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Abstract – Visible/near-infrared diffuse reflectance 
spectroscopy (VNIRS) offers an alternative to 
conventional analytical methods to estimate various 
soil attributes. However, the use of VNIRS in soil 
survey and taxonomic classification is still 
underexplored. We investigated the potential use of 
VNIRS to classify soils in a region with variable soils, 
geology, and topography in southeastern Brazil. We 
combined principal component (PC) analysis, and 
multinomial logistic regression to classify 291 soils at 
the levels of suborder (second highest), and suborder 
with textural classification (STC), described in the field 
according to the Brazilian Soil Classification System. 
Soil visible/near-infrared (400-2500 nm) spectra were 
collected from three depth intervals (0-20, 40-60, and 
80-100 cm), and combined in sequence to compose a 
pseudo multi-depth spectral curve, which was used to 
derive the classification models. The percent of 
correctly classified soils at the suborder level was 79% 
using 20 PCs, and 96% using 30 PCs. At the STC 
level, soils were correctly classified in 100%, and 78% 
of the cases using 20, and 30 PCs, respectively. Given 
the inherent complexity and variability within soil 
taxonomic groups, and in contrast the similarity among 
different groups, combining spectral data from 
different depths in multivariate classification offered a 
simple and inexpensive solution to adequately 
distinguish soils. This novel approach could improve 
soil classification and survey in a cost-efficient 
manner, supporting sustainable use, and management 
of tropical soils. 
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INTRODUCTION 

Soil survey has been traditionally done by 
combining the surveyor’s interpretation of soil-
landscape relationships and field expertise with 
supporting maps, aerial and/or satellite images, and soil 
data. Albeit this strategy has been used across countries 
to map soils at a range of geographical scales, currently 
it still does not fully incorporate newly available forms 
of data collection and interpretation. This is the case, 
for example, of proximally sensed data, including soil 
electrical conductivity, and diffuse reflectance. 

Visible/near-infrared diffuse reflectance spectroscopy 
(VNIRS) has been applied to estimate many soil attributes 
used in soil survey, including organic matter, carbon, pH, 
macro- and micronutrients, water content, and others 
(Chang et al., 2001; Viscarra Rossel et al., 2006; Vasques 
et al., 2008; Du & Zhou, 2009; Stenberg et al., 2010). 
Because VNIRS uses little sample preparation and 
chemicals, and can be used to simultaneously estimate 
various soil attributes, it can reduce time and cost of 
analyses. In this case, gain obtained from VNIRS applies to 
data collection and analysis, but only indirectly to final soil 
classification and survey. 

Therefore, to improve efficiency of soil classification, 
we propose a direct application of VNIRS to derive soil 
classes according to the Brazilian Soil Classification 
System (SiBCS; EMBRAPA, 2006). We hypothesized that 
the diffuse reflectance spectra of soils from three depth 
intervals could be used to classify soils at the suborder 
level with acceptable accuracy (> 80% agreement rate), as 
the SiBCS uses color for distinguishing soils at this 
taxonomic level. 
 
MATERIALS AND METHODS 

Soil sampling and field classification 
The study was conducted near the city of Piracicaba, in 

the central-eastern part of the state of São Paulo, Brazil 
(Figure 1), in a region that has been primarily used for 
sugarcane production in the last 30 years. Mean annual 
precipitation, and temperature in the region are 1328 mm, 
and 21.6 ºC, respectively, while elevations vary from about 
489 to 709 m, and slopes from 0 to 32%. Soils in the region 
are in most part derived from sandstone, siltstone, and 
shale, and less prominently from limestone, basalt, and 
colluvial deposits (Mezzalira, 1966).  

A total of 291 soil profiles (11 pits, and 278 boreholes) 
were visited and classified in the field at the suborder level 
(second highest) according to the SiBCS (Table 1). 
Exceptionally, for Argissolo Vermelho soils, the 
Latossólico designation (as in PVL) was added to indicate 
the presence of an oxic horizon. Soil samples were taken at 
0-20, 40-60, and 80-100 cm, and analyzed chemically and 
granulometrically according to Camargo et al. (1986). The 
clay content was used to refine soil suborder classification 
into five textural groups (Table 2) based on EMBRAPA 
(2006), thus constituting soil suborder with textural 
classification (STC) groups.  
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Figure 1. Soil sampling site locations within the state 

of São Paulo (left inset map), and Brazil (right 
inset map) 
(1) CX, Cambissolo Háplico; LV, Latossolo Vermelho; LVA, 
Latossolo Vermelho-Amarelo; NV, Nitossolo Vermelho; PA, 
Argissolo Amarelo; PV, Argissolo Vermelho; PVA, Argissolo 
Vermelho-Amarelo; PVL, Argissolo Vermelho Latossólico; 
RL, Neossolo Litólico; RR, Neossolo Regolítico; TX, 
Luvissolo Háplico 

 
Soil spectroscopy and multivariate classification 
Visible/near-infrared (VNIR; 400-2500 nm) soil 

reflectance spectra were collected at the three sampled 
depth intervals from air-dried and sieved (2 mm) 
samples using a FieldSpec Pro sensor (Analytical 
Spectral Devices Inc., Boulder, CO), with 100 scans 
per sample, and resolution of 1 nm at 400-1100 nm, 
and 2 nm at 1100-2500 nm. Spectralon (Labsphere, 
North Sutton, NH) was used as white reference, and 
scanned at every 20 minutes (~15 samples).  

