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The deposition of spores of Gibberella zeae, the causal agent of Fusarium head blight of wheat, was monitored during 2008–2011,
in Passo Fundo, RS, Brazil. The sampling was carried out in a 31-day period around wheat flowering. The numbers of colonies
formed were related to meteorological variables. In this study, a hierarchical autoregressive binary data model was used. The model
relates a binary response variable to potential covariates while accounting for dependence over discrete time points. This paper
proposes an approach for both model parameter inference and prediction at future time points using the Markov chain Monte
Carlo (MCMC). The developed model appeared to have a high degree of accuracy andmay have implications in the disease control
and risk-management planning.

1. Introduction

Wheat (Triticum aestivum L.) is an important crop in
Brazil especially in the South: 90% of the growing area is
established in the states of Rio Grande do Sul, Santa Catarina,
and Paraná. In this subtropical region, weather conditions
during the growing season favor the occurrence of foliar
and flowering diseases [1]. Usually, two to three fungicide
applications may be needed to control these diseases, thus
increasing production costs [2].

Among wheat diseases, Fusarium head blight (FHB)
has increased its pressure on crops in many production
regions. Apart from losses in grain yield and reductions
in baking and seed quality, the major peril due to FHB
is the contamination of grain with toxic fungal secondary
metabolites known asmycotoxins. Themost prevalent myco-
toxins are trichothecenes such as deoxynivalenol (DON) and
nivalenol (NIV). To protect consumers from mycotoxicosis,
many countries, including Brazil, have establishedmaximum
allowed levels for the most prevalent Fusariummycotoxins in
cereals and cereal products [3].

The main causal agent of the disease is Gibberella
zeae (Schwein.) Petch (anamorph Fusarium graminearum

Schwabe) [4], a homothallic fungus that survives in host
debris on the soil. Inoculum is made up of ascospores and
macroconidia that are dispersed by rain splash and wind,
landing on wheat heads and infecting the plant during
flowering and grain-filling stages [5]. FHB has worldwide
distribution although the severities of the outbreaks are
influenced by local weather conditions [6]. The wider
adoption of minimum and no tillage, short rotations with
maize and global climate variability and change are central in
the debate on the causes for the re-emergence and expansion
of the disease worldwide [7].

In Brazil, similar to other parts of the world, an increasing
frequency of severe FHB outbreaks has been reported over
the last two decades (especially after 1990) resulting in severe
yield losses [1, 8, 9]. No wheat varieties are immune to
FHB and resistance is generally controlled by several genes
of moderate/weak effect and they are defined genetically as
quantitative trait loci (QTL). In addition to these, mycotox-
ins affect production throughout the world, the ability to
predict FHB and DON and other mycotoxin contamination
is important to reduce the year-to-year risk for producers.
Owing to these dangerous consequences of reducing wheat
yield and quality around the world, computer models, based
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on weather variables (temperature, rainfall, and moisture
level), have been developed to predict the likelihood of
occurrence of FHB and DON contamination in wheat [10].

Inoculum quantification is an important step in process-
based model development [11]. It has been shown that
weather factors such as precipitation and temperature are
highly related to inoculum density in the atmosphere [12–
15]. Statistical models for this purpose have been made
using techniques based on linear regression or other gener-
alizations. When the response of the models is binary data,
such as inoculum incidence, data fitting with generalized
linear models based on logit link function [16] has proven
to be the most appropriated. However, when the data are
collected at successive time points such as daily or hourly,
it may be correlated and under these circumstances an
autoregressive structure, specially AR(1), can be used to solve
the correlation in the data. Examples of this approach were
proposed by [17–19].

This study examines the potential impact of climate
variability on daily deposition levels of G. zeae propagules
using hierarchical logistic model techniques. Our goal is to
establish a statistical model of spore deposition that can
be used to calculate probabilities of FHB infection as the
wheat phenology advances from heading to soft dough stage.
Within this framework, we aim, in the future, to relate the
risk of FHB infection to the amount of inoculum within
wheat fields, host phenology, susceptibility, and weather
factors.

2. Materials and Methods

2.1. Study Area. Passo Fundo is located at the Planalto
Médio Region, northern Rio Grande do Sul State, Brazil
(latitude 28◦15′00′′S, longitude 52◦25′12′′W, altitude 684m)
(Figure 1). The region is one of the major wheat production
areas in Brazil.

