de frutos por planta (PFP) e o peso de amêndoas por planta (PAP); e os caracteres que menos contribuíram para variação total, sendo, passivos de descarte, foram o peso das amêndoas/peso do fruto (PA/PF) e o número de cachos por planta (NCP). Com base nos caracteres morfoagronômicos avaliados existe variação genética entre os genótipos estudados possibilitando a identificação de genótipos para futuros programas de melhoramento.

ANÁLISE DE COMPONENTES PRINCIPAIS EM POPULAÇÕES NATURAIS DE BABAÇU (Orbignya phalerata Mart.)

Resumo: O objetivo desse trabalho foi quantificar a variabilidade genética entre populações naturais de babaçu, a partir de caracteres morfoagronômicos, visando dar suporte a trabalhos de seleção, manejo e melhoramento dessa espécie Foram mensurados, no período de março a dezembro de 2010, os seguintes dados: número de cachos/planta (NCP), circunferência do estipe ao nível do solo (CAS), circunferência do estipe ao nível do peito (CAP), altura do estipe (ALT), peso dos frutos/planta (PFP), peso das amêndoas/planta (PAP), peso das amêndoas/peso dos frutos (PAPF), números de frutos/planta (NFP), peso médio dos frutos (PMF), números de amêndoas (NAM) e peso médio das amêndoas (PMA). Para avaliação da divergência genética, utilizou-se a análise multivariada por meio dos componentes principais e da distância Euclidiana Média Padronizada. Pela análise dos componentes principais, verificou-se que o primeiro componente principal absorveu 99,62% da variação acumulada. Os caracteres de maior contribuição para discriminação dos genótipos foi o peso de frutos por planta (PFP) e o peso de amêndoas por planta (PAP); e os caracteres que menos contribuíram para variação total, sendo, passivos de descarte, foram o peso das amêndoas/peso do fruto (PA/PF) e o número de cachos por planta (NCP). Com base nos caracteres morfoagronômicos avaliados existe variação genética entre os genótipos estudados possibilitando a identificação de genótipos para futuros programas de melhoramento.

Palavras-chave: caracteres, morfoagronômicos, seleção, melhoramento

Introdução

O babaçu (*Orbignya phalerata* Mart.) é uma palmeira oleífera não-cultivada e originária do Brasil, com ampla distribuição por mais de 18 milhões de hectares, cuja estrutura de produção fundamenta-se na coleta e quebra do coco, fonte de renda de muitas populações (BEZERRA, 1995).

O estudo das características morfológicas e o emprego de técnicas estatísticas multivariadas são importantes para se estimar a divergência genética do conjunto de genótipos disponíveis e verificar os caracteres que mais contribuem para a variabilidade genética nessas populações (ELIAS et al., 2007), e portanto tem sido empregada em distintos trabalhos em diversas espécies. Dentre as análises multivariadas mais comumente usadas para o estudo da divergência genética, destacam-se o método da distância Euclidiana Média Padronizada e Análise por Componentes Principais (CRUZ et al., 2004).

O objetivo desse trabalho foi quantificar a variabilidade genética entre populações naturais de babaçu, a partir de caracteres morfoagronômicos, visando dar suporte a trabalhos de seleção, manejo e melhoramento dessa espécie.

Material e Métodos

O estudo foi realizado em três populações naturais de *O. phalerata* com diferentes condições de manejo localizadas nos municípios de Teresina, Esperantina e José de Freitas, no estado do Piauí. Foram amostradas 20 palmeiras em cada população natural de *O.phalerata* em estágio reprodutivo e a amostragem foi do tipo aleatória simples obedecendo a uma distância de 50m de uma palmeira a outra.