The spectral curves containing 2100 bands were 
smoothed (Savitzky & Golay, 1964) using a third-order 
polynomial across five bands, and then reduced by 
simple averaging across ten bands, resulting in spectral 
curves containing 210 bands. For each soil profile, the 
pre-treated spectra from the three depth intervals were 
joined in sequence to create a pseudo multi-depth 
spectral curve. Thus, these multi-depth spectra 
contained 630 reflectance bands covering the three 
depths (210 bands each) seamlessly. 

Soil classification at two taxonomic levels 
(suborder, and STC, respectively) was performed using 
multinomial logistic regression (MLR; Agresti, 2002). 
This method estimates the probability of a sample 
occurring in (or belonging to) each class of a finite 
group of classes, with final sample classification 
usually considering the class where the sample had the 
highest probability of occurrence.  

We used principal component analysis (PCA; 
Harman, 1976) to reduce the number of independent 
variables, thus extracting the spectral information 
contained in the 630 reflectance bands into 30 principal 
components (PCs). Either the whole 30 PCs, or the first 

20 PCs, were used as independent variables in the MLR 
models. In summary, this approach constituted a soil 
classification framework using MLR on the PCs of 
combined soil VNIR spectra from three depths. 
 
RESULTS AND DISCUSSION 

Multivariate classification at the suborder level 
At the suborder level, the MLR models correctly 

classified 79% of the observations using 20 PCs, and 96% 
using the whole 30 PCs. These high agreement rates 
reflected the correlation between soil VNIR spectra and 
taxonomic classes. In effect, classification at the level of 
suborder takes into consideration not only the main 
pedogenetic features of soils, which are used to group soils 
at the order (highest) level, but also, and primarily among 
other factors, soil color to specifically separate soils within 
the same order into suborders. Among the soils used in this 
study (Table 1), only Cambissolo Háplico, Neossolo 
Litólico, and Neossolo Regolítico do not take soil color 
explicitly into consideration for suborder separation. 

Considering the model with 30 PCs, the great majority 
of suborders (8 out of 11) were classified with 100% 
accuracy (Table 3). Combining soil spectra from multiple 
depths into a seamless spectral curve before PCA assured 
the inclusion of spectral information in the PCs to 
distinguish certain soil classes that otherwise could not be 
distinguishable based on the spectra of a single depth. Even 
so, some suborders were still incorrectly classified, 
including Latossolo Vermelho (LV), Nitossolo Vermelho 
(NV), and Argissolo Vermelho (PV), which were 
confounded for one another (Table 3).  

These misclassifications were not surprising, given the 
great similarity in soil VNIR spectra (Figure 2), color, and 
other attributes among these soil types in the region. For 
example, the differences between NV and PV were subtle, 
requiring careful determination of the clay content of the 
A, and B horizons (including the B/A clay content ratio) to 
distinguish between them. Clay content is a property that 
only indirectly influences the VNIR spectra of soils, and 
thus small differences in clay content between these 
suborders were probably not captured by the VNIRS-MLR 
model. As another example, LV differs from NV and PV 
mostly in morphological, and physical attributes, whereas 
their VNIR spectra (Figure 2), and color are very similar, 
resulting in mixed-up classification of LV as NV or PV.  

 

 
Figure 2. Pseudo multi-depth visible/near-infrared diffuse 

reflectance spectra of selected soils, after smoothing 
(Savitzky & Golay, 1964) using a third-order 
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polynomial across five bands, and averaging 
across ten bands 
(1) LV, Latossolo Vermelho; NV, Nitossolo Vermelho; PA, 
Argissolo Amarelo; PV, Argissolo Vermelho; PVL, Argissolo 
Vermelho Latossólico; RR, Neossolo Regolítico 

 
Similar agreement rates for validation (~95%) were 

obtained for Israeli soils using mid-infrared (2500-
25,000 nm) attenuated total reflectance, and 
photoacoustic spectroscopy, respectively (Linker, 
2008). The author used wavelet decomposition, and 
artificial neural networks to classify about 200 soil 
samples into five groups, and also observed great 
similarity of soil spectra among misclassified groups. 
In a similar study, Du et al. (2008) correctly classified 
96% of the validation samples into the same five Israeli 
soil taxonomic groups using mid-infrared 
photoacoustic spectroscopy analyzed by PCA, and 
probabilistic neural networks. Even though the 
multivariate classification methods differed, in 
principle, high agreement rates were obtained in both 
cases (and also in this study) because soil infrared 
spectra contained information related to soil taxonomic 
evaluation. 