2.2. Data Collection. Patterns of spore deposition were
monitored during 2008 through 2011. Each sample period
is referred to as a wheat growing season environment.
Consecutive sample periods covered the interval of 31
days starting from September 15th. Petri dishes (90mm in
diameter; surface area = 283mm2) containing Fusarium
selective media (FSM) were used to sample viable spores of
G. zeae from air. The FSM consisted of a modified Nash-
Snyder formulation, prepared as described by [20]. The
plates were mounted on a wind-driven sampler previously
used by [12]. Two daily samplings performed at 9:00 and
21:00 h. were used with days deemed to begin and end at
09:00 hours GMT for consistency with the meteorological
data. Plates were exposed in two periods of 12 h each,
called night- and day-time sampling. After exposure to the
environment, the plates were transported to the laboratory
and incubated in a growth chamber (25◦C and 12 h of
darkness) in order to promote fungal growth. Colonies of
G. zeae were identified according to color and morphology.
Doubtful cases were transferred to Petri dishes containing
PDA (potato dextrose agar) for comparison with confirmed
true G. zeae colonies. The number of G. zeae colonies was
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Figure 1: Location of the sampling site in Passo Fundo, Brazil.

recorded for each plate as CFU (colony forming units). Other
Fusarium species were observed but not identified at the
species level. Plates were placed, in the local weather station
site, at 120 cm above a grass-covered ground.

Daily weather data comprised of maximum and mini-
mum temperature (◦C), total precipitation (mm), sunshine
hours (h), and mean relative humidity (%). The data were
provided by the National Institute of Meteorology (INMET).

2.3. Data Analysis. Records from the spore sampler were
used as daily values (sum of two 12-hour periods), expressed
as observed proportion of spores per day. The maximum
colony count per Petri dish was fixed to 60 due to operation
limitations (visual accuracy during colony identification) in
this way the maximum count in each day was 120. The
dataset consists of 93 observations where the variable of
interest is a binary indicator y[t] with values in range 0-
1 at time t. For the climate variables, each observation
was centered on climatological normal representing the
prevailing set of weather conditions calculated over a period
of 30 years (1961–1990) in Passo Fundo this preprocessing
step improved the simulation stability and accounted for
strong serial correlation intrinsic to environmental data
sequentially registered. For example in a given day the total
precipitation observed is 25mm, so the adjusted value is
calculated like 25− 6.2317 = 18.7683 where the value 6.2317
corresponded to the precipitation mean observed in the
months of September and October from the climatological
normal in Passo Fundo.

We fitted an Hierarchical Autoregressive Binary Data
Model (HARBDM) to the data. Model development was
based on a combined approach from [19, 21, 22] using
the free available software WinBUGS [23]. The statistical
analysis and graphs were done in R [24] using the package
R2WinBUGS [25]. We ran the simulation with 10000
interactions, in 3 chains, discarding the first 5000. The
convergence of the chains was tested using Gelman-Rubin
method [26]. We then took percentiles 5, 50, and 95%
from the simulation results to get parameter estimates and
credibility intervals. The density probability for the median
spore incidence, by year, was fitted to a beta distribution.

MCMC (Markov chain Monte Carlo) methodology [27]
is adopted to simulate from the full posterior distribution.
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Updates were obtained by using the Gibbs sampler [28, 29].
The Gibbs sampler split the state vector into a number of
components and updated each in turn by a series of Gibbs
transitions. Posterior probability estimates for the incidence
of spores in a given day were obtained in the context of the
group (year).

The data of 2008–2010 was used to construct the model
and the data of 2011 to validate the model.

2.3.1. Data Model. The functional form of the model is
shown below:

logit
{

Pr
(

Y[1,i] = 1
)}

= π[1,i],

π[1,i] = β0[i] +
4
∑

k=1

βk[i]Xk[1,i]

+ε[1,i], when t = 1,

logit
{

Pr
(

Y[t,i] = 1
)}

= π[t,i],

π[t,i] = β0[i] +
4
∑

k=1

βk[i]Xk[t,i] + φ[i]π[t−1,i]

+ε[t,i], when t ≥ 2.

(1)

In (1) we used terms i for years (2008 to 2010) and t for
days (1 to 31) after 15th of September.

3. Results and Discussion

A total of 93 sampling days was included in the study. During
the sampling time 2076 G. zeae colonies were accumulated.
The lowest number of colonies (343) was recorded in 2010.
Spores were present in 86 out of 93 days. Summary statistics
for each dependent and independent variable are shown in
Table 1. The number of rainy days by year were, respectively,
14, 15, and 13.

Visual observations in Figure 2 revealed that climate
variability and the number of G. zeae spores present in the
air appeared to be associated. Both relative humidity and
rain were associated positively with spore incidence while
sunshine hours were associated negatively. Temperature
amplitude appeared to be weakly related to spore incidence.