Foram mensurados de cada palmeira os seguintes caracteres: número de cachos/planta (NCP), circunferência do estipe ao nível do solo (CAS), circunferência do estipe ao nível do peito (CAP), altura do estipe (ALT), peso dos frutos/planta (PFP), peso das amêndoas/planta (PAP, g), peso das amêndoas/peso dos frutos (PAPF), números de frutos/planta (NFP), peso médio dos frutos (PMF), número de amêndoas (NAM), e peso médio das amêndoas (PMA). A extração das amêndoas foi realizada manualmente, pelas quebradeiras de coco babaçu, posteriormente essas amêndoas foram contadas e pesadas com o auxílio de uma balança digital de precisão e expressas em gramas. Em virtude das diferentes escalas de mensuração dos dados originais, esses foram padronizados dividindose os valores absolutos pelo desvio-padrão e, em seguida, foi realizada a análise multivariada para a avaliação da divergência genética, utilizando-se o método dos componentes principais e da distância euclidiana média dos dados padronizados (CRUZ et al., 2004; SAS, 2002). Os autovalores (variância e os autovetores (conjunto dos coeficientes de ponderação dos componentes principais) estimados pelos elementos dos vetores característicos correspondentes, conforme Cruz et al. (2004). Todas as análises estatísticas foram realizadas com o auxílio do programa SAS versão 9.0.

Resultados e Discussão

Pela análise de componentes principais, verificou-se que com apenas um componente principal explicou-se praticamente toda a variabilidade existente (99,62%) (Tabela 1). A variação concentrou-se basicamente no primeiro componente principal, o que é indicativo de sucesso em uma análise multivariada, onde considera-se que 80% da variação explicada já é suficiente para discriminar os dados (MEIRA, 2010).

Tabela 1 - Estimativa dos autovalores associados aos componentes principais, importância relativa (%) e acumuladas referentes aos onze caracteres morfoagronômicos avaliados em 60 genótipos de babaçu, Teresina, PI.

Componentes	Autovalor	Importância Relativa (%)					
1	85319982,3	0,9962	0,9962				
2	289871,7	0,0034	0,9996				
3	27831,8	0,0003	0,9999				
4	4982,0	0,0001	1,0000				
5	1561,8	0,0000	1,0000				
6	928,0	0,0000	1,0000				
7	390,7	0,0000	1,0000				
8	182,8	0,0000	1,0000				
9	0,2	0,0000	1,0000				
10	0,1	0,0000	1,0000				
11	0,0	0,0000	1,0000				

A análise de componentes principais pode ser utilizada na identificação das variáveis de maior e menor contribuição para variação acumulada, os caracteres de maior contribuição são aqueles que exibem maiores coeficientes de ponderação nos componentes de maior autovalor e os de menor contribuição são aqueles que exibem maiores autovetores nos componentes de menor autovalor (CRUZ; CARNEIRO, 2003).

Observa-se na Tabela 2 que, para o primeiro componente principal a variável de maior contribuição para discriminação dos genótipos foi o peso de frutos por planta (PFP) com 0,99704 e no segundo componente, destaca-se o peso das amêndoas por planta (PAP) com 0,96173. Estes caracteres contribuem significativamente para a variabilidade das populações. Essas, portanto, seriam as variáveis mais responsivas à seleção para os genótipos de babaçu. No entanto, quando avaliado os últimos componentes principais, os caracteres que menos contribuíram para a variação total, sendo, portanto, passivos de descarte, foram o peso de amêndoas/peso de frutos (PAPF), cujo autovalor ou coeficiente de ponderação foi de 0,99980 e o número de cachos por planta (NCP) com 0,9569.

