

OBTENÇÃO E CARACTERIZAÇÃO DE ÓLEO DE SEMENTE DE ROMÃ (*Punica granatum*) POR PRENSAGEM A FRIO

N. K. da SILVA¹, M. MANSANO¹; R. I. NOGUEIRA²; S. P. FREITAS¹
¹Escola de Química-UFRJ, Cidade Universitária, Bl. E, Ilha do Fundão, Rio de Janeiro/RJ.

(ninakatia@ufrj.br; freitasp@eq.ufrj.br)

²Embrapa Agroindústria de Alimentos – Av. das Américas, 29501, 23020-470 Rio de Janeiro/RJ, Brasil (nogueira@ctaa.embrapa.br)

RESUMO - Estudos recentes comprovaram que o fruto da romã possui propriedades antiinflamatórias, antitumorais e antioxidantes. Em especial, o óleo da semente de romã prensado a frio possui alta atividade antioxidante (AA). A prensagem de sementes a frio fornece um óleo de elevada pureza, sendo muito utilizado na elaboração de produtos naturais. Neste trabalho, as sementes de romã foram secas em estufa a 50°C até peso constante. O teor de óleo na amostra foi determinado em extrator de gordura, usando éter de petróleo como solvente. As sementes com teor de umidade inferior a 10 % foram moídas em moinho de facas e esmagadas em prensa hidráulica contínua. Após prensagem, o óleo bruto foi decantado para separar impurezas e armazenado a frio (-20°C). O óleo decantado foi posteriormente utilizado para as análises de índice de acidez, de acordo com as normas padrões da AOCS e atividade antioxidante, quantificada pelo método ABTS e expressa em DPPH. As sementes apresentaram, em base seca, cerca de 30 % de óleo, entretanto, o rendimento de extração por prensagem foi 12 %. A baixa acidez (0,73 % em ácido oléico) do óleo da semente de romã indica que o processamento a frio preservou a qualidade do mesmo. A análise de AA resultou em um valor médio de EC₅₀ igual a 37,98 µg.mL⁻¹. Este resultado revela que o óleo de semente de romã tem uma AA cerca de três vezes superior à do óleo de semente de maracujá (EC₅₀ de 113,4 μg.mL⁻¹), também usado na formulação de cosméticos e alimentos funcionais.

1. INTRODUÇÃO

Nos últimos dez anos, o mercado mundial de óleos vegetais tem se caracterizado pelo crescimento mais acentuado na demanda que na oferta. Segundo o Departamento de Agricultura dos Estados Unidos (USDA, 2012) a produção mundial dos óleos commodities aumentou cerca de 25 % enquanto os estoques mundiais recuaram, no mesmo período. O aproveitamento de sementes geradas como subprodutos no processamento de frutas tem contribuído para minimizar os impactos ambientais associados à industrialização de frutas e, adicionalmente, para ampliar a oferta de óleos vegetais ricos em compostos bioativos.

No Brasil, o bagaço gerado no processamento de frutas é restrito a aplicações como adubo, e as empresas do setor de sucos, por falta de logística e tecnologia apropriada, pagam para a remoção do bagaço. Portanto, o uso da semente de romã para obtenção de produtos de alto valor agregado pode favorecer o produtor de sucos, ampliar a oferta de óleos vegetais especiais e colaborar para a preservação do meio ambiente.

Em 2011 cerca de 500 toneladas de romã foram comercializadas na Ceagesp, das quais cerca de 120 toneladas vieram dos Estados Unidos (RuralBR, 2011). Entre 2001 a 2004, esse número era em média 200 toneladas (Jardini e Mancini Filho, 2007). Esse crescimento indica um mercado potencial para a produção de óleo de semente de romã.