The mean and median values of G. zeae incidence were
very similar in 2008 and 2009 but contrasted to those
observed in 2010 (Table 1).

The monitoring of deposition of G. zeae spores by means
of Petri dishes containing selective media provided estimates
of inoculum levels in the air of Passo Fundo area. Moderate-
to-severe Fusarium head blight epidemics occurred during
the study period. Thus, the strategy of monitoring spores
of G. zeae through different wheat growing seasons was
successful in obtaining data from Fusarium head blight
epidemic and nonepidemic years. During each sampling
period, Fusarium head blight incidence ranged from traces
to about 100% of spikes affected. The wheat seasons of
2008, 2009, and 2010 in Passo Fundo area were categorized,
respectively, as epidemic, highly epidemic, and nonepidemic.

Table 1: Summary statistics from raw data observed from Septem-
ber 15th to October 15th, during three years, in Passo Fundo, RS,
Brazil.

GZ RH SH TA RAIN

2008

Mean 0.23 0.73 0.55 10.59 4.58

SD 0.28 0.13 0.38 4.20 9.62

MED 0.11 0.70 0.61 11.70 0.00

IQR 0.27 0.24 0.68 7.35 4.00

2009

Mean 0.23 0.78 0.47 10.19 10.78

SD 0.32 0.11 0.37 4.12 22.98

MED 0.08 0.76 0.52 9.20 0.00

IQR 0.17 0.20 0.72 6.95 8.25

2010

Mean 0.09 0.74 0.48 10.66 8.72

SD 0.12 0.12 0.35 4.23 25.28

MED 0.03 0.75 0.53 11.50 0.00

IQR 0.10 0.18 0.69 6.10 3.15

GZ: Gibberella zeae, RH: relative humidity, SH: sunshine hours, TA:
temperature amplitude, RAIN: rainfall. SD: standard deviation, MED:
median, IQR: interquartile range.

Coincidently, the ENSO phases in each period corresponded
to “neutral,” “warm,” and “cold,” respectively. This is in
agreement with reports [9] that FHB epidemics are likely to
be more severe in “neutral” and “warm” than in the “cold”
phase, in this part of the world.

The model constructed with the data between September
15 and October 15 in 2008, 2009, and 2010, respectively, was
used to predict the density ofG. zeae spores in the air of Passo
Fundo. In Table 2, the estimated parameters by group factor
(year) are deviations from the climatological normal. In this
context we can see that, for a day with no deviation from
normal, the probability of incidence of FHB, expressed by
eβ0 /(1 + eβ0) for each day, corresponds, by year, to 0.18, 0.20,
and 0.06, respectively. The correlation index (φ) (Table 2)
between days in 2008 and 2009 were negative and in 2010,
positive.

In Table 3, the scale parameter β can be used to estimate
the daily inoculum level for a specific year. For example in
Passo Fundo, on years with β below a cutpoint (7.0), an
alert for moderate-severe status could be set in a monitoring
disease system. Otherwise, these parameters (α, β) could be
used as priory information in Bayesian model framework.

Another measure of interest is the odds ratio (Table 4)
that represents the increase in the incidence by each change
in unit deviation from variables from the model.

The adjusted model is showed in (Figure 3) and was
then validated by the actual observations (Figure 4). The
validation analysis indicates that the model had reasonable
accuracy over the predictive period, even though in day 9 the
predicted spike was well behind that of the actual peak.

Mechanisms of spore deposition are gravity and scrub-
bing by rain drops which contribute in a random manner
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Table 2: Estimated posterior medians and 95% credibility interval for the autoregressive model.

2008 2009 2010

2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%

β0 −1.699 −1.511 −1.305 −1.586 −1.364 −1.186 −3.027 −2.826 −2.649

βTA −0.124 −0.064 −0.004 0.105 0.145 0.187 0.020 0.087 0.153

βRAIN 0.028 0.043 0.057 0.014 0.017 0.021 0.005 0.009 0.013

βRH 5.023 6.683 8.269 −0.927 1.180 3.561 −1.240 1.546 4.176

βSH −0.034 0.671 1.373 −3.427 −2.609 −1.626 −3.705 −2.691 −1.600

φ −0.913 −0.429 0.141 −0.996 −0.880 −0.469 0.329 0.873 0.995

β0: intercept, TA: iemperature implitude, RAIN: rainfall, RH: relative humidity, SH: sunshine hours, φ: correlation index [AR(1)].
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Figure 2: Relative daily incidence of Gibberella zeae spores (contin-
uous line) and meteorological variables (dashed lines top to bottom
graphs: relative humidity, sunshine hours, temperature amplitude,
and rainfall), centered on climatological normal in Passo Fundo
during 31-day period starting on September 15th of 2008, 2009, and
2010, respectively.