Tabela 2 - Conjunto dos autovetores (coeficiente de ponderação) das onzes variáveis avaliadas em babaçu, Teresina, PI,

CP	NCP ¹	CAS	CAP	ALT	PFP	PAP	PAPF	NFP	PMF	NAM	PMA
1	0,00002	0,00065	0,00006	-0,0027	0,99704	0,07249	0	0,00849	0,00065	0,02416	0,000002
2	-0,0002	-0,00892	-0,0029	-0,0611	-0,07645	0,96173	0,00006	0,06496	-0,05441	0,24133	0,000618
3	0,00029	-0,0613	-0,0578	0,9874	-0,00125	0,08835	0,00001	-0,0337	0,03448	-0,0888	0,000707
4	0,00016	-0,1481	-0,0918	0,103	-0,00509	-0,24741	-0,00005	0,23916	-0,21941	0,89013	-0,00625
5	0,00065	0,74176	0,33026	0,0729	-0,00295	-0,02481	0,0002	-0,4004	0,27229	0,31681	0,000923
6	0,00229	0,51593	0,18755	0,06547	0,0009	-0,01127	-0,00004	0,58467	-0,55879	-0,2003	0,002014

7	0,0023	-0,39677	0,9107	0,032	0,00079	-0,00412	0,00019	-0,0405	-0,10228	0,00871	0,000627
8	0,00032	0,02004	0,12087	0,00718	-0,00607	-0,00676	-0,0002	0,65850	0,74220	0,01908	0,000057
9	0,29056	-0,00246	-0,0025	-0,0004	0,00001	-0,002	0,01914	0,00028	-0,0001	0,00538	0,956641
10	0,9569	-0,00001	-0,0021	-0,0005	-0,00004	0,00085	-0,00545	-0,0014	0,00120	-0,0015	-0,29051
11	-0,0004	-0,00004	-0,0002	-0,00002	0,000003	-0,00002	0,99980	0,00024	0,00007	-0,0002	-0,0199

¹ NCP: Número de cachos/planta (und); CAS: Circunferência do estipe ao nível do solo (cm); CAP: Circunferência do estipe ao nível do peito (cm); ALT: Altura do estipe (cm); PFP: Peso dos frutos/planta (g); PAP: Peso das amêndoas/planta; PAPF: Peso das amêndoas/peso dos frutos (g); NFP: Número de frutos/planta (und); PMF: Peso médio/frutos (g); NAM: Números de amêndoas (und); PMA: Peso médio das amêndoas (g).

Conclusões

O primeiro componente principal absorveu praticamente toda a variação acumulada, sendo os caracteres de maior contribuição para variabilidade genética dos genótipos estudados, o peso de frutos por planta (PFP) e o peso de amêndoas por planta (PAP).

Referências Bibliográficas

BEZERRA, O. B. Localização de postos de coleta para apoio ao escoamento de produtos extrativistas: um estudo de caso aplicado ao babaçu. 1995. Dissertação (Mestrado em Engenharia). Universidade Federal de Santa Catarina – UFSC, Florianópolis, 1995.

CRUZ, C. D.; CARNEIRO, P. C. S. **Modelos biométricos aplicados ao melhoramento genético**, Viçosa, MG, UFV, vol. 2, cap. 6, 357-434 p., 2003.

CRUZ, C. D.; REGAZZI, A. J.; CARNEIRO, P. C. S. Modelos biométricos aplicados ao melhoramento genético, Viçosa, MG, UFV, v. 1, 2004, 480 p.

ELIAS, H. T.; VIDIGAL, M. C. G.; GANELA, A.; VOGOT, G. A. Variabilidade genética em germoplasma tradicional de feijão-preto em Santa Catarina. **Pesquisa Agropecuária Brasileira**, v. 42, n. 10, p. 1443-1449, 2007.

MEIRA, C. T. Avaliação de características morfofuncionais de cavalos da raça mangalarga manchador/ Camila Tângari Meira — Diamantina: UFVJM, 2010. 48p. Dissertação (Dissertação apresentada ao curso de Pós-Graduação *Stricto Sensu* em Zootecnia) — Faculdade de Ciências Agrárias, Universidade Federal dos Vales do Jequitinhonha e Mucuri.

SAS INSTITUTE. **SAS language and procedures**: usage. Version 9.0. Cary, 2002. 1 CD-ROM.