O óleo da semente de romã possui alta atividade antioxidante e é caracterizado pelo elevado teor de ácidos graxos poliinsaturados como linolênico, linoleico e outros lipídeos como ácidos punícico, oleico, esteárico e palmítico (Ozgul-Yucel, 2005; Fadafi *et al.*, 2005). Dados reportados por Viuda-Martos *et al.* (2010) indicaram que o ácido punícico possui propriedades antiinflamatórias e antitumorais. Assim, o óleo da semente de romã tem grande potencial para ser utilizado como ingrediente na formulação de alimentos funcionais e na indústria farmacêutica.

2. OBJETIVO

O trabalho tem por objetivo geral o reaproveitamento sustentável dos resíduos da produção de suco de romã, constituído por semente e bagaço, para produção do óleo. Para este fim a semente foi processada em prensa contínua e o óleo obtido foi caracterizado quanto ao teor de atividade antioxidante e acidez.

3. MATERIAIS E MÉTODOS

Os frutos inteiros foram adquiridos no Ceasa- RJ, e estes foram processados na planta piloto da Embrapa Agroindústria de Alimentos (Figura 1). O suco, as cascas e as sementes foram armazenados em câmara fria para posterior processamento. A Figura 2 mostra o diagrama de blocos simplificado do processamento. O bagaço foi processado para remoção das cascas por peneiramento úmido e atrito. As sementes limpas foram desidratadas em secador convectivo a 50°C até peso constante.

Figura 1- Processamento da romã: a- frutos inteiros; b- frutos cortados; c- despolpadeira; d- semente e cascas resultante do processamento; e- sementes limpas e secas.

Para extração do óleo, utilizou-se uma prensa semi-piloto do tipo parafuso sem fim. Antes da prensagem as sementes foram processadas em um moinho de facas para reduzir o tamanho de partícula (d < 1 mm) e aumentar a eficiência da prensagem. As sementes moídas foram prensadas a frio (Figura 3). O óleo resultante foi decantado para remoção da borra e a fração clarificada foi armazenada a frio (-20° C) e posteriormente utilizada nos ensaios analíticos.

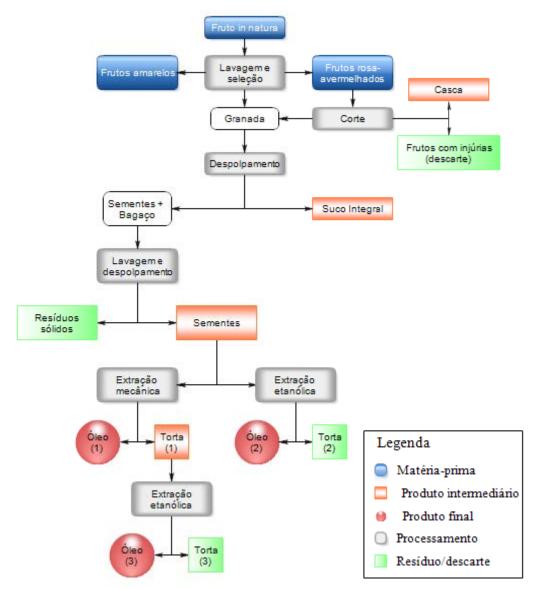


Figura 2- Diagrama de blocos do processo.

b c

Figura 3- Processamento das sementes: a- moagem; b- prensa contínua; c- prensagem da semente.

O teor de umidade foi determinado pelo método gravimétrico segundo normas do laboratório Adolfo Lutz (1985). A acidez total, expressa em equivalente de ácido oleico, foi quantificada de acordo com o método oficial da AOCS (1995).

O teor de óleo das sementes foi determinado em extrator de gordura, utilizando-se éter de petróleo como solvente, conforme normas do Fabricante (Quimis). Uma amostra de 2,5 g de semente moída foi colocada, em duplicata, em cartucho específico no extrator Soxhlet, com 120 mL de éter de petróleo. O sistema foi aquecido até ebulição do solvente e mantido sob refluxo por 20 min. O refluxo foi interrompido e o solvente evaporado e condensado. Em seguida, os copos foram aquecidos em estufa a 70°C por 2h para completa remoção do solvente. Calculou-se o teor de lipídeos na amostra por gravimetria.