Table 3: Adjusted parameters for the beta distribution.

2008 2009 2010

α 1.20 1.86 1.49

β 3.63 5.99 14.58

to spore deposition [30]. Wet deposition becomes relatively
more important as the distance from a source of spores
increases, because dry deposition tends to be limited to the
removal of spores near the ground, whereas wet deposition
can sweep spores from the entire depth of the spore
cloud. For example, a significant portion of ascospores of

Venturia inaequalis was collected during hours that rainfall
rate was less than 0.25mm h-1 [31].

Therefore, it is likely that the error range in predicting
spore deposition, in our work, is due to the fact that we used
total daily rainfall in the model in lieu of actual time courses
of rainfall.

Another possible explanation would pertain to packets
of air (a localized region of low air density or a descending
air current) that settled those days containing higher spore
populations due to an earlier massive spore release of some
origin in an upwind direction, perhaps at a considerable
distance.

The model we developed in this paper describes the
deposition probability of airborne spores according to
weather factors. In this study, a HARBD model was used in
this attempt to develop a G. zeae spore density forecasting
system for improving our capacity to predict FHB outbreaks.
The developed model appeared to have a high degree of
accuracy and may have implications in the disease control
and risk-management planning.

The weaknesses of this study must be acknowledged.
First, this is a broad assessment of the relationship between
climate variability and the incidence of spores of G. zeae at
one location. More detailed risk assessment at regional and
farm levels may also be required if a comprehensive and
systematic risk assessment is to be made. Inclusion of other
information (e.g., crop management, stubble characteristics,
and other fungal-relevant environmental information) may
further improve the model. Second, the model may only
be applicable to Passo Fundo and areas with a similar
climate background, since only local data were used in the
construction of the model.

4. Conclusions

The autoregressive model is a useful tool for interpreting
and applying to local plant disease control measures. Once
a satisfactory model has been obtained, it can be used to
forecast expected numbers of cases for a given number of
future time intervals. Since predictions from HARBD model
have the capacity to forecast when an outbreak is likely to
occur, it therefore has great potential to be used as a decision-
support tool for both tactical and strategic recommendations
for FHB management.
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Table 4: Odds ratio and 95% interval for the autoregressive model.

2008 2009 2010

2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%

β0 0.18 0.22 0.27 0.20 0.26 0.31 0.05 0.06 0.07

βTA 0.88 0.94 1.00 1.11 1.16 1.21 1.02 1.09 1.17

βRAIN 1.03 1.04 1.06 1.01 1.02 1.02 1.01 1.01 1.01

βRH 151.87 798.71 3901.05 0.40 3.25 35.20 0.29 4.69 65.10

βSH 0.97 1.96 3.95 0.03 0.07 0.20 0.02 0.07 0.20

β0: intercept, TA: temperature amplitude, RAIN: rainfall, RH: relative humidity, SH: sunshine hours.
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Figure 3: Predicted incidence of spores in a given day by year represented by the continuous line and simulated interval (5, 95 percents)
dashed line. The vertical lines represent observed values (a). Estimated density for the beta probability distribution function in the different
years (b).
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Figure 4: Validated model of spores incidence using climate variation in Passo Fundo, Brazil. The vertical lines represent the observed values
and the continuous line the predicted values (a). Estimated density for the beta probability distribution function (b). The validation period
was from September 15 to October 15, 2011.

Based on information from the model, we can establish a
lower threshold of FHB probability incidence at 0.20.

In the future, combination of this model with an
infection process model may result in a complex but more
complete model. The combined model may be useful to
quantify the impact of FHB epidemics on wheat yield and
quality. The development of reliable epidemic forecasting
systems should play an important role in FHB management,
especially, if associated with expected advances in weather
forecasting. Should an outbreak of FHB occur, a farm-scale
intervention is usually required. Early warning based on
forecasts from the model can assist in improving FHB con-
trol. Increasing fungicide spraying during high-risk periods
and decreasing it during low-risk periods will improve cost
effectiveness of operations. Crop advisers, if anticipating
a higher FHB risk of occurrence, can increase vigilance,
for example, by alerting farmers, planning for fungicide
spraying and preparing for dealing with problem areas. These
attempts, if successful, may have significant implications in
wheat decision-making and practices, and may help farmers
use resources more effectively and efficiently.
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