Multivariate classification at the STC level 
At the STC level, contrary to the suborder models, 

the MLR model derived from 20 PCs had a higher 
agreement rate (100%) than the one derived from 30 
PCs (78%). The 20 PCs carried enough spectral 
information to correctly classify the soils, but also were 
general (i.e. representative) enough to avoid 
overfitting, which was probably the case with 30 PCs. 
Compared to suborders, STC groups were more 
specific and contained a smaller number of samples per 
group. This minimized the within-group variation, and 
facilitated distinguishing among groups with a smaller 
number of PCs (20 as opposed to 30). Nonetheless, soil 
spectra were still similar among STC groups (not 
shown). 

We expected that the large number of STC groups 
(34), and the fact that they were defined based on the 
clay content, would hinder formulation of a good 
VNIRS-based classification model. On the contrary, 
interestingly VNIRS allowed producing a robust model 
to separate soil types, even those with very similar 
characteristics, flawlessly.  

Our results corroborate those obtained by Nanni et 
al. (2004; 185 observations, 18 classes, 91% agreement 
rate), and Fiorio et al. (2010; 473 observations, 23 
classes, 81% agreement rate), who also used VNIR 
spectra to classify soils at a taxonomic level equivalent 
to STC. Instead of PCA, they used stepwise 
discriminant analysis to select predictors among 22 
bands (or band intervals), and 13 so-called height 
differences previously selected based on expert 
knowledge from two sampled depth intervals. 
 
CONCLUSIONS 

1. Visible/near-infrared diffuse reflectance 
spectroscopy and multinomial logistic regression offer 

a framework to rapidly classify soils at the suborder level 
with acceptable accuracy; 

2. Combining soil spectral curves from three depth 
intervals allows to better distinguish soils, even those with 
similar characteristics. 
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Table 1. Soil suborders as classified in the field according to the Brazilian Soil Classification System (SiBCS; 

EMBRAPA, 2006), and corresponding classes in Soil Taxonomy (Soil Survey Staff, 2010) 
Abbreviation SiBCS suborder Soil Taxonomy class Observations 
CX Cambissolo Háplico Udepts 21 
LV Latossolo Vermelho Udox 82 
LVA Latossolo Vermelho-Amarelo Udox 8 
NV Nitossolo Vermelho Udalfs, Udults 18 
PA Argissolo Amarelo Udalfs, Udults 18 
PV Argissolo Vermelho Udalfs, Udults 55 
PVA Argissolo Vermelho-Amarelo Udalfs, Udults 59 
PVL Argissolo Vermelho Latossólico Udalfs, Udults 13 
RL Neossolo Litólico Lithic Udorthents, Lithic Udipsamments 6 
RR Neossolo Regolítico Udorthents, Udipsamments 9 
TX Luvissolo Háplico Udalfs 2 
Total     291 

 
 
Table 2. Soil textural classes used to refine suborder classes 
Code Textural class Original name Clay content (%) 
1 Very clayey Muito argilosa > 60 
2 Clayey Argilosa 35-60 
3 Medium-clayey Médio-argilosa 25-35 
4 Medium-sandy Médio-arenosa 15-25 
5 Sandy Arenosa < 15 

 
 
Table 3. Soil suborder multivariate classification results 
Observed(1) Predicted(1) Agreement rate (%) 

CX LV LVA NV PA PV PVA PVL RL RR TX 
CX 21 0 0 0 0 0 0 0 0 0 0 100 
LV 0 78 0 1 0 3 0 0 0 0 0 95 
LVA 0 0 8 0 0 0 0 0 0 0 0 100 
NV 0 4 0 14 0 0 0 0 0 0 0 78 
PA 0 0 0 0 18 0 0 0 0 0 0 100 
PV 0 4 0 1 0 50 0 0 0 0 0 91 
PVA 0 0 0 0 0 0 59 0 0 0 0 100 
PVL 0 0 0 0 0 0 0 13 0 0 0 100 
RL 0 0 0 0 0 0 0 0 6 0 0 100 
RR 0 0 0 0 0 0 0 0 0 9 0 100 
TX 0 0 0 0 0 0 0 0 0 0 2 100 
Overall agreement rate (%) 96 

 (1) CX, Cambissolo Háplico; LV, Latossolo Vermelho; LVA, Latossolo Vermelho-Amarelo; NV, Nitossolo Vermelho; PA, Argissolo Amarelo; PV, 
Argissolo Vermelho; PVA, Argissolo Vermelho-Amarelo; PVL, Argissolo Vermelho Latossólico; RL, Neossolo Litólico; RR, Neossolo Regolítico; 
TX, Luvissolo Háplico 
 