A atividade antioxidante foi determinada segundo metodologia modificada na Embrapa Agroindústria Tropical para análise em frutas (Rufino, 2007). O método DPPH é baseado na captura, por antioxidantes, do radical DPPH• (2,2-difenil-1-picril-hidrazil), produzindo um decréscimo da absorbância a 515 nm com mudança do violeta escuro para amarelado. Uma solução-mãe foi preparada a partir de uma amostra contendo 0,4 g do óleo de romã diluído em 7 mL de álcool isopropílico. Os ensaios foram conduzidos em triplicata. A partir dos resultados de absorbância em diferentes concentrações, ajustou-se uma curva padrão para o cálculo da atividade antioxidante expressa em massa de óleo de semente de romã necessária para reduzir em 50 % a concentração inicial do radical DPPH (concentração efetiva, EC₅₀).

4. RESULTADOS E DISCUSSÕES

4.1. Prensagem

As sementes foram prensadas com 7,3 % de umidade. A prensagem nestas condições resultou em 12 % m/m de óleo bruto. O teor de óleo na semente foi cerca de 30 %, resultando em uma eficiência de extração igual a 43 %. Portanto, uma segunda extração por prensagem a quente ou utilizando etanol como solvente é recomendada.

4.2. Acidez

O valor de acidez tem relação estreita com a qualidade da amostra. O valor encontrado, de 0,73 % é inferior ao recomendado pela ANVISA (1999), que estabelece uma acidez máxima de 2 % para óleos e gorduras vegetais não refinados. Portanto, o índice de acidez das amostras indicou que o processo de prensagem a frio mantém a integridade do óleo da semente de romã.

4.3. Atividade Antioxidante

A concentração efetiva da atividade antioxidante encontrada foi de 37,98 μg.mL⁻¹. Como não foram encontrados na literatura dados de atividade antioxidante por DPPH para a romã, para efeito de comparação a Tabela 1 mostra valores de EC₅₀ avaliados em diferentes produtos.

Tabela 1- Capacidade de seqüestrar radicais livres (DPPH) de diversas amostras

Amostra	Tipo de extração	EC ₅₀ (μg.mL ⁻¹)	Referência
Óleo de semente de romã	Prensagem a frio	37,98	Neste trabalho
Ácido ascórbico		2,15	Silvestri, 2010
ВНТ		5,37	Silvestri, 2010
Extrato de semente de pitanga	Etanol	30,72	Luzia, 2010
Ginko Biloba	Etanol	38,91	Silvestri, 2010
Extrato de semente de maracujá	Etanol	113,41	Jorge et al, 2009
Óleo de cravo	Hidrodestilação	1.118,77	Silvestri, 2010

Pode-se observar que a atividade antioxidante do óleo de romã se compara à do Ginko Biloba, produto frequentemente usado como antioxidante com finalidade medicinal (Mensor *et al.*, 2001) e é inferior à reportada para antioxidantes sintéticos como o BHT e o ácido ascórbico, usados na conservação de alimentos.

5. CONCLUSÕES

O óleo de semente de romã prensado a frio apresentou baixa acidez e atividade antioxidante comparável à de produtos tradicionalmente usados, como conservantes, na formulação de produtos naturais.

A eficiência da etapa extração de óleo de semente de romã por prensagem a frio precisa ser otimizada. Para aumentar o rendimento de extração recomenda-se a prensagem a frio da amostra com maior umidade (entre 10 e 15 %), a prensagem a quente ou a extração combinada com etanol.

6. REFERÊNCIAS BIBLIOGRÁFICAS

- BRASIL MINISTÉRIO DA SAÚDE. Agência Nacional de Vigilância Sanitária. Resolução RDC n. 482, de 23 de setembro de 1999. Regulamento técnico para fixação de Identidade e Qualidade de Óleos e Gorduras vegetais. Brasil, 1999.
- EL-NEMR, S. E.; ISMAIL, I. A.; RAGAB, M. Chemical composition of juice and seeds of pomegranate fruit. *Die Nahrung*, v. 34, n. 7, p. 601-606. Egito, 1990.
- FADAVI, A.; BARZEGAR, M.; AZIZI, H.M. Determination of fatty acids and total lipid content in oilseed of 25 pomegranates varieties grown in Iran. *Food Sci Tech Int.*, v.11, n. 2, p. 113-119. Irã, 2005.
- INSTITUTO ADOLFO LUTZ. *Métodos físico-químicos para análise de alimentos/* coordenadores Odair Zenebon, Neus Sadocco Pascuet e Paulo Tiglea. Instituto Adolfo Lutz. São Paulo, 2008.
- JARDINI, F. A.; MANCINI FILHO, J. Avaliação da atividade antioxidante em diferentes extratos da polpa e sementes da romã (*Punica granatum*, *L*.). *Rev. Bras. Cienc. Farm.* v. 43 n. 1. São Paulo, 2007.
- JORGE, N.; MALACRIDA, C. R.; ANGELO, P. M.; ANDREO, D. Composição centesimal e atividade antioxidante do extrato de sementes de maracujá (*Passiflora edulis*) em óleo de soja. *Pesq. Agropec. Trop.*, v. 39, n. 4, p. 380-385. Goiânia, 2009.
- LUZIA, D. M. M.; BERTANHA, B. J.; JORGE, N. Sementes de pitanga (*Eugenia uniflora L.*): potencial antioxidante e perfil de ácidos graxos. *Rev Inst Adolfo Lutz*, v. 69 n. 2 p.175. São José do Rio Preto/ SP, 2010.
- MENSOR, L.L.; MENEZES, F.S.; LEITÃO, G.G.; REIS, A.S.; DOS SANTOS, T.C.; COUBE, C.S.; LEITÃO, S.G. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. *Phytother Res.*, v. 15 n. 2. Rio de Janeiro, 2001.
- OZGUL-YUCEL S. Determination of conjugated linolenic acid content of selected oil seeds grown in Turkey. *J Am Oil Chem Soc*, v. 82 n. 12, 2005.
- RUFINO, M. S. M.; ALVES, R. E.; De BRITO, E. S.; De MORAIS, S. M.; SAMPAIO, C. G.; PÉREZ-JIMENEZ, J.; SAURA-CALIXTO, F. D. Metodologia Científica: Determinação da Atividade Antioxidante Total em Frutas pela Captura do Radical Livre DPPH. *Comunicado Técnico On Line*, ISSN 1679-6535. Fortaleza, CE, 2007.

- RURALBR AGRICULTURA. Com festas de final de ano, romã registra aumento nas vendas em São Paulo. In: http://agricultura.ruralbr.com.br/noticia/2011/12/com-festas-de-final-de-ano-roma-registra-aumento-nas-vendas-em-sao-paulo-3616897.html (consultado em fevereiro de 2012).
- SILVESTRI, J. D. F.; PAROUL, N.; CZYEWSKI, L.; LERIN, L.; ROTAVA, I.; CANSIAN, R. L.; MOSSIA.; TONIAZZO, G.; DE OLIVEIRA, D.; TREICHEL, H. Perfil da composição química e atividades antibacteriana e antioxidante do óleo essencial do cravo-da-índia (*Eugenia caryophyllata Thunb.*). *Rev. Ceres*, v. 57, n.5, p. 589-594. Viçosa, 2010.
- USDA 2012 World Agricultural Supply and Demand Estimates. In: http://www.usda.gov/oce/commodity/wasde/latest.pdf (consultado em março de 2012).
- VIUDA-MARTOS, M.; FERNÁNDEZ-LÓPEZ, J.; PÉREZ-ÁLVAREZ, J. A. Pomegranate and its Many Functional Components as Related to Human Health: A Review. *Comprehensive Reviews in Food Science and Food Safety*, Vol. 9, 2010.